
HODGE POLYNOMIALS OF SINGULAR HYPERSURFACES

ANATOLY LIBGOBER AND LAURENTIU MAXIM

Abstract. We express the difference between the Hodge polynomials of the singular and
resp. generic member of a pencil of hypersurfaces in a projective manifold by using a
stratification of the singular member described in terms of the data of the pencil. In
particular, if we assume trivial monodromy along all strata in the singular member of the
pencil, our formula computes this difference as a weighted sum of Hodge polynomials of
singular strata, the weights depending only on the Hodge-type information in the normal
direction to the strata. This extends previous results (cf. [19]) which related the Euler
characteristics of the generic and singular members only of generic pencils, and yields
explicit formulas for the Hodge χy-polynomials of singular hypersurfaces.

1. Introduction and Statements of Results

Let X be an n-dimensional non-singular projective variety and L be a bundle on X.
Let L ⊂ P(H0(X,L)) be a line in the projectivization of the space of sections of L, i.e.,
a pencil of hypersurfaces in X. Assume that the generic element Lt in L is non-singular
and that L0 is a singular element of L. The purpose of this note is to relate the Hodge
polynomials of the singular and resp. generic member of the pencil, i.e., to understand
the difference χy(L0) − χy(Lt) in terms of invariants of the singularities of L0. A special
case of this situation was considered by Parusiński and Pragacz ([19]), where the Euler
characteristic is studied for pencils satisfying the assumptions that the generic element Lt
of the pencil L is transversal to the strata of a Whitney stratification of L0. This led to
a calculation of Parusińki’s generalized Milnor number ([18]) of a singular hypersurface.
In a different vein, the Hodge theory of one-parameter degenerations was considered in [5]
(compare also with [9] for the case when L0 has only isolated singularities), by making use of
Hodge-theoretical aspects of the nearby and vanishing cycles associated to the degenerating
family of hypersurfaces, and extending similar Euler characteristic calculations presented in
Dimca’s book [11].

Let us first define the invariants to be investigated in this note. A functorial χy-genus is
defined by the ring homomorphism

(1.1) χy : K0(MHS)→ Z[y, y−1]; [(V, F �,W�)] 7→
∑
p

dimC(grpF (V ⊗Q C)) · (−y)p,
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where K0(MHS) is the Grothendieck ring of the abelian category of rational mixed Hodge
structures. For K � ∈ Db(MHS) a bounded complex of rational mixed Hodge structures, we
set [K �] :=

∑
i(−1)i[Ki] ∈ K0(MHS), and define

(1.2) χy([K
�]) :=

∑
i

(−1)iχy([K
i]).

Then, if X is any complex algebraic variety, we let

(1.3) χy(X) := χy([H
∗(X; Q)]) =

∑
j

(−1)j · χy([Hj(X; Q)]).

Similarly, we define χcy(X) by using instead the canonical mixed Hodge structure in the
cohomology with compact support of X. The specializations of χy(X) and χcy(X) for y = −1
yield the topological Euler characteristic e(X). Note that χcy is an additive invariant, i.e.,
if Z is a Zariski closed subset of X, then χcy(X) = χcy(Z) + χcy(X \ Z).

Before formulating the main results of this note, we need a couple of definitions and
notations. We begin by recalling standard facts about the incidence variety of a pencil,
which plays an essential role in our approach. Let I ⊂ X ×L be the variety defined by the
incidence correspondence, i.e.,

(1.4) I = {(x, t)| t ∈ L, x ∈ Lt}.
We shall denote the projections of I on each factor by pX and pL respectively; note that
both pX and pL are surjective. Moreover, pX is one-to-one outside of the base locus of L,
while its fibers over any point in the latter is a P1 which pL maps isomorphically onto L.

If the intersection of the base locus with the singular locus of any element of the pencil is
empty, then I is a non-singular variety, but it has singularities otherwise. Indeed, under the
empty intersection assumption, let f1 and f2 be two generic elements of the pencil written
in the local coordinates (x1, .., xn) of a base point P of the pencil. Then the differentials
df1 and df2 are independent, since if df1 + t0df2 = 0 then the element of the pencil given
by f1 + t0f2 = 0 has a singularity at P . Now using the local coordinates at P in which
f1 = x1, f2 = x2 we can view the incidence corespondence as the hypersurface in Cn × C
given by the equation x1 + tx2 = 0, which is non-singular.

