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1 Homological spectral sequences. Definitions
Most of our considerations involving spectral sequences will be applied to fibrations. If
F ↪→ E → B is such a fibration, then a spectral sequence can be regarded as a machine which
takes as input the (co)homology of the base B and fiber F and outputs the (co)homology of
the total space E.

We begin with a discussion of homological spectral sequences.

Definition 1.1. A (homological) spectral sequence is a sequence {Er
∗,∗, d

r
∗,∗}r≥0 of chain

complexes of abelian groups, such that

Er+1
∗,∗ = H∗(E

r
∗,∗).

In more detail, we have abelian groups {Er
p,q} and maps (called “differentials”)

drp,q : Er
p,q → Er

p−r,q+r−1

such that (dr)2 = 0 and

Er+1
p,q :=

ker
(
drp,q : Er

p,q → Er
p−r,q+r−1

)
Image

(
drp+r,q−r+1 : Er

p+r,q−r+1 → Er
p,q

) .

Er
p−r,q+r−1

Er
p,q

0 · · · p− r p

q + r − 1

q

...

0

dr

dr

dr

Figure 1: r-th page Er

We will focus on the first quadrant spectral sequences, i.e., with Er
p,q = 0 whenever p < 0

or q < 0. Hence, for any fixed (p, q) in the first quadrant and for sufficiently large r, the
differentials drp,q and drp+r,q−r+1 vanish, so that

Er
p,q = Er+1

p,q = · · · = E∞p,q.

In this case we say that the spectral sequence degenerates at page Er.
When it is clear from the context which differential we refer to, we will simply write dr,

instead of dr∗,∗.
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Definition 1.2. If {Hn}n are groups, we say the spectral sequence converges (or abuts) to
H∗, and we write

(Er, dr)V H∗,

if for each n there is a filtration

Hn = Dn,0 ⊇ Dn−1,1 ⊇ · · · ⊇ D1,n−1 ⊇ D0,n ⊇ D−1,n+1 = 0

such that, for all p, q,
E∞p,q = Dp,q�Dp−1,q+1

.

Hn/Dn−1,1

Dn−1,1/Dn−2,2

D0,n

D1,n−1/D0,n

Figure 2: n-th diagonal of E∞

To read off H∗ from E∞, we need to solve several extension problems. But if Er
∗,∗ and H∗

are vector spaces, then
Hn
∼=
⊕
p+q=n

E∞p,q,

since in this case all extension problems are trivial.

Remark 1.3. The following observation is very useful in practice:

• If E∞p,q = 0, for all p+ q = n, then Hn = 0.

• If Hn = 0, then E∞p,q = 0 for all p+ q = n.

Before explaining in more detail what is behind the theory of spectral sequences, we
present the special case of a spectral sequence associated to fibrations, and discuss some
immediate applications (including to Hurewicz theorem).
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Theorem 1.4 (Serre). If π : E → B is a fibration with fiber F , and with π1(B) = 0 and
π0(F ) = 0, then there is a first quadrant spectral sequence with

E2
p,q = Hp(B;Hq(F ))V H∗(E) (1.1)

converging to H∗(E).

Remark 1.5. Fix some coefficient group K. Then, since B and F are connected, we have:

• E2
p,0 = Hp(B;H0(F ;K)) = Hp(B;K),

• E2
0,q = H0(B;Hq(F ;K)) = Hq(F ;K)

The remaining entries on the E2-page are computed by the universal coefficient theorem.

Definition 1.6. The spectral sequence of the above theorem shall be referred to as the Leray-
Serre spectral sequence of a fibration, and any ring of coefficients can be used.

H∗(F )

H∗(B)

Figure 3: p-axis and q-axis of E2

Remark 1.7. If π1(B) 6= 0, then the coefficients Hq(F ) on B are acted upon by π1(B), i.e.,
these coefficients are “twisted” by the monodromy of the fibration if it is not trivial. As we
will see later on, in this case the E2-page of the Leray-Serre spectral sequence is given by

E2
p,q = Hp(B;Hq(F )),

i.e., the homology of B with local coefficients Hq(F ).

2 Immediate Applications: Hurewicz Theorem Redux
As a first application of the Lera-Serre spectral sequence, we can now give a new proof of
the Hurewicz Theorem in the absolute case:
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Theorem 2.1 (Hurewicz Theorem). If X is (n− 1)-connected, n ≥ 2, then H̃i(X) = 0 for
i ≤ n− 1 and πn(X) ∼= Hn(X).

Proof. Consider the path fibration:

ΩX � � // PX // X, (2.1)

and recall that the path space PX is contractible. Note that the loop space ΩX is connected,
since π0(ΩX) ∼= π1(X) = 0. Moreover, since π1(X) = 0, the Leray-Serre spectral sequence
(1.1) for the path fibration has the E2-page given by

E2
p,q = Hp(X,Hq(ΩX))V H∗(PX).

We prove the statement of the theorem by induction on n. The induction starts at n = 2,
in which case we clearly have H1(X) = 0 since X is simply-connected. Moreover,

π2(X) ∼= π1(ΩX) ∼= H1(ΩX),

where the first isomorphism follows from the long exact sequence of homotopy groups for
the path fibration, and the second isomorphism is the abelianization since π2(X), hence also
π1(ΩX), is abelian. So it remains to show that we have an isomorphism

H1(ΩX) ∼= H2(X). (2.2)

Consider the E2-page of the Leray-Serre spectral sequence for the path fibration. We need
to show that d2 : E2

2,0 = H2(X)→ E2
0,1 = H1(ΩX) is an isomorphism.

E2
H∗(ΩX)

H1(ΩX)

Z
H∗(X)

H1(X) H2(X)

d2

Since {E2
p,q} V H∗(PX) and PX is contactible, we have by Remark 1.3 that E∞p,q = 0

for all p, q > 0. Hence, if d2 : H2(X) → H1(ΩX) is not an isomorphism, then E3
0,1 6= 0 and

E3
2,0 = ker d2 6= 0. But the differentials d3 and higher will not affect E3

0,1 and E3
2,0. So these

groups remain unchanged (hence non-zero) also on E∞, contradicting the fact that E∞ = 0
except for (p, q) = (0, 0). This proves (2.2).

Now assume the statement of the theorem holds for n − 1 and prove it for n. Since X
is (n − 1)-connected, we have by the homotopy long exact sequence of the path fibration
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that ΩX is (n−2)-connected. So by the induction hypothesis applied to ΩX (assuming now
that n.geq3, as the case n = 2 has been dealt with earlier), we have that H̃i(ΩX) = 0 for
i < n− 1, and πn−1(ΩX) ∼= Hn−1(ΩX).

Therefore, we have isomorphisms:

πn(X) ∼= πn−1(ΩX) ∼= Hn−1(ΩX),

where the first isomorphism follows from the long exact sequence of homotopy groups for
the path fibration, and the second is by the induction hypothesis, as already mentioned. So
it suffices to show that we have an isomorphism

Hn−1(ΩX) ∼= Hn(X). (2.3)

Consider the Leray-Serre spectral sequence for the path fibration. By using the universal
coefficient theorem for homology, the terms on the E2-page are given by

E2
p,q = Hp(X,Hq(ΩX)) ∼= Hp(X)⊗Hq(ΩX)⊕ Tor(Hp−1(X), Hq(ΩX)) = 0

for 0 < q < n− 1, by the induction hypothesis for ΩX.

H∗(ΩX)

0

...

0

Hn−1(ΩX)

Z
H∗(X)

H1(X) H2(X)
. . .

Hn−1(X)Hn(X)

dn

Hence, the differentials d2, d3 · · · dn−1 acting on the entries on the p-axis for p ≤ n, do not
affect these entries. The entriesHn(X) andHn−1(ΩX) are affected only by the differential dn.
Also, higher differentials starting with dn+1 do not affect these entries. But since the spectral
sequence converges to H∗(PX) with PX contractible, all entries on the E∞-page (except at
the origin) must vanish. In particular, this implies that Hi(X) = 0 for 1 ≤ i ≤ n − 1, and
dn : Hn(X)→ Hn−1(ΩX) must be an isomorphism, thus proving (2.3).
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3 Leray-Serre Spectral Sequence
In this section, we give some more details about the Leray-Serre spectral sequence. We begin
with some general considerations about spectral sequences.

Start off with a chain complex C∗ with a bounded increasing filtration F •C∗, i.e., each
F pC∗ is a subcomplex of C∗, F p−1C∗ ⊆ F pC∗ for any p, F pC∗ = C∗ for p very large, and
F pC∗ = 0 for p very small. We get an induced filtration on the homology groups Hi(C∗) by

F pHi(C∗) := Image(Hi(F
pC∗)→ Hi(C∗)).

