PERVERSE SHEAVES ON SEMI-ABELIAN VARIETIES

YONGQIANG LIU, LAURENTIU MAXIM, AND BOTONG WANG

ABSTRACT. We give a complete (global) characterization of C-perverse sheaves
on semi-abelian varieties in terms of their cohomology jump loci. Our results
generalize Schnell’s work on perverse sheaves on complex abelian varieties,
as well as Gabber-Loeser’s results on perverse sheaves on complex affine tori.
We apply our results to the study of cohomology jump loci of smooth quasi-
projective varieties, to the topology of the Albanese map, and in the context
of homological duality properties of complex algebraic varieties.

1. INTRODUCTION

Perverse sheaves are fundamental objects at the crossroads of topology, al-
gebraic geometry, analysis and differential equations, with important applications
in number theory, algebra and representation theory. They provide an essential
tool for understanding the geometry and topology of complex algebraic varieties.
For instance, the decomposition theorem [3], a far-reaching generalization of the
Hard Lefschetz theorem of Hodge theory with a wealth of topological applications,
requires the use of perverse sheaves. Furthermore, perverse sheaves are an integral
part of Saito’s theory of mixed Hodge module [32, 33]. Perverse sheaves have also
seen spectacular applications in representation theory, such as the proof of the
Kazhdan-Lusztig conjecture, the proof of the geometrization of the Satake isomor-
phism, or the proof of the fundamental lemma in the Langlands program (e.g., see
[9] for a beautiful survey). A proof of the Weil conjectures using perverse sheaves
was given in [20].

However, despite their fundamental importance, perverse sheaves remain
rather mysterious objects. In his 1983 ICM lecture, MacPherson [27] stated the
following:

The category of perverse sheaves is important because of its appli-
cations. It would be interesting to understand its structure more
directly.
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Alternative descriptions of perverse sheaves have since been obtained in vari-
ous contexts, e.g., by MacPherson-Vilonen [28] in terms of zig-zags, by Gelfand-
MacPherson-Vilonen [16] by using quivers, etc.

Perverse sheaves on complex affine tori have been studied by Gabber-Loeser
[15] via the Mellin transformation, whereas perverse sheaves on complex abelian
varieties have been completely characterized by Schnell [34] by properties of their
cohomology jump loci. The works of Gabber-Loeser [15] and Schnell [34] are the
departure point for this paper. Our main results give a complete (global) character-
ization of C-perverse sheaves on semi-abelian varieties in terms of their cohomology
jump loci, generalizing Schnell’s work and complementing Gabber-Loeser’s results.

Let X be a smooth connected complex quasi-projective variety. The character
variety Char(X) is the connected component of Hom(m;(X),C*) containing the
identity. It is isomorphic to (C*)**(X) and it can be identified with the maximal
spectrum Spec C[H; ¢(X,Z)] of the C-group ring of the free part of H;(X,Z). Each
character p € Char(X) corresponds to a unique rank-one C-local system L, on
X. The cohomology jump loci of a constructible complex F € D%(X,C) on X are
defined as:

(1) VYX,F):={pe€ Char(X) | H(X,F ®&c L,) # 0}.

These are generalizations of the cohomology jump loci V(X) := V{(X,Cx) of X,
which correspond to the constant sheaf Cyx, and which are homotopy invariants
of X.

It was recently shown in [8] that the irreducible components of the coho-
mology jump loci of bounded constructible complexes on any smooth complex
algebraic variety X are linear subvarieties. In particular, each V*(X, F) is a finite
union of translated subtori of the character variety Char(X). This fact imposes
strong constraints on the topology of X.

By the classical Albanese map construction (e.g., see [18]), cohomology jump
loci of a smooth complex quasi-projective variety are realized as cohomology jump
loci of constructible complexes of sheaves (or, if the Albanese map is proper, of
perverse sheaves) on a semi-abelian variety. This partly motivates our study of
cohomology jump loci of constructible complexes, with a view towards a complete
characterization of perverse sheaves on complex semi-abelian varieties. Besides
providing new obstructions on the cohomology jump loci (hence also on the ho-
motopy type) of smooth complex quasi-projective varieties, such a characteriza-
tion has other important topological applications, such as finiteness properties of
Alexander-type invariants (see, e.g., [23]), or for the study of homological duality
properties of complex algebraic varieties.