We furthermore note that the fibers of pL are isomorphic to the corresponding elements
of the pencil (and they will be denoted by the symbols LIt or simply Lt if there is no danger
of confusion), and pL is a locally trivial topological fibration outside a finite set of points
in L containing the point that corresponds to L0. We will restrict our attention to fibers of
pL near L0, that is, we consider the restriction map p := pL|p−1

L (Dε(0)), for ε small enough so

that this restriction is a locally trivial fibration outside the special fiber L0 = p−1
L (0). Note

that p is a proper holomorphic map with algebraic fibers, the generic fiber being smooth
and projective. As noted above, the incidence set I may be singular, but it is by definition
a complete intersection of dimension equal to the dimension n of X. Therefore, QI [n] is
a perverse sheaf (or, more generally, a mixed Hodge module on I, denoted by QH

I [n], see
[22, 24]). Let ψpQI ∈ Db

c(L
I
0 ) denote the constructible complex of nearby cycles attached
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to p. Then ψpQI [n−1] is also a perverse sheaf, thus (by Saito’s theory) underlying a mixed
Hodge module. We consider the shifted complex

(1.5) M(L0, pL) := ψHp QH
I [1],

where QH
I denotes the “constant” Hodge sheaf, and ψHp is the corresponding nearby cycle

functor on the level of Saito’s mixed Hodge modules (i.e., if rat : Db(MHM(I)) → Db
c(I)

is the forgetful functor associating to a complex of mixed Hodge modules the underlying
rational constructible complex of sheaves, then rat ◦ ψHp = ψp[−1] ◦ rat). So, M(L0, pL)
is a complex of mixed Hodge modules associated to the pair (L0,L) which, moreover, is
supported only on L0. We refer to [8] (see also [11]) for the definition of the nearby cycles
complex, and [22, 24] for the extension of this construction to the category of mixed Hodge
modules.

The main result of this note is the following (see also its reformulation in Theorem 2.4):

Theorem 1.1. Let S be a Whitney stratification of L0 such that the base locus of L, that
is, BL = L0 ∩ Lt, is a union of strata of S. Then to each stratum S ∈ S one can associate
a Hodge polynomial invariant χcy(S,L) such that

(1.6) χy(Lt) =
∑
S∈S

χcy(S,L).

More precisely, χy(Lt) is the total χy-genus of the complex M(L0, pL) associated to the pair
(L0,L) as in (1.5). In particular, if the monodromy of the restriction of M(L0, pL) to each
stratum is trivial or, more generally, has finite order and the corresponding local system
extends to the closure of the stratum, then:

(1.7) χy(Lt) =
∑
S

χcy(S) · χy(MS),

where MS is the Milnor fiber in I corresponding to a point in the stratum S of L0. The
specialization of equation (1.7) for y = −1 yielding the equality for Euler characteristics is
valid without any monodromy assumption.

Remark 1.2. It will follow from the proof of Theorem 1.1 (see also [[5], (73)]) that, in fact,
each polynomial χcy(S,L) is an alternating sum of Hodge polynomials of S with coefficients
in admissible (at infinity) variations of mixed Hodge structures. Such “twisted Hodge poly-
nomials” were computed in [5, 6] in terms of the Deligne extension of the underlying local
system on a “good” compactification of S. Therefore, (1.6) provides a complete calculation
for the Hodge polynomial of Lt.

An important consequence of the proof of Theorem 1.1 is an identity comparing the Hodge
polynomials χy(L0) and χy(Lt), respectively (see Theorem 2.4 for the precise formulation).
For example, if for a stratification S as above all strata are assumed to be simply connected,
the following identity holds:

(1.8) χy(L0) = χy(Lt)−
∑
S

χcy(S) · χy([H̃∗(MS; Q)]).
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where the summation runs only over the singular strata of S, i.e., strata S satisfying
dim(S) < dim(L0). As explained in Section §3, such a formula imposes strong obstruc-
tions on the type of singularities the singular fiber of the pencil can have.

Let us elaborate more on computational aspects related to the statement of Theorem
1.1. Note that the stalk of the cohomology sheaf H�(rat(M(L0, pL))) at any point B ∈ L0

is a graded algebra, which we denote by H�(M(L0, pL))B. More explicitly, it follows by
construction that

(1.9) H�(M(L0, pL))B = H �(MS; Q),

where MS is as above the Milnor fiber in I corresponding to the stratum S of L0 (or of LI0 )
containing the point B. In relation to the last sentence of Theorem 1.1, we note that the
Euler characteristic of MS can be computed by using the following version of A’Campo’s
formula:

Proposition 1.3. Let πI : Ĩ → I be the restriction to the proper preimage of I of an

embedded resolution X̃ × L → X × L of singularities of the triple (X × L, I, L0) (i.e., Ĩ
is an embedded resolution of singularities of I ⊂ X × L, and the components EĨ,k of the
exceptional locus of πI are the intersections of the components Ek of the exceptional locus of

X̃ × L→ X × L with Ĩ; moreover, the proper transform L̃0 ⊂ Ĩ of L0 and the components
EĨ,k ⊂ Ĩ of the exceptional locus EĨ = ∪EĨ,k of πI form a normal crossings divisor in Ĩ).