The general theory of spectral sequences (e.g., see Hatcher or Griffiths-Harris), asserts that
there exists a homological spectral sequence with E1-page given by:

E1
p,q = Hp+q(F

pC∗/F
p−1C∗)V H∗(C∗)

and differential d1 given by the connecting homomorphism in the long exact sequence of
homology groups associated to the triple (F pC∗, F

p−1C∗, F
p−2C∗). Moreover, we have

Theorem 3.1.
E∞p,q = F pHp+q(C∗)/F

p−1Hp+q(C∗)

So to reconstruct H∗(C∗) one needs to solve a collection of extension problems.

Back to the Leray-Serre spectral sequence, let F ↪→ E
π→ B be a fibration with B

a simply-connected finite CW-complex. Let C∗(E) be the singular chain complex of E,
filtered by

F pC∗(E) := C∗(π
−1(Bp)),

where Bp is the p-skeleton of B. Then,

F pC∗(E)/F p−1C∗(E) = C∗(π
−1(Bp))/C∗(π

−1(Bp−1)) = C∗(π
−1(Bp), π

−1(Bp−1)).

By excision,
H∗(F

pC∗(E)/F p−1C∗(E)) =
⊕
ep

H∗(π
−1(ep), π−1(∂ep))

where the direct sum is over the p-cells ep in B. Since ep is contractible, the fibration above
it is trivial, so homotopy equivalent to ep × F . Thus,

H∗(π
−1(ep), π−1(∂ep)) ∼= H∗(e

p × F, ∂ep × F )
∼= H∗(D

p × F, Sp−1 × F )
∼= H∗−p(F )
∼= Hp(D

p, Sp−1;H∗−p(F )),

where the third isomorphism follows by the Künneth formula. Altogether, there is a spectral
sequence with E1-page

E1
p,q = Hp+q(F

pC∗(E)/F p−1C∗(E)) ∼=
⊕
ep

Hp(D
p, Sp−1;Hq(F )).
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Here, d1 takes E1
p,q to

⊕
ep−1

Hp−1(Dp−1, Sp−2;Hq(F )) by the boundary map of the long exact
sequence of the triple (Bp, Bp−1, Bp−2). By cellular homology, this is exactly a description of
the boundary map of the CW-chain complex of B with coefficients in Hq(F ), hence

E2
p,q = Hp(B,Hq(F )).

Remark 3.2. If the base B of the fibration is not simply-connected, then the coefficients
Hq(F ) on B in E2 are acted upon by π1(B), i.e., these coefficients are “twisted” by the
monodromy of the fibration if it is not trivial, so taking the homology of the E1-page yields

E2
p,q = Hp(B;Hq(F )),

regarded now as the homology of B with local coefficients Hq(F ).

The above considerations yield Serre’s theorem:

Theorem 3.3. Let F
i
↪→ E

π→ B be a fibration with π1(B) = 0 (or π1(B) acts trivially on
H∗(F )) and π0(E) = 0. Then, there is a first quadrant spectral sequence with E2-page

E2
p,q = Hp(B,Hq(F ))

which converges to H∗(E).

Therefore, there exists a filtration

Hn(E) = Dn,0 ⊇ Dn−1,1 ⊇ . . . ⊇ D0,n ⊇ D−1,n+1 = 0

such that E∞p,q = Dp,q/Dp−1,q+1.

n-th diagonal of E∞

Hn(E)/Dn−1,1

Dn−1,1/Dn−2,2

D0,n

D1,n−1/D0,n
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(a) We have the following diagram of groups and homomorphisms:

Hp(B) = E2
p,0 ⊇ ker d2

p,0 = E3
p,0 ⊇ ker d3

p,0 = E4
p,0 ⊇ . . . ⊇ ker dpp,0 = Ep+1

p,0

...

=

OO

E∞p,0

=

OO

Hp(E)/Dp−1,1Hp(E)

=

OO

Hp(E)

onto

OOOO

π∗

^^

Moreover, the above diagram commutes, i.e., the composition

Hp(E)� E∞p,0 ⊆ E2
p,0 = Hp(B), (3.1)

which is also called the edge homomorphism, coincides with π∗ : Hp(E)→ Hp(B).

(b) We have the following diagram of groups and homomorphisms:

Hq(F ) = E2
0,q

// //

i∗

**

E3
0,q = Hq(F )/Image(d2) // // . . . // // Eq+2

0,q

=
��
...

=

��
E∞0,q

=

��
D0,qHq(E)� _

��
Hq(E)

Furthermore, this diagram commutes.

(c)

Theorem 3.4. The image of the Hurewicz map hnB : πn(B) → Hn(B) is contained in
En
n,0, which is called the group of transgression elements. Furthermore, the following
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diagram commutes:

πn(B)

l.e.s. ∂

��

hnB // Hn(B) =E2
n,0 ⊇ . . . ⊇ En

n,0

dn

��
πn−1(F )

hn−1
F // Hn−1(F ) = E2

0,n−1
// // . . . // // En

0,n−1

4 Hurewicz Theorem, continued
Under the assumptions of the Hurewicz theorem, consider the following transgression dia-
gram of Theorem 3.4:

πn(X)

∼= ∂

��

hnX // Hn(X) = E2
n,0 = . . . = En

n,0

∼= dn

��
πn−1(ΩX)

hn−1
ΩX

∼= // Hn−1(ΩX) = E2
0,n−1 = . . . = En

0,n−1

The Hurewicz homomorphism hn−1
ΩX is an isomorphism by the inductive hypothesis, ∂ is

an isomorphism by the homotopy long exact sequence associated to the path fibration for
X, and dn is an isomorphism by the spectral sequence argument used in the proof of the
Hurewicz theorem. Therefore, hnX : πn(X) → Hn(X) is an isomorphism since the diagram
commutes.

Remark 4.1. It can also be shown inductively that under the assumptions of the Hurewicz
theorem,

hn+1
X : πn+1(X) −→ Hn+1(X)

is an epimorphism.

In what follows we give more general versions of the Hurewicz theorem. Recall that
even if X is a finite CW-complex the homotopy groups πi(X) are not necessarily finitely
generated. However, we have the following result:

Theorem 4.2 (Serre). If X is a finite CW-complex with π1(X) = 0 (or more generally if X
is abelian), then the homotopy groups πi(X) are finitely generated abelian groups for i ≥ 2.

Definition 4.3. Let C be a category of abelian groups which is closed under extension, i.e.,
whenever

0 // A // B // C // 0

is a short exact sequence of abelian groups with two of A,B,C contained in C, then so is the
third. A homomorphism ϕ : A→ B is called a

• monomorphism mod C if kerϕ ∈ C;
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• epimorphism mod C if cokerϕ ∈ C;

• isomorphism mod C if kerϕ, cokerϕ ∈ C.

Example 4.4. Natural examples of categories C as above include {finite abelian groups},
{finitely generated abelian groups}, {p-groups}.

We then have the following:

Theorem 4.5 (Hurewicz mod C). Given n ≥ 2, if πi(X) ∈ C for 1 ≤ i ≤ n − 1, then
H̃i(X) ∈ C for i ≤ n − 1, hnX : πn(X) → Hn(X) is an isomorphism mod C, and hn+1

X :
πn+1(X)→ Hn+1(X) is an epimorphism mod C.

We need the following easy fact which guarantees that in the Leray-Serre spectral se-
quence of the path fibration we have En

p,q ∈ C.

Lemma 4.6. If G ∈ C and X is a finite CW-complex, then Hi(X;G) ∈ C for any i. More
generally (even if X is not a CW complex), if A,B ∈ C, then Tor(A,B) ∈ C.

Then the proof of Theorem 4.5 is the same as that of the classical Hurewicz theorem,
after replacing “∼=” by “∼= mod C”, and “0” by “C”:

πn(X)

∼= ∂

��

hnX // Hn(X) = E2
n,0 = . . . = En

n,0

∼= mod C dn

��
πn−1(ΩX)

hn−1
ΩX

∼= mod C// Hn−1(ΩX) = E2
0,n−1 = . . . = En

0,n−1

Specifically, hn−1
ΩX is an isomorphism mod C by the inductive hypothesis, ∂ is an isomorphism

by the long exact sequence associated to the path fibration, and dn is an isomorphism mod
C by a spectral sequence argument similar to the one used in the proof of the Hurewicz
theorem. Therefore, hnX is an isomorphism mod C since the diagram commutes.

Proof of Serre’s Theorem 4.2. Let C = {finitely generated abelian groups}. Then, H̃i(X) ∈
C since X is a finite CW-complex. By Theorem 4.5, we have πi(X) ∈ C for i ≥ 2.