1.1. Main results. A complex semi-abelian variety is a complex algebraic group
G which is an extension

1-T—->G—A—1,
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where A is an abelian variety of complex dimension g and T' 2 (C*)™ is an algebraic
affine torus of complex dimension m. We set I'¢ := C[m (G)] = C[tE!, - -- ,tfnizg].
Thus Char(G) = SpecT'g & (C*)™+29.

Let F € D%G,C) be a bounded constructible complex of C-sheaves on G
with cohomology jump loci Vi(G, F). By using the linear structure of irreducible
components of the cohomology jump loci (see Theorem 5.3), we introduce refined
notions of (semi)abelian codimensions codimg, V¢(G, F) and codim, V¥ (G, F), see
Definition 6.1.

The main result of our paper asserts that the position of a bounded C-
constructible complex on G with respect to the perverse ¢-structure on D%(G,C)
can be detected by the (semi)abelian codimension of its cohomology jump loci.
This result provides a complete description of C-perverse sheaves on a semi-abelian
variety G in terms of their cohomology jump loci, and generalizes and unifies
Schnell’s corresponding result [34, Theorem 7.4] for perverse sheaves on abelian
varieties, as well as Gabber-Loeser’s description [15] of perverse sheaves on complex
affine tori. Specifically, we prove the following (see Theorem 6.6).

Theorem 1.1. Let F € D%G,C) be a bounded C-constructible complez on G.
Then we have

(a) F € PD=Y(G,C) < codim, V(G,F) >i for anyi > 0,

(b) F € PD2%(G,C) <= codimg, VI(G,F) > —i for any i < 0.
Thus, F is a C-perverse sheaf on G if and only if the following two conditions are
satisfied:

(1) codim, VI(G, F) > i for any i >0,

(2) codimg, VI(G, F) > —i for any i < 0.

As pointed out in Remark 3.3, cohomology jump loci of a constructible com-
plex F on G can be reduced to investigating the corresponding cohomology jump
loci of M..(F), with M. : D%G,C) — Db, (I'c) the Mellin transformation (see
Definition 3.1). For complex affine tori, the image M. (P) of a perverse sheaf P is a
single coherent sheaf (cf. [15]), while for an abelian varieties it is a perverse coher-
ent sheaf (cf. [34]). It is therefore natural to ask whether there exists a ¢-structure
chr on DP,(T'g), which “glues” the standard one on the torus part with the
perverse coherent one on the abelian variety, so that M., (P) sits inside the heart
of this t-structure (or, equivalently, M, : (D%(G,C),Pr) — (Db, (I'g), ") is
t-exact, with 7 denoting the perverse t-structure on constructible complexes). As
discussed in Remark 6.7, the answer is negative in general, if one restricts to the
family of t-structures constructed in [1].

In addition to Theorem 1.1, properties of the Mellin transformation (Theorem
4.3) are used here to generalize our results from [24], and show that cohomology

jump loci of perverse sheaves on semi-abelian varieties propagate:

Theorem 1.2. The cohomology jump loci of any C-perverse sheaf P on G satisfy
the following propagation property:

VTG, P) S CVTHG,P) S VG, P) 2 VG, P) 2 2 VI(G, P).
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Furthermore, V{(G,P) =0 ifi ¢ [-m — g,g].

As an immediate consequence of Theorems 1.1 and 1.2, we get the following
known result.

Corollary 1.3. Let P be a C-perverse sheaf on a semi-abelian variety G. Then
P satisfies the following properties:

(i) Generic vanishing: there exists a non-empty Zariski open subset U C
Char(G) such that, for any closed point p € U, H(G,P ®c L,) = 0
for all i # 0.