Let mEk be the multiplicity of the pullback of pL : X × L→ L along Ek ⊂ X̃ × L.
Let DB be a ball in a germ of a smooth subspace of X which is transversal at B ∈ X to

the stratum of L0 containing B.
Then the Euler characteristic of H�(M(L0, pL))B is given by∑

e
(

(EI,k − EI,k ∩ L̃0) ∩ π−1
I (DB)

)
·mEI,k

Proof. The proof follows by standard arguments used in the proof of A’Campo formula for
the Euler characteristic of the monodromy of the generic fiber of a base point free pencil. We

apply such arguments to the restriction of the pullback of pL to X̃ × L on an appropriate
subspace of the latter. More precisely, let H be a germ of a smooth submanifold in X
containing B ∈ L0 and DB be a small ball about B in H. Then the proper preimage of DB

in Ĩ is a resolution of its preimage in I (indeed a small neighbourhood of B in X has a
decomposition as DS×DB where DS is neighbourhood of B in the stratum S, and the map
Ĩ → I is a locally trivial fibration over DS with fiber the total preimage of DB in I; hence
this total preimage is smooth as well). Let t ∈ Dε(0) ⊂ L with ε sufficiently small so that
the fibers Lt are transversal to DB for t 6= 0, and yield a fibration of the preimage of DB

in I with one degenerate fiber L0 ∩DB. Now we apply A’Campo formula to the morphism
of the proper preimage D̃B of DB in Ĩ which is the restriction on the latter of the pullback
of pL on Ĩ. The components of the exceptional locus of πI |D̃B are the intersections of the

components of the exceptional locus of X̃ × L→ X × L, i.e. EĨ,k, and the multiplicity of pL
along Ek and along its restriction on D̃B along EI,k are the same by transversality. Hence
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the above formula indeed follows from A’Campo’s result [1], since as pointed out earlier the
Euler characteristic of H�(M(L0, pL))B coincides with the Euler characterisitc of the Milnor
fiber in the transversal direction to the stratum.

�

Remark 1.4. It follows from (1.9) and Saito’s theory (or see [16, 17]) that H�(M(L0, pL))B
also carries canonical mixed Hodge structures. This property will be needed in the proof of
Theorem 1.1.

We now illustrate the identity (1.7) with a couple of examples, mainly for the case of
Euler characteristics (but see also Example 1.6 for a calculation of Hodge polynomials),
where Proposition 1.3 above is used to compute the contributions of strata to the Euler
characteristic of the generic member of the pencil.1

Example 1.5. Let X = P3 and L0 be the union of a non-singular hypersurface Vn−1

of degree n − 1 and a transversal hyperplane H. Let L be the pencil generated by Vn
and Vn−1 ∪ H. The stratification of the singular locus Vn−1 ∩ H of Vn−1 ∪ H consists of
its intersection with the base point locus of the pencil containing Vn−1 ∪ H and Vn, i.e.
Vn−1∩H ∩Vn, and the complement to this intersection in Vn−1∩H. The contribution of the
stratum Vn−1∩H −Vn−1∩H ∩Vn is zero, the contribution of each point in Vn−1∩H ∩Vn is
1 (provided Vn is transversal to Vn−1 ∩H) and the contribution of each non singular point
of Vn−1∪H is 1. Since the Euler characteristic of a non singular hypersurface of degree n in
P3 is n3−4n2 +6n, the Euler characteristics of strata Vn−1−Vn−1∩H and H−Vn−1∩H are
(n− 1)3− 4(n− 1)2 + 6(n− 1)− 3(n− 1) + (n− 1)2 and 3− 3(n− 1) + (n− 1)2 respectively.
Then the identity (1.7) in the case of Euler characteristic (i.e., for y = −1) verifies as:

n3−4n2+6n = (n−1)3−4(n−1)2+6(n−1)−3(n−1)+(n−1)2+3−3(n−1)+(n−1)2+n(n−1).

The identity for the Euler characteristic in Example 1.5 can be refined to a similar cal-
culation for the Hodge polynomials.