As another application, we can now prove the following result:

Theorem 4.7. Let X and Y be any connected spaces and f : X → Y a weak homotopy equiv-
alence (i.e., f induces isomorphisms on homotopy groups). Then f induces isomorphisms
on (co)homology groups with any coefficients.

Proof. By universal coefficient theorems, it suffices to show that f induces isomorphisms on
integral homology. As such, we can assume that f is a fibration, and let F denote its fiber.

Since f is a weak homotopy equivalence, the long exact sequence of the fibration yields
that πi(F ) = 0 for all i ≥ 0. Hence, by the Hurewicz theorem, H̃i(F ) = 0, for all i ≥ 0.
Also, H0(F ) = Z, since F is connected.
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Consider now the Leray-Serre spectral sequence associated to the fibration f , with E2-
page given by (see Remark 1.7):

E2
p,q = Hp(Y,Hq(F ))V H∗(X),

where Hq(F ) is a local coefficient system (i.e., locally constant sheaf) on Y with stalk Hq(F ).
Since F has no homology, except in degree zero (where H0(F ) = H0(F ) is always the trivial
local system when F is path-connected), we get:

E2
p,q = 0 for q > 0,

and
E2
p,0 = Hp(Y ).

Therefore, all differentials in the spectral sequence vanish, so

E2 = · · · = E∞.

Recall now that
Hn(X) = Dn,0 ⊇ Dn−1,1 ⊇ · · · ⊇ 0

and E∞p,q = Dp,q/Dp−1,q+1. So if q > 0, then Dp,q = Dp−1,q+1 since E∞p,q = 0. In particular,
Dn−1,1 = · · · = D0,n = D−1,n+1 = 0. Therefore,

Hn(X) = E∞n,0 = E2
n,0 = Hn(Y )

and, by our remarks on the Leray-Serre spectral sequence (and edge homomorphism), the
above composition of isomorphisms coincides with f∗, thus proving the claim.

5 Gysin and Wang sequences
As another application of the Leray-Serre spectral sequence, we discuss the Gysin and Wang
sequences.

Theorem 5.1 (Gysin sequence). Let F ↪→ E
π→ B be a fibration, and suppose that F is a

homology n-sphere. Assume that π1(B) acts trivially on Hn(F ), e.g., π1(B) = 0. Then there
exists an exact sequence

· · · −→ Hi(E)
π∗−→ Hi(B) −→ Hi−n−1(B) −→ Hi−1(E)

π∗−→ Hi−1(B) −→ · · ·

Proof. The Leray-Serre spectral sequence of the fibration has

E2
p,q = Hp(B;Hq(F )) =

{
Hp(B) , q = 0, n

0 , otherwise.
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E2 = · · · = En+1

n

0

H∗(B)

0

H∗(B)

Thus the only possibly nonzero differentials are:

dn+1 : En+1
p,0 −→ En+1

p−n−1,n.

In particular,
En+1
p,q = · · · = E2

p,q

for any (p, q), and

E∞p,q =


0 , q 6= 0, n

ker(dn+1 : En+1
p,0 → En+1

p−n−1,n) , q = 0

coker(dn+1 : En+1
p+n+1,0 → En+1

p−n−1,n) , q = n.

(5.1)

The above calculations yield the exact sequences

0 −→ E∞p,0 −→ En+1
p,0

dn+1

−→ En+1
p−n−1,n −→ E∞p−n−1,n −→ 0.

The filtration on Hi(E) reduces to

0 ⊂ E∞i−n,n = Di−n,n ⊂ Di,0 = Hi(E)

and so the sequences
0 −→ E∞i−n,n −→ Hi(E) −→ E∞i,0 −→ 0 (5.2)

are exact for each i.
The desired exact sequence follows by combining (5.1), (5.2) and the edge isomorphism

(3.1).

Theorem 5.2 (Wang). If F ↪→ E → Sn is a fibration, then there is an exact sequence:

· · · −→ Hi(F ) −→ Hi(E) −→ Hi−n(F ) −→ Hi−1(F ) −→ · · ·

Proof. Exercise.
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6 Suspension Theorem for Homotopy Groups of Spheres
We first need to compute the homology of the loop space ΩSn for n > 1.

Proposition 6.1. If n > 1, we have:

H∗(ΩS
n) =

{
Z , ∗ = a(n− 1), a ∈ N
0 , otherwise

Proof. Consider the Leray-Serre spectral sequence for the path fibration (with π1(Sn) =
π0(ΩSn) = 0)

ΩSn ↪→ PSn ' ∗ → Sn,

with E2-page

E2
p,q = Hp(S

n;Hq(ΩS
n)) =

{
Hq(ΩS

n) , p = 0, n

0 , otherwise

which converges to H∗(PSn) = H∗(point). In particular, E∞p,q = 0 for all (p, q) 6= (0, 0).

E2 = · · · = En

0

H1(ΩSn) H1(ΩSn)

Hi(ΩS
n) Hi(ΩS

n)

...
...

H∗(ΩS
n)

H∗(S
n)

0 n. . .

First note that we have H0(ΩSn) = Z since π0(ΩSn) = π1(Sn) = 0. Moreover, Hi(ΩS
n) =

E2
0,i = E3

0,i = E∞0,i = 0 for 0 < i < n−1, since these entries are not affected by any differential.
Furthermore, d2 = d3 = . . . = dn−1 = 0 since these differential are too short to alter any of
the entries they act on. So

E2 = . . . = En.

Similarly, we have dn+1 = dn+2 = . . . = 0, as these differentials are too long, and so

En+1 = En+2 = . . . = E∞.
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Since E∞p,q = 0 for all (p, q) 6= (0, 0), all nonzero entries in En (except at the origin) have to
be killed in En+1. In particular,

dnn,q : En
n,q −→ En

0,q+n−1

are isomorphisms.

E2 = · · · = En

0

H2n−2(ΩSn)

Hn(ΩSn)

Hn−1(ΩSn) Hn−1(ΩSn)

0

0

0

0

...

...
...

H∗(ΩS
n)

0 Z n Z = H0(ΩSn). . .

dn

dn

For instance, dn : Z = H0(ΩSn) = En
n,0 −→ En

0,n−1 = Hn−1(ΩSn) is an isomorphism, hence
Hn−1(ΩSn) = Z. More generally, we get isomorphisms

Hq(ΩS
n) ∼= Hq+n−1(ΩSn)

for any q ≥ 0. Since H0(ΩSn) ∼= Z and Hi(ΩS
n) = 0 for 0 < i < n− 1, this gives:

H∗(ΩS
n) =

{
Z , ∗ = a(n− 1), a ∈ N
0 , otherwise

as desired.

We can now give a new proof of the Suspension Theorem for homotopy groups.

Theorem 6.2. If n ≥ 3, there are isomorphisms πi(Sn−1) ∼= πi+1(Sn), for i ≤ 2n − 4, and
we have an exact sequence:

Z→ π2n−3(Sn−1)→ π2n−2(Sn)→ 0.

Proof. We have Z ∼= πn(Sn) ∼= πn−1(ΩSn). Let g : Sn−1 → ΩSn be a generator of πn−1(ΩSn).
First, we claim that

g∗ is an isomorphism on Hi(−) for all i < 2n− 2.
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This is clear if i = 0, since ΩSn is connected. Given our calculation for Hi(ΩS
n) in Propo-

sition 6.1, it suffices to prove the claim for i = n− 1. We have a commutative diagram:

g∗ : Hn−1(Sn−1) > Hn−1(ΩSn)

�

πn−1(Sn−1)

h
∧

g∗
> πn−1(ΩSn)

h
∧

[id] 7→ [g ◦ id] = [g]

where h is the Hurewicz map. The bottom arrow g∗ is an isomorphism on πn−1 by our choice
of g. The two vertical arrows are isomorphisms by the Hurewicz theorem (recall that n ≥ 3,
so both Sn−1 and ΩSn are simply-connected). By the commutativity of the diagram we get
the isomorphism on the top horizontal arrow, thus proving the claim.

Since we deal only with homotopy and homology groups, we can moreover assume that
g is an inclusion. Then the homology long exact sequence for the pair (ΩSn, Sn−1) reads as:

. . .→ Hi(S
n−1)

g∗−→ Hi(ΩS
n)→ Hi(ΩS

n, Sn−1)→ Hi−1(Sn−1)
g∗−→ Hi−1(ΩSn)→ . . .