(ii) Signed Euler characteristic property:

x(G,P) = 0.
Moreover, the equality holds if and only if V'(G,P) # Char(G).

Remark 1.4. In the semi-abelian context, the codimension lower bound (Theo-
rem 1.1) and the propagation (Theorem 1.2) for the cohomology jump loci of per-
verse sheaves are, to our knowledge, new and unexplored properties. They explain
in a more conceptual way the generic vanishing and signed Euler characteristic
properties of Corollary 1.3. A propagation property for simple perverse sheaves on
abelian varieties was previously obtained in [39]. In the coherent setting, a similar
propagation property was proved, e.g., in [30, Proposition 3.14], for cohomology
support loci of GV-sheaves on abelian varieties. Moreover, in the abelian context,
codimension lower bounds have been obtained in [31, Theorem 1.1] for cohomology
support loci of coherent sheaves of a Hodge theoretic nature.

The generic vanishing property for perverse sheaves on semi-abelian vari-
eties was previously obtained by different methods in [21, Theorem 2.1] and [23,
Theorem 4.3] (for the abelian context see [22, Theorem 1.1], [34, Corollary 7.5],
[38, Vanishing Theorem], [4, Theorem 1.1]). The signed Euler characteristic prop-
erty (which is an immediate consequence of generic vanishing) is originally due to
Franecki and Kapranov [14, Corollary 1.4].

The following description of simple perverse sheaves with zero Euler number
plays an essential role in the proof of Theorem 1.1. It also provides a unification
and generalization to the semi-abelian context of similar statements in the abelian
case (cf. [37, Theorem 2], [22, Proposition 10.1(a)], [34, Theorem 7.6]) and in the
affine torus case (cf. [15, Theorem 5.1.1]), respectively.

Theorem 1.5. If P is a simple perverse sheaf on G with x(G,P) = 0, then there
exists a positive dimensional semi-abelian subvariety G” of G, a rank-one C-local
system L, on G and a simple perverse sheaf P' on G' = G/G" with x(G',P") # 0,
such that

P=L,®c [P [dimG"],
with f : G — G' = G/G" denoting the quotient map. Moreover, V°(G,P) is an
irreducible linear subvariety.
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1.2. Applications. Additional motivation for investigating perverse sheaves on
semi-abelian varieties is provided by their wide range of applications, including
to the study of cohomology jump loci of smooth quasi-projective varieties, for
understanding the topology of the Albanese map, as well as in the context of
homological duality of complex algebraic varieties. We sample here several such
applications, some of which follow directly from the above mentioned theoretical
results; see Section 7 for more details. The interested reader may also consult [25],
which gives a brief survey of results and applications contained in the present
paper and in [24]. In the projective context, see also [31, Sections 4.3, 4.6, 5.1]
for results concerning the generic Nakano vanishing theorem, lower codimension
bounds for cohomology jump loci of rank-one local systems, and interesting new
bounds for the topological Euler characteristic of irregular varieties, all expressed
in terms of the topology of the Albanese map.

In relation to cohomology jump loci of smooth varieties, we have the following
(see Corollary 7.2 for a more general statement).

Corollary 1.6. Let X be a smooth complex quasi-projective variety of dimension
n with Albanese map alb : X — Alb(X). Suppose Ralb, Cx[n] is a perverse sheaf
on Alb(X) (e.g., alb is proper and semi-small). Then the cohomology jump loci
Vi(X) have the following properties:

(1) Propagation property:

{1} =V(x) . VX)) SVN(X) 2 VX)) 2 2V (X)),
(2) Codimension lower bound: for any i > 0,
codimgg V”_i(X) >4 and codim, V"'H(X) > q.

(3) For generic p € Char(X), H(X,L,) =0 for all i # n.
(4) b;(X) >0 for any i € [0,n], and b1(X) > n.

Remark 1.7. A class of smooth complex quasi-projective varieties with proper
and semi-small Albanese map is given in Example 7.13. Note also that by Theorem
1.1, the codimension lower bound of Corollary 1.6(2) is equivalent to the fact that
Ralb, Cx[n] is a perverse sheaf on Alb(X).