Example 1.6. If, in the notations of Example 1.5 we moreover let n = 4, then we obtain the
following: χy(V4) = 2−20y+ 2y2, χy(V3) = 1−7y+ y2, χy(V1) = 1− y+ y2, χy(V3∩V1) = 0
(cf. [13]). From the additivity of the χcy-polynomial we have that: χcy(V3 − V3 ∩ V1) =

1 − 7y + y2, χcy(V1 − V3 ∩ V1) = 1 − y + y2, χcy(V3 ∩ V1 − V3 ∩ V4 ∩ V1) = −12. Moreover,
the contributions of the fibers of the nearby cycles over V3 ∩ V1 − V3 ∩ V1 ∩ V4 is 1 + y
(corresponding to the Hodge polynomial of the Milnor fiber of a node singularity since the
monodromy is trivial 2 ), and the contribution of a point in the intersection V3 ∩ V1 ∩ V4 is

1In the case y = −1, we refer to e(MS) as the (multiplicity of) contribution of (a point in) the stratum
S of L0 to the Euler characteristic of Lt.

2In local coordinates near a base point the pencil has the form xy + zt = 0, with xy = 0 and z = 0
being the local equations of the reducible and respectively irreducible fibers. The germ of the stratum
of the singular member of the pencil is given by x = y = 0, and the monodromy around the base point
x = y = z = 0 of the pencil is given by z = exp(2πiθ), which is the same as the monodromy action on the
cohomology of the Milnor fiber xy = s.
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1. Hence, the identity:

χy(V4) = χcy(V3 − V3 ∩ V1) + χcy(V1 − V1 ∩ V3)+

χcy(V3 ∩ V1 − V3 ∩ V1 ∩ V4) · χy([(ψpQI)x∈V3∩V1−V3∩V1∩V4 ])+

χcy(V3 ∩ V1 ∩ V4) · χy([(ψpQI)x∈V3∩V1∩V4 ])

becomes the relation:

2− 20y + 2y2 = (1− 7y + y2) + (1− y + y2) + (−12) · (1 + y) + 12,

representing equation (1.7).

Example 1.7. Let us consider the following higher dimensional version of Example 1.5:
the base locus of L0 is given by x2 = ... = xn = 0, along which L0 has a A1 singularity. In
appropriate coordinates the pencil has the form:

x2
2 + ....+ x2

n + x1t = 0

This is also the equation of the incidence correspondence I near the base point of the pencil.
Blowing up of the A1 singularity of I yields its resolution which has as the exceptional set
EI the non-singular quadric in Pn. The intersection of the proper preimage of L0 and EI is
given by x2

2 + ... + x2
n = 0 which has a A1 singularity at t = x2 = · · · = xn = 0, x1 = 1. In

this case it follows from the Proposition 1.3 that this point may give additional contribution
to the Euler characteristic of Lt. Since EI ∪ L0 near this point is given by

(u1 + u2
2 + ..+ u2

n)u1,

its contribution coming from the standard A’Campo formula is the Euler characteristic of the
complement in Pn−1 of a union of two hyperplanes. However, the Euler characteristic of the
latter is zero, so we have no additional contribution. The contribution of the complement
in the non-singular quadric to a tangent hyperplane is equal to 1, and hence so is the
contribution of the base point of such pencil.

Example 1.8. Let us assume that L0 ⊂ P3 has a A2 singularity along a non-singular
stratum to which L1 is transversal. We can choose the local coordinates near the base point
so that the non-singular stratum is given by x3 = x2 = 0 and L1 is given by x1 = 0. Then
the pencil has the form:

x3
3 + x2

2 + x1t = 0

The incidence correspondence I in C3×P1 has a 3-dimesnional A2-singularity. The blow-up
at the singular point produces the proper preimage I1 which is non-singular but tangent to
the exceptional locus E, since I1 ∩E is the quadratic cone in P3. Blowing up the tangency
point of I1 and E yields as proper preimage I2 of I1 the P1-bundle over plane quadric curve.
The pullback of t has multiplicity 1 along I2, and the intersection of the proper preimage of
t = 0 with the exceptional locus in I2 is the double fiber of this fibration. The complement
to this fiber has the Euler characteristic equal to 2. Hence the contribution of the singularity
at the base point is equal to 2.
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Example 1.9. Consider the case n = 2 of the previous example, but assume that V2 is
tangent to the singular locus V1 ∩H of V1 ∪H. An example of such pencil is given by

t(xy) + s[x(y + u) + y(x+ u) + z2)].