From the above claim, we obtain that Hi(ΩS
n, Sn−1) = 0, for i < 2n− 2, together with the

exact sequence
0→ Z = H2n−2(ΩSn)

∼=−→ H2n−2(ΩSn, Sn−1)→ 0

Since Sn−1 is simply-connected (as n − 1 ≥ 2), by the relative Hurewicz theorem, we get
that πi(ΩSn, Sn−1) = 0 for i < 2n − 2, and π2n−2(ΩSn, Sn−1) ∼= H2n−2(ΩSn, Sn−1) ∼= Z.
From the long exact sequence of homotopy groups for the pair (ΩSn, Sn−1), we then get
πi(ΩS

n) ∼= πi(S
n−1) for i < 2n− 3 and the exact sequence

· · · → Z→ π2n−3(Sn−1)→ π2n−3(ΩSn)→ 0

Finally, using the fact that πi(ΩSn) ∼= πi+1(Sn), we get the desired result.

By taking i = 4 and n = 4, we get the first isomorphism in the following:

Corollary 6.3. π4(S3) ∼= π5(S4) ∼= . . . ∼= πn+1(Sn)

7 Cohomology Spectral Sequences
Let us now turn our attention to spectral sequences computing cohomology. In the case of
a fibration, we have the following Leray-Serre cohomology spectral sequence:

Theorem 7.1 (Serre). Let F ↪→ E → B be a fibration, with π1(B) = 0 (or π1(B) act-
ing trivially on fiber cohomology) and π0(F ) = 0. Then there exists a cohomology spectral
sequence with E2-page

Ep,q
2 = Hp(B,Hq(F ))
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converging to H∗(E). This means that, for each n, Hn(E) admits a filtration

Hn(E) = D0,n ⊇ D1,n−1 ⊇ . . . ⊇ Dn,0 ⊇ Dn+1,−1 = 0

so that
Ep,q
∞ = Dp,q

�Dp+1,q−1.

Moreover, the differential dp,qr : Ep,q
r → Ep+r,q−r+1

r satisfies (dr)
2 = 0, and Er+1 = H∗(Er, dr).

n-th diagonal of E∞

Dn,0

Dn−1,1/Dn,0

Hn(E)/D1,n−1

D1,n−1/D2,n−2

The corresponding statements analogous to those of Remarks 1.3 and 1.5 also apply to
the spectral sequence of Theorem 7.1.

The Leray-Serre cohomology spectral sequence comes endowed with the structure of a
product on each page Er, which is induced from a product on E2, i.e., there is a map

• : Ep,q
r × Ep′,q′

r −→ Ep+p′,q+q′

r

satisfying the Leibnitz condition

dr(x • y) = dr(x) • y + (−1)deg(x)x • dr(y)

where deg(x) = p+ q. On the E2-page this product is the cup product induced from

Hp(B,Hq(F ))×Hp′(B,Hq′(F )) −→ Hp+p′(B,Hq+q′(F ))

m · γ × n · ν 7→ (m ∪ n) · (γ ∪ ν)

with m ∈ Hq(F ), n ∈ Hq′(F ), γ ∈ Cp(B) and ν ∈ Cp′(B), so that m ∪ n ∈ Hq+q′(F ) and
γ ∪ ν ∈ Cp+p′(B).

As it is the case for homology, the cohomology Leray-Serre spectral sequence satisfies the
following property:
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Theorem 7.2. Given a fibration F
i
↪→ E

π→ B with F connected and π1(B) = 0 (or π1(B)
acts trivially on the fiber cohomology), the compositions

Hq(B) = Eq,0
2 � Eq,0

3 � · · ·� Eq,0
q � Eq,0

q+1 = Eq,0
∞ ⊂ Hq(E) (7.1)

and
Hq(E)� E0,q

∞ = E0,q
q+1 ⊂ E0,q

q ⊂ · · · ⊂ E0,q
2 = Hq(F ) (7.2)

are the homomorphisms π∗ : Hq(B)→ Hq(E) and i∗ : Hq(E)→ Hq(F ), respectively.

Recall that for a space of finite type, the (co)homology groups are finitely generated. By
using the universal coefficient theorem in cohomology, we have the following useful result:

Proposition 7.3. Suppose that F ↪→ E → B is a fibration with F connected and assume
that π1(B) = 0 (or π1(B) acts trivially on the fiber cohomology). If B and F are spaces of
finite type (e.g., finite CW complexes), then for a field K of coefficients we have:

Ep,q
2 = Hp(B;K)⊗K Hq(F ;K).

Sufficient conditions for the cohomology of the total space of a fibration to be the tensor
product of the cohomology of the fiber and that of the base space are given by the following
result.

Theorem 7.4 (Leray-Hirsch). Suppose F
i
↪→ E

π−→ B is a fibration, with B and F of
finite type, π1(B) = 0 and π0(F ) = 0, and let K be a field of coefficients. Assume that
i∗ : H∗(E;K)→ H∗(F ;K) is onto. Then

H∗(E;K) ∼= H∗(B;K)⊗K H∗(F ;K).

Proof. Consider the Leray-Serre cohomology spectral sequence

Ep,q
2 = Hp(B;Hq(F ;K))V H∗(E;K)

of the fibration F ↪→ E → B. By Proposition 7.3, we have:

Ep,q
2 = Hp(B;K)⊗K Hq(F ;K).

In order to prove the theorem, it suffices to show that

E2 = · · · = E∞,

i.e., that all differentials d2, d3, etc., vanish. Indeed, since we work with field coefficients, all
extension problems encountered in passing from E∞ to H∗(E;K) are trivial, i.e.,

Hn(E;K) ∼=
⊕
p+q=n

Ep,q
∞ .
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Recall from Theorem 7.2 that the composite

Hq(E;K)� E0,q
∞ = E0,q

q+1 ⊂ E0,q
q ⊂ · · · ⊂ E0,q

2 = Hq(F ;K)

is the homomorphism i∗ : Hq(E;K) → Hq(F ;K). Since i∗ is assumed onto, all these inclu-
sions must be equalities. So all dr, when restricted to the q-axis, must vanish. On the other
hand, at E2 we have

Ep,q
2 = Ep,0

2 ⊗ E
0,q
2 (7.3)

since K is a field, and d2 is already zero on Ep,0
2 since we work with a first quadrant spectral

sequence. Since d2 is a derivation with respect to (7.3), we conclude that d2 = 0 and E3 = E2.
The same argument applies to d3 and, continuing in this fashion, we see that the spectral
sequence collapses (degenerates) at E2, as desired.

8 Elementary computations
Example 8.1. As a first example of the use of the Leray-Serre cohomology spectral sequence,
we compute here the cohomology ring H∗(CP∞) of CP∞.

Consider the fibration
S1 ↪→ S∞ ' ∗ → CP∞.

The E2-page of the associated Leray-Serre cohomology spectral sequence starts with:

E2
H∗(S1)

Z

Z H∗(CP∞)
0 Z

d2

Here, H1(CP∞) = E1,0
2 = 0 since it is not affected by any differential dr, and the E∞-page

has only zero entries except at the origin. Moreover, since the cohomology of the fiber is
torsion-free, we get by the universal coefficient theorem in cohomology that

Ep,q
2 = Hp(CP∞, Hq(S1)) = Hp(CP∞)⊗Hq(S1).

In particular, we have E1,1
2 = 0 and E0,1

2 = H1(S1) = Z.
Since S∞ has no positive cohomology, hence the E∞-page has only zero entries except

at the origin, it is easy to see that d2 : E0,1
2 → E2,0

2 has to be an isomorphism, since these
entries are not affected by any other differential. Hence we have H2(CP∞) = E2,0

2
∼= Z.

Since all entries on the E2-page are concentrated at q = 0 and q = 1, the only differential
which can affect these entries is d2. A similar argument then shows that d2 : Ep,1

2 → Ep+2,0
2

is an isomorphism for any p ≥ 0. This yields that Heven(CP∞) = Z and Hodd(CP∞) = 0.
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Let Z = 〈x〉 = H1(S1). Let y = d2(x) be a generator of H2(CP∞).

E2
H∗(S1)

x

1
H∗(CP∞)

0 y 0 y2

0 xy

d2d2

Then, after noting that xy = (1⊗ x)(y ⊗ 1) is a generator of Z = E2,1
2 , we have:

d2(xy) = d2(x)y + (−1)deg(x)xd2(y) = y2,

Therefore, H4(CP∞) = Z = 〈y2〉, since the d2 that hits y2 is an isomorphism. By induction,
we get that d2(xyn−1) = yn is a generator of H2n(CP∞). Altogether, H∗(CP∞) ∼= Z[y], with
deg(y) = 2.

Example 8.2 (Cohomology groups of lens spaces). In this example we compute the coho-
mology groups of lens spaces. Let us first recall the relevant definitions.

Assume n ≥ 1. Consider the scaling action of C∗ on Cn+1\{0}, and the induced S1-
action on S2n+1. By identifying Z/r with the group of rth roots of unity in C∗, we get (by
restriction) an action of Z/r on S2n+1. The quotient

L(n, r) := S2n+1

�Z/r

is called a lens space.
The action of Z/r on S2n+1 is clearly free, so the quotient map S2n+1 → L(n, r) is a

covering map with deck group Z/r. Since S2n+1 is simply-connected, it is the universal cover
of L(n, r). This yields that π1(L(n, r)) = Z/r and all higher homotopy groups of L(n, r)
agree with those of the sphere S2n+1.

By a telescoping construction, which amounts to letting n→∞, we get a covering map
S∞ → L(∞, r) := S∞�Z/r with contractible total space. In particular,

L(∞, r) = K(Z/r, 1).

To compute the cohomology of L(n, r), one may be tempted to use the Leray-Serre
spectral sequence for the covering map Z/r ↪→ S2n+1 → L(n, r). However, since L(n, r) is
not simply-connected, computations may be tedious. Instead, we consider the fibration

S1 ↪→ L(n, r)→ CP n (8.1)

whose base space is simply-connected. This fibration is obtained by noting that the action
of S1 on S2n+1 descends to an action of S1 = S1/(Z/r) on L(n, r), with orbit space CP n.
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Consider now the Leray-Serre cohomology spectral sequence for the fibration (8.1):

Ep,q
2 = Hp(CP n, Hq(S1;Z))V Hp+q(L(n, r);Z)

and note that Ep,q
2 = 0 for q 6= 0, 1. This implies that all differentials d3 and higher vanish,

so
E3 = · · · = E∞.

On the E2-page, we have by the universal coefficient theorem in cohomology that:

Ep,q
2 = Hp(CP n;Z)⊗Hq(S1;Z).

Let a be a generator of Z = E0,1
2
∼= H1(S1;Z), and let x be a generator of Z = E2,0

2
∼=

H2(CP n;Z). We claim that
d2(a) = rx. (8.2)

E2
H∗(S1)

a

1
H∗(CPn)

0 x 0 x2

ax20 ax 0

xn

axn

d2d2

. . .

To find d2, it suffices to compute H2(L(n, r);Z). Indeed, by looking at the entries of the
second diagonal of E∞ = · · · = E3, we have: H2(L(n, r);Z) = D0,2, E0,2

∞ = D0,2
�D1,1 = 0,

E1,1
∞ = D1,1

�D2,0 = 0, and E2,0
∞ = D2,0 = Z�Image(d2). In particular,

H2(L(n, r);Z) = D0,2 = D1,1 = D2,0 = Z�Image(d2). (8.3)

On the other hand, since H1(L(n, r);Z) = π1(L(n, r)) = Z/r, we get by the universal
coefficient theorem that

H2(L(n, r);Z) = (free part)⊕ Z/r. (8.4)

By comparing (8.3) and (8.4), we conclude that d2(a) = rx and H2(L(n, r);Z) = Z/r.
By using the Künneth formula and the ring structure of H∗(CP n;Z), it follows from

the Leibnitz formula and induction that d2(axk−1) = rxk for 1 ≤ k ≤ n, and we also
have d2(axn) = 0. In particular, all the nontrivial differentials labelled by d2 are given by
multiplication by r.

Since multiplication by r is injective, the E3 = · · · = E∞-page is given by
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E∞

0

Z 0 Z/r 0 Z/r

00 0 0

Z/r

Z

. . .

The extension problems for going from E∞ to the cohomology of the total space L(n, r)
are in this case trivial, since every diagonal of E∞ contains at most one nontrivial entry. We
conclude that

H i(L(n, r);Z) =


Z i = 0

Z/r i = 2, 4, · · · , 2n
Z i = 2n+ 1

0 otherwise.

By letting n→∞, we obtain similarly that

H i(K(Z/r, 1);Z) =


Z i = 0

Z/r i = 2k, k ≥ 1

0 otherwise.

In particular, if r = 2, this computes the cohomology of RP∞.

9 Computation of πn+1(S
n)

In this section we prove the following result:

Theorem 9.1. If n ≥ 3,
πn+1(Sn) = Z/2.

Theorem 9.1 follows from the Suspension Theorem (see Corollary 6.3), together with the
following explicit calculation:

Theorem 9.2.
π4(S3) = Z/2.

The proof of Theorem 9.2 given here uses the Postnikov tower approximation of S3, whose
construction we recall here. (A different proof of this fact will be given in the next section,
by using Whitehead towers.)
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Lemma 9.3 (Postnikov approximation). Let X be a CW complex with πk := πk(X). For
any n, there is a sequence of fibrations

K(πk, k) ↪→ Yk → Yk−1

and maps X → Yk with a commuting diagram

Y1 Y2
oo · · ·Yn−1

oo Ynoo

X

kk ii
dd OO

such that X → Yk induces isomorphisms πi(X) ∼= πi(Yk) for i ≤ k, and πi(Yk) = 0 for i > k.

Proof. To construct Yn we kill off the homotopy groups of X in degrees ≥ n+1 by attaching
cells of dimension ≥ n+ 2. We then have πi(Yn) = πi(X) for i ≤ n and πi(Yn) = 0 if i > n.
Having constructed Yn, the space Yn−1 is obtained from Yn by killing the homotopy groups
of Yn in degrees ≥ n, which is done by attaching cells of dimension ≥ n+ 1. Repeating this
procedure, we get inclusions

X ⊂ Yn ⊂ Yn−1 ⊂ · · · ⊂ Y1 = K(π1, 1),

which we convert to fibrations. From the homotopy long exact sequence for each of these
fibrations, we see that the fiber of Yk → Yk−1 is a K(πk, k)-space.

Proof of Theorem 9.2. We consider the Postnikov tower construction in the case n = 4,
X = S3, to obtain a fibration

K(π4, 4) ↪→ Y4 → Y3 = K(Z, 3), (9.1)

where π4 = π4(S3) = π4(Y4). Here, Y3 = K(Z, 3) since to get Y3 we kill off all higher
homotopy groups of S3 starting at π4. Since Y 4 is obtained from S3 by attaching cells of
dimension ≥ 6, it doesn’t have cells of dimensions 4 and 5, thus

H4(Y4) = H5(Y4) = 0.

Let us now consider the homology spectral sequence for the fibration (9.1). By the
Hurewicz theorem,

Hp(K(Z, 3);Z) =

{
0 p = 1, 2

Z p = 3

Hq(K(π4, 4);Z) =

{
0 q = 1, 2, 3

π4(S3) q = 4.
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So the E2-page looks like

H∗(K(π4, 4))

0

0

0

π4

Z
H∗(K(Z, 3)

0 0 Z H4 H5

d5

Since H4(Y4) = 0 = H5(Y4), all entries on the fourth and fifth diagonals of E∞ are zero. The
only differential that can affect π4(S3) = E2

0,4 = · · · = E5
0,4 is

d5 : H5(K(Z, 3),Z) −→ π4(S3),

and by the previous remark, this map has to be an isomorphism (note also that E2
5,0 =

H5(K(Z, 3),Z) can be affected only by d5, and this element too has to be killed at E∞).
Hence

π4(S3) ∼= H5(K(Z, 3),Z). (9.2)

In order to compute H5(K(Z, 3),Z), we use the cohomology Leray-Serre spectral squence
associated to the path fibration for K(Z, 3), namely

ΩK(Z, 3) ↪→ PK(Z, 3)→ K(Z, 3),

and note that, since PK(Z, 3) is contractible, we have πi(ΩK(Z, 3)) ∼= πi+1(K(Z, 3)), i.e.,
ΩK(Z, 3) ' K(Z, 2) = CP∞. Since each Hj(CP∞) is a finitely generated free abelian group,
the universal coefficient theorem yields that

Ep,q
2 = Hp(K(Z, 3);Hq(CP∞)) ∼= Hp(K(Z, 3))⊗Hq(CP∞), (9.3)

and the product structure on E2 is that of the tensor product of H∗(K(Z, 3)) and H∗(CP∞).
Since Ep,q

2 = 0 for q odd, we have d2 = 0, so E2 = E3. Similarly, all the even differentials
d2n are zero, so E2n = E2n+1, for all n ≥ 1. Since the total space of the fibration is
contractible, we have that Ep,q

∞ = 0 for all (p, q) 6= (0, 0), so every non-zero entry on the
E2-page (except at the origin) must be killed on subsequent pages.

Let a ∈ H2(CP∞) ∼= Z be a generator. So ak is a generator of H2k(CP∞) = E0,2k
2 , for

any k ≥ 1. We create elements on E∗,02 , which will sooner or later kill off all the non-zero
elements in the spectral sequence.
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E2 = E3

H∗(CP∞)

1 0

2 a

3 0

4 a2

5 0

0
1

H∗(K(Z, 3))
0 1

0

2

0

3

s

as

4

0

5

0

6

y = s2

d3∼=

d3

·2

d3

Note that E1,0
3 = E1,0

2 = H1(K(Z, 3)) is never touched by any differential, so

H1(K(Z, 3)) = E1,0
∞ = 0.