Now the zero-dimensional stratum consists of one point (x = y = z = 0, u = 1) and its
contribution is 2. To see this, notice that the pencil near the zero-dimensional stratum (i.e.
in the chart u = 1) has in C4 the form

xy + s[x(y + 1) + y(x+ 1) + z2] = 0.

The proper transform of I after blowing up the origin is a quadric with one ordinary
quadratic point, i.e., the resolution of I is a union of the Hirzebruch surface and the quadric
intersecting along the rational curve. The proper preimage of xy is the chain of three
rational curves dual to the graph A2. Hence the Euler characteristic of the complement
in the exceptional locus to the proper preimage of xy = 0 has the Euler characteristic
(4 + 4− 2)− (2× 3− 2) = 2. So the contribution of this stratum in the formula (1.7) is 2.

2. Proof of Theorem 1.1

Recall our setting: L0 is a singular hypersurface of the n-dimensional projective manifold
X, and we fix a Whitney stratification of L0; place L0 in a pencil L of hypersurfaces with
non-singular generic member Lt, and refine (if necessary) the stratification of L0 so that the
base locus of L, i.e. BL = L0 ∩ Lt, is a union of strata; call the new stratification S. The
idea of the proof is to lift all the computations at the level of the incidence variety I of L.
More precisely, by using the incidence variety I of the pencil (cf. (1.4) for the definition),
we construct a one-parameter family, denoted {LIt }, of smooth complex projective varieties
degenerating onto the singular variety LI0 . We denote by p the projection map onto a disk
∆ ⊂ C so that LI0 = p−1(0), and note that the domain of p is locally a complete intersection
of pure dimension n. We furthermore note, as in the introduction, that the fibers LIt and
resp. LI0 of this family are in fact isomorphic to the generic member Lt and resp. singular
member L0 of the given pencil L. In order to simplify the exposition, in what follows we
drop the upper/lower-script I from the notation whenever we work on the incidence variety.

Consider the nearby cycles ψpQI and, respectively, the vanishing cycles φpQI associated
to the one-parameter family, and note that the following identifications hold:

(2.1) Hj(Mx; Q) = Hj(ψpQI)x, H̃j(Mx; Q) = Hj(φpQI)x,
where Mx denotes the Milnor fiber of p at x ∈ L0 in the incidence variety I of the pencil.
In particular, these groups inherit canonical mixed Hodge structures since the nearby and
vanishing cycles lift to Saito’s category of mixed Hodge modules (cf. [24]), or see [16, 17].

There is a long exact sequence of mixed Hodge structures (e.g., see [16, 17], or use the
fact that the nearby and vanishing cycles lift to the category of mixed Hodge modules):

(2.2) · · · → Hj(L0; Q)→ Hj(L0;ψpQ)→ Hj(L0;φpQ)→ · · · ,
where Hj(L0;ψpQ) carries the limit mixed Hodge structure defined on the cohomology of
the canonical fiber L∞ of the one-parameter degeneration p (e.g., see [[21], §11.2]). The
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existence of the limit mixed Hodge structure is also a consequence of Saito’s theory, since

(2.3) Hj(L0;ψpQ) = rat(Hj(k∗ψ
H
p QH

I [1])),

for k : I → pt the constant map. Moreover, a consequence of the definition of the limit
mixed Hodge structure is that (cf. [[21], Cor.11.25])

(2.4) dimCF
pHj(L∞; C) = dimCF

pHj(Lt; C),

where Lt is the generic fiber of the family (and of p). Therefore,

(2.5) χy(L∞) := χy([H�(L0;ψpQ)]) = χy(Lt).

The rest of the proof follows from the following three lemmas:

Lemma 2.1. (Additivity of the χcy-polynomial.)
Let S be the set of components of strata of an algebraic Whitney stratification of the complex
algebraic variety Z. Then for any M� ∈ DbMHM(Z) so that rat(M�) is constructible with
respect to S,

(2.6) χy([H�
c(Z;M�)]) =

∑
S∈S

χy([H�
c(S;M�)]).

Proof. e.g., see [[5], Cor.3].
�

Lemma 2.2. (Trivial monodromy.)
In the notations of Lemma 2.1, let F � denote the rational constructible complex associated
to M�. Assume moreover that the local systems Hj(F �)|S are constant on S for each j ∈ Z,
e.g. π1(S) = 0. Then

(2.7) χy([H�
c(S;F �)]) = χcy(S) · χy([F �

x]),

where [F �
x] := [i∗xF �] = [H�(F �)x] ∈ K0(MHS) is the complex of mixed Hodge structures

induced by the pullback of M� over the point x ∈ S under the inclusion ix : {x} ↪→ S.