Moreover, since d2 = 0, we also have that

H2(K(Z, 3)) = E2,0
2 = E2,0

3 = E2,0
∞ = 0.

The only differential that can affect 〈a〉 = E0,2
2 = E0,2

3 is d0,2
3 : E0,2

3 → E3,0
3 , so there must

be an element s ∈ E3,0
3 that kills off a, i.e., d3(a) = s. On the other hand, since E3,0

3 is only
affected by d3 and it must be killed off at infinity, we must have that d0,2

3 : E0,2
3 → E3,0

3 is an
isomorphism, so s generates

Z = E3,0
3 = E3,0

2 = H3(K(Z, 3)).

By (9.3), we also have that E3,2
3 = E3,2

2 = Z, generated by as. Note that

d3(a2) = 2ad3(a) = 2as,

so d0,4
3 : E0,4

3 → E3,2
3 is given by multiplication by 2. In particular, E0,4

4 = 0. Next notice that
H4(K(Z, 3)) = E4,0

3 and H5(K(Z, 3)) = E5,0
3 can only be touched by the differentials d3, d4,

or d5, but all of these are trivial maps because their domains are zero. Thus, as H4(K(Z, 3))
and H5(K(Z, 3)) can not killed by any differential, we have

H4(K(Z, 3)) = H5(K(Z, 3)) = 0.

Similarly, H6(K(Z, 3)) = E6,0
3 and 〈as〉 = E3,2

3 are only affected by d3. Since d3(a2) = 2as,
we have ker(d3 : 〈as〉 = E3,2

3 → E6,0
3 ) = Image(d3 : E0,4

3 → E3,2
3 = 〈as〉) = 〈2as〉 ⊆ 〈as〉, and

hence H6(K(Z, 3)) = Image(d3 : E3,2
3 → E6,0

3 ) ∼= 〈as〉 / 〈2as〉 = Z/2.
In view of the above calculations, we get by the universal coefficient theorem that

H5(K(Z, 3)) = Z/2. (9.4)

The assertion of the theorem then follows by combining (9.2) and (9.4).
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Corollary 9.4.
π4(S2) = Z/2.

Proof. This follows from Theorem 9.2 and the long exact sequence of homotopy groups for
the Hopf fibration S1 ↪→ S3 → S2.

10 Whitehead tower approximation and π5(S
3)

In order to compute π5(S3) we make use of the Whitehead tower approximation. We recall
here the construction.

10.1 Whitehead tower

Let X be a connected CW complex, with πq = πq(X) for any q ≥ 0.
Definition 10.1. A Whitehead tower of X is a sequence of fibrations

· · · −→ Xn −→ Xn−1 −→ · · · → X0 = X

such that
(a) Xn is n-connected

(b) πq(Xn) = πq(X) for q ≥ n+ 1

(c) the fiber of Xn → Xn−1 is a K(πn, n− 1)-space.
Lemma 10.2. For X a CW complex, Whitehead towers exist.
Proof. We construct Xn inductively. Suppose that Xn−1 has already been defined. Add cells
to Xn−1 to kill off πq(Xn−1) for q ≥ n+ 1. So we get a space Y which, by construction, is a
K(πn, n)-space. Now define the space

Xn := P∗Xn−1 := {f : I → Y, f(0) = ∗, f(1) ∈ Xn−1}
consisting of of paths in Y beginning at a basepoint ∗ ∈ Xn−1 and ending somewhere in
Xn−1. Endow Xn with the compact-open topology. As in the case of the path fibration, the
map π : Xn → Xn−1 defined by γ → γ(1) is a fibration with fiber ΩY = K(πn, n− 1).

From the long exact sequence of homotopy groups associated to the fibration

K(πn, n− 1) ↪→ Xn → Xn−1

we get that πq(Xn) = πq(Xn−1) for q ≥ n + 1, and πq(Xn) = 0 for q ≤ n− 2. Furthermore,
the sequence

0 −→ πn(Xn) −→ πn(Xn−1) −→ πn−1(K(πn, n− 1)) −→ πn−1(Xn) −→ 0

is exact. So we are done if we show that the boundary homomorphism ∂ : πn(Xn−1) −→
πn−1(K(πn, n − 1)) of the long exact sequence is an isomorphism. For this, note that the
inclusion Xn−1 ⊂ Y = K(πn, n) = Xn−1 ∪ {cells of dimension ≥ n + 2} induces an isomor-
phism πn(Xn−1) ∼= πnK(πn, n) ∼= πn−1(K(πn, n− 1)), which is precisely the above boundary
map ∂.
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10.2 Calculation of π4(S
3) and π5(S

3)

In this section we use the Whitehead tower for X = S3 to compute π5(S3).

Theorem 10.3.
π5(S3) ∼= Z/2.

Proof. Consider the Whitehead tower for X = S3. Since S3 is 2-connected, we have in the
notation of Definition 10.1 that X = X1 = X2. Let πi := πi(S

3), for any i ≥ 0. We have
fibrations

K(π4, 3) // X4

��
K(π3, 2) // X3

��
S3

Since π3 = Z, we have K(π3, 2) = CP∞. Moreover, since X4 is 4-connected, we get by
definition and Hurewicz that

π5(S3) ∼= π5(X4) ∼= H5(X4).

Similarly,
π4(S3) ∼= π4(X3) ∼= H4(X3).

Once again we are reduced to computing homology groups. Using the universal coefficient
theorem, we will deduce the homology groups from cohomology.

Consider now the cohomology spectral sequence for the fibration

CP∞ ↪→ X3 → S3.

The E2-page is given by

Ep,q
2 = Hp(S3, Hq(CP∞,Z)) = Hp(S3)⊗Hq(CP∞)V H∗(X3).

In particular, Ep,q
2 = 0 unless p = 0, 3 and q is even.

E2 = E3
H∗(CP∞)

1 0

2 x

3 0

4 x2

0
1

H∗(S3)
0 1

0

2

0

3

u

xu

d3
∼=

d3

·2
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Since Ep,q
2 = 0 for q odd, we have d2 = 0, so E2 = E3. In addition, for r ≥ 4, dr = 0. So

E4 = E∞.
Since X3 is 3-connected, we have by Hurewicz that H2(X3) = H3(X3) = 0, so all entries

on the second and third diagonals of E∞ = E4 are 0. This implies that d0,2
3 : E0,2

3 = Z →
E3,0

3 = Z is an isomorphism. LetH∗(CP∞) = Z[x] with x of degree 2, and let u be a generator
of H3(S3). Then we have d3(x) = u. By the Leibnitz rule, d3x

n = nxn−1dx = nxn−1u,
and since xn generates E0,2n

3 and xn−1u generates E3,2n−2
3 , the differential d0,2n

3 is given by
multiplication by n. This completely determines E4 = E∞, hence the integral cohomology
and (by the universal coefficient theorem) homology of X3 is easily computed as:

q 0 1 2 3 4 5 6 7 · · · 2k 2k + 1 · · ·
Hq(X3) Z 0 0 0 0 Z/2 0 Z/3 · · · 0 Z/k · · ·
Hq(X3) Z 0 0 0 Z/2 0 Z/3 0 · · · Z/k 0 · · ·

In particular, π4 = H4(X3) = Z/2, which reproves Theorem 9.1.

In order to compute π5(S3) ∼= H5(X4), we use the homology spectral sequence for the
fibration

K(π4, 3) ↪→ X4 → X3,

with E2-page
E2
p,q = Hp(X3;Hq(K(Z/2, 3)))V H∗(X4).

Note that, by the Hurewicz theorem, we have: Hi(K(π4, 3)) = 0 for i = 1, 2 andH3(K(π4, 3)) =
π4 = Z/2. So E2

p,q = 0 for q = 1, 2. Also, E2
p,0 = Hp(X3), whose values are computed in the

above table.

H∗(K(Z/2, 3))

1 0

2 0

3 Z/2

4 0

5 Z/2

0
Z

H∗(X3)
0 1

0

2

0

3

0

4

Z/2
5

0

6

Z/3

d4

d6

Since X4 is 4-connected, we have by Hurewicz that H3(X4) = H4(X4) = 0, so all entries on
the third and fourth diagonal of E∞ are zero. Since the first and second row of E2 are zero,
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this forces d4 : E4
4,0 = E2

4,0 → E4
0,3 = E2

0,3 to be an isomorphism (thus recovering the fact
that π4

∼= Z/2), and
H4(K(Z/2, 3)) = E2

0,4 = E∞0,4 = 0.