Proof. e.g., see [[5], Prop.3] (compare also with [[10], Thm.6.1] for the case of coefficients in
geometric variations).

�

If each local systemHj(F �)|S has a finite order monodromy, and is the restriction of a local
system defined on a compactification of the stratum, then one has a similar multiplicative
formula. This follows from the following:

Lemma 2.3. (Finite order monodromy, extending to a compactification.)
Let S be a connected complex algebraic manifold of dimension n, and V a local system
on S underlying an admissible variation of mixed Hodge structures with quasi-unipotent
monodromy at infinity. Assume the monodromy representation of V is of finite order and,
moreover, V extends as a local system to some (possibly singular) compactification S̄ of S.
Then the twisted Hodge polynomial

χcy(S;V) := χy([H
∗
c (S;V)])
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3 is computed by the multiplicative formula:

(2.8) χcy(S;V) = χcy(S) · χy([Vx]),

for [Vx] ∈ K0(MHS) the class of the fiber of V at some point x ∈ S.

Proof. Let W be a resolution of singularities of S̄, which is an isomorphism over S, and so
that D := W \S is a simple normal crossing divisor. Denote by V̄ the pullback to W of the
extension of V on S̄.

First note that the local system V̄ underlies an admissible variation of mixed Hodge
structures on W . Indeed, since both S and W are smooth, if j : S ↪→ W is the inclusion
map then the intermediate extension (cf. [2]) j!∗(V [n]) of V from S to W is given by:

(2.9) j!∗(V [n]) = ICW (V) ' ICW (V̄) ' ICW ⊗ V̄ ' Q[n]⊗ V̄ ' V̄ [n].

This yields the identification

(2.10) V̄ = j!∗V .

Moreover, if VH denotes the smooth mixed Hodge module on S defined by V (cf. [24]),
then the isomorphisms in (2.9) can be lifted to the level of algebraic mixed Hodge modules.
Therefore, j!∗VH [n] is a smooth mixed Hodge module on W , so V̄ = rat(j!∗VH) underlies an
admissible variation of mixed Hodge structures.

Clearly, by the additivity of the χcy-polynomial, we have that

(2.11) χcy(S;V) = χy(W ; V̄)− χy(D; V̄|D)

where, by the inclusion-exclusion principle,

(2.12) χy(D; V̄|D) =
∑

i0<···<ik

(−1)kχy(Di0 ∩ · · · ∩Dik ; V̄|Di0∩···∩Dik )

for Di the irreducible components of the divisor D. And identities similar to (2.11) and
(2.12) hold, of course, for the usual Hodge polynomials with trivial coefficients (correspond-
ing to the constant variation Q). Since D is a simple normal crossing divisor on W , the
intersections of its components are algebraic submanifolds, so in order to prove (2.8) it suf-
fices to show that: if X is a compact complex algebraic manifold, and V is an admissible
variation of mixed Hodge structure on X with finite order monodromy, then:

(2.13) χy(X;V) = χy(X) · χy([Vx]).

And this can be proved by using the Atiyah-Meyer type results from [5]. Indeed, if

χy(V) :=
∑
p

[GrpF(V ⊗Q OX)] · (−y)p ∈ K0(X)[y, y−1]

3The fact that the groups Hi
c(S;V) carry canonical mixed Hodge structures is an easy consequence of

Saito’s theory of mixed Hodge modules [24].
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is the K-theory χy-characteristic of V (with F � the corresponding filtration on the flat bundle
V ⊗Q OX), then by [5] we have that:

(2.14) χy(X;V) =

∫
[X]

ch∗(χy(V)) ∪ T̃ ∗y (TX),

where T̃ ∗y (TX) is the un-normalized Hirzebruch class of (the tangent bundle of)X, appearing
in the generalized Hirzebruch-Riemann-Roch theorem [13]. Recall here that

χy(X) =

∫
[X]

T̃ ∗y (TX).

The claim in (2.13) follows if we can show that the bundles GrpF(V ⊗Q OX) (p ∈ Z) are
flat. Since flatness is a local property, it suffices to check this property on a finite cover.
For this we make use of the finite monodromy assumption. Indeed, there is a finite cover
p : X ′ → X on which the pullback of the local system V becomes constant. By rigidity, the
pullback variation underlying this local system is constant, so the Hodge filtration (and its
graded pieces) for the associated flat bundle p∗V ⊗Q OX′ is by trivial bundles. Since these
are all pull-backs of the corresponding bundles from X, the claim follows.