Moreover, by a spectral sequence argument for the path fibration of K(Z/2, 3), we obtain
(see Exercise 6)

E2
0,5 = H5(K(Z/2, 3)) = Z/2,

and this entry can only be affected by d6 : E6
6,0
∼= Z/3 → E6

0,5 = E2
0,5
∼= Z/2, which is the

zero map, so E∞0,5 = Z/2. Thus, on the fifth diagonal of E∞, all entries are zero except
E∞0,5 = Z/2, which yields H5(X4) = Z/2, i.e., π5(S3) = Z/2.

11 Serre’s theorem on finiteness of homotopy groups of
spheres

In this section we prove the following result:

Theorem 11.1 (Serre).

(a) πi(S2k+1) is finite for i > 2k + 1.

(b) πi(S2k) is finite for i > 2k, i 6= 4k − 1, and π4k−1(S2k) = Z⊕ {finite abelian group}.

Proof of part (a). The case k = 0 is easy since πi(S1) is in fact trivial for i > 1. For
k > 0, recall Serre’s theorem 4.2, according to which a simply-connected finite CW complex
has finitely generated homotopy groups. In particular, the groups πi(S2k+1) are finitely
generated abelian for all i > 1. Therefore, πi(S2k+1) (i > 1) is finite if it is a torsion group.

In what follows we show that

πi(S
2k−1) ∼= πi+2(S2k+1) mod torsion, (11.1)

and part (a) of the theorem follows then by induction. The key to proving the isomorphism
(11.1) is the fact that

π2k−1(Ω2S2k+1) ∼= π2k+1(S2k+1) = Z.

Letting β : S2k−1 → Ω2S2k+1 be a generator of π2k−1(Ω2S2k+1), we will show that β induces
an isomorphism mod torsion on H∗ (i.e., an isomorphism on H∗(−;Q)). Let us assume this
fact for now. WLOG, we assume that β is an inclusion, and then the homology long exact
sequence of the pair (Ω2S2k+1, S2k−1) yields that

H∗(Ω
2S2k+1, S2k−1) = 0 mod torsion.

The relative version of the Hurewicz mod torsion Theorem 4.5 then tells us that

πi(Ω
2S2k+1, S2k−1) = 0 mod torsion
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for all i, so again by the homotopy long exact sequence of the pair we get that πi(S2k−1) ∼=
πi(Ω

2S2k+1) ∼= πi+2(S2k+1) mod torsion, as desired.
Thus, it remains to show that the generator β : S2k−1 → Ω2S2k+1 of π2k−1Ω2(S2k+1)

induces an isomorphism on H∗(−;Q). The bulk of the argument amounts to showing that
Hi(Ω

2(S2k+1);Q) = 0 for i 6= 2k − 1, which we do by computing Hi(Ω
2(S2k+1);Q)∨ =

H i(Ω2(S2k+1);Q) with the help of the cohomology spectral sequence for the path fibration
Ω2S2k+1 ↪→ ∗ → ΩS2k+1. The E2-page is given by

Ep,q
2 = Hp(ΩS2k+1;Hq(Ω2S2k+1;Q))V H∗(∗;Q),

and since the total space of the fibration is contractible, we have Ep,q
∞ = 0 unless p = q = 0,

in which case E0,0
∞
∼= Z.

It is a simple exercise (using the path fibration ΩS2k+1 ↪→ ∗ → S2k+1) to show that

H∗(ΩS2k+1;Q) ∼= Q[e], deg e = 2k.

Hence,

Ep,q
2 = Hp(ΩS2k+1;Hq(Ω2S2k+1;Q)) ∼= Hp(ΩS2k+1;Q)⊗Q Hq(Ω2S2k+1;Q)

has possibly non-trivial columns only at multiples p of 2k, with E2k,0
2
∼= Q = 〈ek〉. This

implies that d2, d3, . . . , d2k−1 are all zero, hence E2 = E2k. Furthermore, since the first
non-trivial homotopy group πq(Ω2S2k+1) ∼= πq+2(S2k+1) appears at q = 2k − 1, it follows by
Hurewicz thatHq(Ω2S2k+1;Q) = 0 for 0 < q < 2k−1. Therefore, Ep,q

2 = 0 for 0 < q < 2k−1.

E2 = · · · = E2k
H∗(Ω2S2k+1;Q)

ω2k − 1

1

0

0
H∗(ΩS2k+1;Q) = Q[e]

0 e

2k. . .
0
. . .

e2

4k

0 eω 0

d2kd2k

. . .

Since E2k,0
2k
∼= H2k(ΩS2k+1) = 〈e〉 and E0,2k−1

2k
∼= H2k−1(Ω2S2k+1) are only affected by

d0,2k−1
2k : E0,2k−1

2k → E2k,0
2k , we must have that d0,2k−1

2k is an isomorphism in order for E2k,0
2k+1 =

E2k,0
∞ and E0,2k−1

2k+1 = E0,2k−1
∞ to be zero. So H2k−1(Ω2S2k+1) ∼= Q = 〈ω〉, with d2k(ω) = e. As

a consequence,

E2jk,2k−1
2k = H2jk(ΩS2k+1;Q)⊗Q H2k−1(Ω2S2k+1) = 〈ej〉 ⊗Q 〈ω〉 = 〈ejω〉

and d2jk,2k−1
2k : E2jk,2k−1

2k → E2jk+2k,0
2k are isomorphisms since d2k(e

jω) = jd2k(e)ω+ejd2k(ω) =
ej+1. This implies that, except for q ∈ {0, 2k − 1}, Ep,q

2k is always trivial, and in particular
that H i(Ω2S2k+1;Q) = E0,i

2k is trivial for i 6= 0, 2k − 1. (If there was anything else in
H∗(Ω2S2k+1;Q), it would have to also be present at infinity.)
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Next note that S2k−1 and Ω2S2k+1 are (2k − 2)-connected, so by the Hurewicz theorem,
their rational cohomology vanishes in degrees i < 2k−1. Hence, β : S2k−1 → Ω2S2k+1 induces
isomorphisms on H i(−;Q) if i 6= 2k − 1. In order to show that β induces an isomorphism
on H2k−1(−;Q), recall the commutative diagram:

H2k−1(S2k−1)
β∗ // H2k−1(Ω2S2k+1)

π2k−1(S2k−1)

h ∼=

OO

β∗
// π2k−1(Ω2S2k+1)

h ∼=

OO

where the lower horizontal β∗ is an isomorphism since β is the generator of π2k−1(Ω2S2k+1),
and the vertical arrows are isomorphisms by Hurewicz. Since the diagram commutes, the top
horozontal map labelled β∗ is an isomorphism also, and the proof of part (a) is complete.

Proof of part (b). We shall construct a fibration

S2k−1 ↪→ E
π−→ S2k

such that
πi(E) ∼= πi(S

4k−1) (mod torsion). (11.2)

Assuming for now that such a fibration exists, then since by part (a) we have that

πi(S
4k−1) =

{
finite i 6= 4k − 1

Z i = 4k − 1
,

we deduce that

πi(E) =

{
finite i 6= 4k − 1

Z⊕ finite i = 4k − 1.

The homotopy long exact sequence:

· · · // πi(S
2k−1) // πi(E) // πi(S

2k) // πi−1(S2k−1) // · · ·

together with that fact proved in part (a) that

πi(S
2k−1) =

{
finite i 6= 2k − 1

Z i = 2k − 1
,

then yields that

πi(S
2k) =

{
finite i 6= 2k, 4k − 1

Z⊕ finite i = 4k − 1,

as desired.

31



Note that in order to have (11.2), it is sufficient for E to satisfy Hi(E) ∼= Hi(S
4k−1)

modulo torsion, i.e.,

Hi(E) =

{
finite i 6= 0, 4k − 1

Z⊕ finite i = 4k − 1.

Indeed, by Hurewicz mod torsion, we then have that π4k−1(E) ∼= H4k−1(E) mod torsion, and
let f : S4k−1 → E be a generator of the Z-summand of π4k−1(E). WLOG, we can assume that
f is an inclusion. The homology long exact sequence of the pair (E, S4k−1) then implies that
H∗(E, S

4k−1) = 0 mod torsion. By Hurewicz mod torsion this yields π∗(E, S4k−1) = 0 mod
torsion. Finally, the homotopy long exact sequence gives πi(E) ∼= πi(S

4k−1) mod torsion.

Back to the construction of the space E, we start with the tangent bundle TS2k → S2k,
and let π : T0S

2k → S2k be its restriction to the space of nonzero tangent vectors to S2k.
Then π is a fibration, since it is locally trivial, and its fiber is R2k \ {0} ' S2k−1. We let

E = T0S
2k.