�

At this point we remark that the methods involved in proving our Theorem 1.1 (e.g.,
the use of the limit mixed Hodge structure and of Atiyah-Meyer type formulae) forbid us
from considering more general Hodge-theoretic invariants such as the Hodge-Deligne E-
polynomial, which also takes into account the weight filtrations.

An important reformulation of Theorem 1.1 is the following generalization of some results
of [5], which explicitly compares the Hodge polynomials of the singular and respectively
generic fiber in a pencil of hypersurfaces.

Theorem 2.4. Under the assumptions and notations of Theorem 1.1, we obtain the follow-
ing relation between the Hodge polynomials of L0 and Lt respectively:

(2.15) χy(L0) = χy(Lt)−
∑
S

χcy(S; M̃(L0, pL)),

for M̃(L0, pL) := φHp QI [1] the complex of mixed Hodge modules corresponding to Deligne’s
constructible complex of vanishing cycles on the incidence variety I. Here the summation
runs only over singular strata, i.e., over strata S ∈ S so that dim(S) < dim(L0).

In particular, if for any S ∈ S the variations of mixed Hodge structures Hi(M̃(L0, pL))|S
(i ∈ Z) are constant (e.g., π1(S) = 0), or have finite order monodromy representations that
extend to the closure S̄ of the stratum, then

(2.16) χy(L0) = χy(Lt)−
∑
S

χcy(S) · χy(H̃ �(MS; Q)).

The corresponding Euler characteristic formula (i.e., for y = −1) holds without any restric-
tions on the monodromy along the singular strata of L0.
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Proof. The underlying rational constructible complex of sheaves for M̃(L0, pL) is the com-
plex φpQ of the vanishing cycles associated with the one-parameter family {Lt} on the
incidence variety. It is supported only on the singular locus of the singular fiber L0.

The identity in (2.15) follows from the functoriality of the χy-genus, the fact that the
long exact sequence (2.2) is a sequence of mixed Hodge structures, and the additivity of the
χcy-genus of Lemma 2.1.

Under the trivial (resp. finite order) monodromy assumption, Lemma 2.2 (resp. Lemma
2.3) and the identification in (2.1) yield (2.16).

�

Remark 2.5. We want to point out that our formulae (1.7) and (2.16), which were obtained
in the case of very simple monodromy situations at each stratum, admit reformulations
expressed entirely only in terms of the Hodge polynomials of closures of strata in the singular
fiber of the pencil. (This makes it easier to identify each of these formulae as the degree-zero
part of a conjectural corresponding characteristic class formula for the motivic Hirzebruch
classes of [3].) Indeed, for a given stratum S of a Whitney stratification as in Theorem 1.1,
let us define inductively

(2.17) χ̂y(S̄) := χy(S̄)−
∑
P<S

χ̂y(P̄ ),

where the summation is over (boundary) strata P ⊂ S̄\S. By the additivity of the χcy-genus
and since L0 is compact, it is then easy to see that in fact we have

(2.18) χ̂y(S̄) = χcy(S) = χy(S̄)− χy(S̄ \ S).

So formula (1.7) for example can be now re-written as

(2.19) χy(Lt) =
∑
S

χ̂y(S̄) · χy(MS),

and similarly for formula (2.16).

Remark 2.6. As already noted in the introduction, our main results should be regarded
as a Hodge-theoretic extension to arbitrary pencils of the Parusiński-Pragacz formula for
the Euler characteristic of singular hypersurfaces ([19]). A characteristic class version of
this formula was obtained in [20] (see also [25, 26, 28]) by studying the Milnor class of
a complex hypersurface, that is, the difference between the Fulton-Johnson class [12] and
the Chern-MacPherson class [15]. On the other hand, the difference between the Hodge
polynomials of the singular and resp. generic fiber of a one-parameter family {Xt} of
projective hypersurfaces is just the degree of a certain Hodge-theoretic Milnor class, which
can be defined as the difference between the motivic Hirzebruch class of X0 (as defined in
[3]) and the Hirzebruch class of its virtual tangent bundle in the ambient variety. It would
be interesting to understand the higher dimensional components of this generalized Milnor
class in terms of invariants of the singular locus of the special fiber in the family. This will
be addressed elsewhere.
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3. Applications and Examples

3.1. Quadrics. For a quadric Q0 given by the equation

(3.1) fr(x0, ..., xn) = 0

where fr is a quadratic form of rank r, the singular locus Sing(Q0) is a linear space of
dimension n− r. The strata of the stratification suitable for the application of Theorem 1.1
to the pencil generated by Q0 and the generic quadric Q1 consist of

(3.2) S1 = Q0−Sing(Q0)−Q1∩Q0, S2 = Sing(Q0)−Sing(Q0)∩Q1, S3 = Sing(Q0)∩Q1.

Note that S3 is a generic quadric in Pn−r. Only S2 and S3 will be used for the calculation
of the Euler characteristic e(Q0) by using Theorem 2.4 (in the case y = −1). We have:

(3.3) e(Q1) = n+ 1− 1

2
(1 + (−1)n), e(S3) = (n− r + 1)− 1

2
(1 + (−1)n−r),

e(S2) = e(Pn−r)− e(S3) =
1

2
(1 + (−1)n−r).

The calculation of the Euler characteristic of Milnor fibers at points of S3 is similar to that
of Example 1.5. The incidence correspondence is locally given in Cn+1 by the equation

(3.4) x2
0 + ...+ x2

r−1 + txk = 0 (k ≥ r)

i.e., it is a singular quadric of rank r+ 2. The Milnor fiber MS3 is a r-dimensional manifold
given in the affine space Cr+2, with coordinates x0, ..., xr−1, xk, by the equation (3.4) with
t = ε 6= 0. It is biregular to Cr. The Milnor fiber of the stratum S2 is the Milnor fiber of an
A1-singularity in Cr. Therefore:

(3.5) e(MS2) = 1 + (−1)r+1, e(MS3) = 1.

Back in Theorem 2.4 and for y = −1, we now obtain:

(3.6) e(Q0) = n+ 1− (1 + (−1)r−1)/2 = n+ (1 + (−1)r)/2

Also note that the relation of the Theorem 1.1 specializes (for y = −1) into:
(3.7)

(n+1)− 1

2
(1+(−1)n) = e(S1)+

1

2
(1+(−1)n−r) · (1+(−1)r+1)+(n−r+1)− 1

2
(1+(−1)n−r)

which can be used to calculate e(S1) = r+(1+(−1)r−1)/2). (Alternatively one can compute
e(S1) by using the fibration of S1 over a non-singular quadric in Pr−1 with the fiber Cn−r).

Perhaps the easiest way to calculate the χy-genus of Q0 is to use the fibration of its

resolution Q̃0 which is the proper preimage of Q0 in the blow-up of Pn at Sing(Q0) ⊂ Pn.
One has the following fibration with the fiber Pn−r+1, base of which is a non-singular quadric
Qr−2
ns of dimension r − 2:

(3.8) Q̃0
Pn−r+1

−→ Qr−2
ns

The exceptional locus of the resolution (3.8) is a Qr−2
ns -fibration over Pn−r. Hence:

(3.9) χy(Q0) = χy(Q
r−2
ns )(−1)n−r+1yn−r+1 + χy(Pn−r) =
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(
i=r−2∑
i=0

(−1)iyi +
(1 + (−1)r)

2
(−y)r−2)(−1)n−r+1yn−r+1 +

i=n−r∑
i=0

(−1)iyi

This calculation can also be obtained by using the χy-version of Theorem 1.1 or Theorem
2.4, instead of the Euler characteristic version used above.

3.2. Miscellanea. Similar calculations can be done for other singular hypersurfaces of low
degree. For example, using Theorem 2.4 and the classification of cubic surfaces with one-
dimensional singular locus is given in [4] one can obtain χy-polynomials of all singular cubic
surfaces in P3 with non-isolated singularities. The possibilities are irreducible surfaces which
are cones over nodal and cuspidal plane cubics, and surfaces given by the equations:

(3.10) F : x2
0x2 + x2

1x3, G : x2
0x2 + x0x1x3 + x3

1

For a cubic in any dimension the singular locus of codimension 1 is a linear space, since
a transversal plane section is an irreducible cubic hence has only one singularity. It is not
difficult to work explicit formulas for the χy-polynomials in this case as well.

Also, images of generic projections Xn → Pn+1 provide an interesting class of hypersur-
faces with codimension one singular locus. The numerology of singularities is given in [14].
Our Theorem 1.1 can be used to compute Hodge-theoretical invariants of strata.

Finally note that the relation between the Euler characteristic of a singular curve in
P2 and its smoothing provides an important restriction on the number of singular points
of a curve. Similarly, Theorem 1.1 yields restrictions on data of singular strata in higher
dimensions.
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[25] Schürmann, J., Lectures on characteristic classes of constructible functions, Trends Math., Topics in

cohomological studies of algebraic varieties, 175–201, Birkhäuser, Basel, 2005.
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