Let us now consider the Leray-Serre homology spectral sequence of this fibration, with

E2
p,q = Hp(S

2k;Hq(S
2k−1)) = Hp(S

2k)⊗Hq(S
2k−1)V H∗(E).

Therefore, the page E2 has only four non-trivial entries at (p, q) = (0, 0), (2k, 0), (0, 2k− 1),
(2k − 1, 2k), and all these entries are isomorphic to Z.

E2 = · · · = E2kH∗(S
2k−1)

Z

Z

Z

H∗(S
2k)Z

d2k

Clearly, the differentials d2, d3, . . . , d2k−1 are all zero, as are the differentials d2k+1, . . . . The
only possibly non-zero differential in the spectral sequence is d2k

2k,0 : E2k
2k,0 → E2k

0,2k−1. Thus,
E2 = · · · = E2k and E2k+1 = · · · = E∞. Therefore, the space E has the desired homology if
and only if

d2k
2k,0 6= 0.

The map d2k
2k,0 fits into a commutative diagram

π2k(S
2k) ∂ //

∼=h
��

π2k−1(S2k−1)

∼= h
��

H2k(S
2k)

d2k // H2k−1(S2k−1)
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where ∂ is the connecting homomorphism in the homotopy long exact sequence of the fi-
bration, and h denotes the Hurewicz maps. Hence, d2k 6= 0 if and only if ∂ 6= 0. If, by
contradiction, ∂ = 0, then the homotopy long exact sequence of the fibration π contains the
exact sequence

π2k(E)
π∗−→ π2k(S

2k)
∂−→ 0.

In particular, there is [φ] ∈ π2k(E) so that π∗([φ]) = [id], i.e., the diagram

E

π
��

S2k

id

φ
<<

S2k

commutes up to homotopy. By the homotopy lifting property of the fibration, there is then
a map ψ : S2k → E so that π ◦ ψ = id. In other words, ψ is a section of the bundle π. This
implies the existence of a nowhere-vanishing vector field on S2k, which is a contradiction.

Remark 11.2. Serre’s original proof of Theorem 11.1 used the Whitehead tower approxi-
mation of a sphere, together with the computation of the rational cohomology of K(Z, n)
(see Exercise 13).

12 Computing cohomology rings via spectral sequences
The following computation will be useful when discussing about characteristic classes:

Example 12.1. In this example, we show that the cohomology ring H∗(U(n);Z) is a free
Z-algebra on odd degree generators x1, · · · , x2n−1, with deg(xi) = i, i.e.,

H∗(U(n);Z) = ΛZ[x1, · · · , x2n−1].

We will prove this fact by induction on n, by using the Leray-Serre cohomology spectral
sequence for the fibration

U(n− 1) ↪→ U(n)→ S2n−1.

For the base case, note that U(1) = S1, so H∗(U(1)) = ΛZ[x1] with deg(x1) = 1. For the
induction step, we will show that

H∗(U(n)) = H∗(S2n−1)⊗H∗(U(n− 1)). (12.1)

Since H∗(S2n−1) = ΛZ[x2n−1] with deg(x2n−1) = 2n − 1, this will then give recursively that
H∗(U(n)) = ΛZ[x1, . . . , x2n−3]⊗Z ΛZ[x2n−1] = ΛZ[x1, · · · , x2n−1], with odd-degree generators
x1, · · · , x2n−1, with deg(xi) = i.

Assume by induction that H∗(U(n − 1)) = ΛZ[x1, · · · , x2n−3], with deg(xi) = i, and for
n ≥ 2 consider the cohomology spectral sequence

Ep,q
2 = Hp(S2n−1, Hq(U(n− 1)))V H∗(U(n)).

By the universal coefficient theorem, we have that
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Ep,q
2 = Hp(S2n−1)⊗Hq(U(n− 1)) = 0 if p 6= 0, 2n− 1.

So all the nonzero entries on the E2-page are concentrated on the columns p = 0 (i.e., q-axis)
and p = 2n− 1. In particular,

d1 = · · · = d2n−2 = 0,

so
E2 = · · · = E2n−1.

Furthermore, higher differentials starting with d2n are also zero (since either their domain
or target is zero), so

E2n = · · · = E∞.

Recall now that x1, · · · , x2n−3 generate the cohomology of the fiber U(n− 1) and note that,
due to their position on E2n−1, we have that d2n−1(x1) = · · · = d2n−1(x2n−3) = 0. Since
d2n−1x2n−1 = 0, we conclude by the Leibnitz rule that

d2n−1 = 0.

(Here, x2n−1 denotes the generator of H∗(S2n−1).) Thus, E2n−1 = E2n, so in fact the spectral
sequence degenerates at the E2-page, i.e.,

E2 = · · · = E∞.

Since the E∞-term is a free, graded-commutative, bigraded algebra, it is a standard fact (e.g.,
see Example 1.K in McCleary’s “A User’s guide to spectral sequences”) that the abutement
H∗(U(n)) of the spectral sequence is also a free, graded commutative algebra isomorphic to
the total complex associated to E∗,∗∞ , i.e.,

Hn(U(n)) ∼=
⊕
p+q=n

Ep,q
∞ ,

as desired.

Example 12.2. We can similarly compute H∗(SU(n)) either directly by induction from the
fibration SU(n − 1) ↪→ SU(n) → S2n−1 and the base case SU(2) = S3, or by using our
computation of H∗(U(n)) together with the diffeomorphism

U(n) ∼= SU(n)× S1 (12.2)

given by A 7→
(

1
n
√

detA
A, detA

)
. In particular, (12.2) yields by the Künneth formula:

H∗(U(n)) = H∗(SU(n))⊗H∗(S1),

hence
H∗(SU(n)) = ΛZ[x3, . . . , x2n−1]

with deg xi = i.
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13 Exercises
1. Show that πi(ΣRP 2) are finitely generated abelian groups for any i ≥ 0. (Hint: Use
Theorem 4.5, with C the category of finitely generated 2-groups.

2. Compute the homology of ΩS1. (Hint: Use the fibration ΩS1 ↪→ Z → R obtained by
“looping” the covering Z ↪→ R→ S1, together with the Leray-Serre spectral sequence.)

3. Prove Wang’s Theorem 5.2.

4. Let π : E → B be a fibration with fiber F , let K be a field, and assume that π1(B) acts
trivially on H∗(F ;K). Assume that the Euler characteristics χ(B), χ(F ) are defined (e.g., if
B and F are finite CW complexes). Then χ(E) is defined and

χ(E) = χ(B) · χ(F ).

5. Use a spectral sequence argument to show that Sm ↪→ Sn → Sl is a fiber bundle, then
n = m+ l and l = m+ 1.

6. Prove that H5(K(π4, 3)) = Z/2. (Hint: consider the two fibrations K(Z/2, 2) =
ΩK(Z/2, 3) ↪→ ∗ → K(Z/2, 3), and RP∞ = K(Z/2, 1) ↪→ ∗ → K(Z/2, 2). Then compute
H∗(K(Z/2, 2)) via the spectral sequence of the second fibration, and use it in the spectral
sequence of the first fibration to compute H∗(K(Z/2, 3)).)

7. Compute the cohomology of the space of continuous maps f : S1 → S3. (Hint: Let
X := {f : S1 → S3, f is continuous} and define π : X → S3 by f 7→ f(1). Then π
is a fibration with fiber ΩS3. Apply the cohomology spectral sequence for the fibration
ΩS3 ↪→ X → S3 to conclude that H∗(X) ∼= H∗(S3)⊗H∗(ΩS3).)

8. Compute the cohomology of the space of continuous maps f : S1 → S2.

9. Compute the cohomology of the space of continuous maps f : S1 → CP n.

10. Compute the cohomology ring H∗(SO(n);Z/2).

11. Compute the cohomology ring H∗(Vk(Cn);Z).

12. Show that H∗(SO(4)) ∼= H∗(S3)⊗H∗(RP 3).

13. Show that

H∗(K(Z, n);Q) =

{
Q[zn] , if n is even

Λ(zn) , if n is odd,

with deg(zn) = n. Here, Λ(zn) := Q[zn]/(z2
n).

(Hint: Consider the spectral sequence for the path fibration K(Z, n − 1) ↪→ ∗ → K(Z, n),
and induction.)
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14. Compute the ring structure on H∗(ΩSn).

15. Show that the p-torsion in πi(S3) appears first for i = 2p, in which case it is Z/p. (Hint:
use the Whitehead tower of S3, the homology spectral sequence of the relevant fibration,
together with Hurewicz mod Cp, where Cp is the class of torsion abelian groups whose p-
primary subgroup is trivial.)

16. Where does the 7-torsion appear first in the homotopy groups of Sn?
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