As another application, to the topology of the Albanese map, we get the
following generalization of [36, Theorem 2.1], see Corollary 7.4.

Corollary 1.8. Let X be an n-dimensional smooth complex quasi-projective va-
riety with Albanese map alb : X — Alb(X). If U?Zo Vi{(X) contains an isolated
point, then alb is dominant.

The following generalization of [2, Corollary 2.6] gives a topological charac-
terization of semi-abelian varieties (see Proposition 7.7):

Corollary 1.9. Let X be a smooth quasi-projective variety with proper Albanese
map (e.g., X is projective), and assume that X is homotopy equivalent to a torus.
Then X 1is isomorphic to a semi-abelian variety.



6 YONGQIANG LIU, LAURENTIU MAXIM, AND BOTONG WANG

Finally, let us indicate here an application of our results to homological
duality. The concept of abelian duality space was introduced by Denham-Suciu-
Yuzvinsky in [11] as an abelian version of the Bieri-Eckmann duality spces [5], see
Subsection 7.3 for a definition and properties. Examples of abelian duality spaces
were constructed in [24, Theorem 4.11] via algebraic maps to complex affine tori.
Here we provide generalizations of this construction to the semi-abelian setting.
For example, we prove the following result (see Theorem 7.11).

Corollary 1.10. Let X be an n-dimensional smooth complex quasi-projective va-
riety, which is homotopy equivalent to an n-dimensional CW complez (e.g., X is
affine). Suppose the Albanese map alb is proper and semi-small, or alb is quasi-
finite. Then X is an abelian duality space of dimension n.

As a consequence, very affine manifolds and complements of essential hy-
persurface arrangements in projective manifolds are abelian duality spaces (see
Examples 7.12 and 7.13).

1.3. Summary. The paper is organized as follows.

In Section 2, we recall the definition of several algebraic notions (including
Fitting ideals, cohomology jumping ideals and cohomology jump loci of a bounded
complex of finitely generated modules) and prove several preparatory commutative
algebra results.

In Section 3, we recall the relevant results for perverse sheaves on complex
affine tori and abelian varieties, which provide a motivation for our work.

In Section 4, we study properties of the Mellin transformation functor for
perverse sheaves on a complex semi-abelian variety. In particular, we prove the
propagation property of Theorem 1.2.

Section 5 is devoted to characterizing simple C-perverse sheaves with van-
ishing Euler number on semi-abelian varieties. In particular, we prove Theorem
1.5.

In Section 6, we prove Theorem 1.1 on the characterization of C-perverse
sheaves on semi-abelian varieties in terms of their cohomology jump loci.

Finally, Section 7 is devoted to applications.
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2. COHOMOLOGY JUMP LOCI OF A COMPLEX OF R-MODULES

Let R be a Noetherian domain, and denote by Spec R the maximal spectrum
of R. Let E® be a bounded above complex of R-modules with finitely generated
cohomology. In this section, we recall the notion of cohomology jump loci for the
complex E°, and discuss some preparatory results in commutative algebra.

By a construction of Mumford (see [17, 111.12.3]), there exists a bounded
above complex F'* of finitely generated free R-modules, which is quasi-isomorphic
to E°.

Definition 2.1. For any integer k£ and a map ¢ of finitely generated free R-
modules, let I¢ denote the k-th determinantal ideal of ¢ (i.e., the ideal of minors
of size k of the matrix of ¢), see [13, p.492-493]. For a bounded above complex E*
of R-modules, with finitely generated cohomology, and for F'* a bounded above
finitely generated free resolution of E° as above, the degree i Fitting ideal of E* is
defined as:

IZ(E.) = IRankai (81)7
and the degree i jumping ideal of E° is defined as:
Ji(E.) = IRank(Fi)(aiil @ 31)7

where 8°~1 : Fi=1 — F? and 9% : F* — F'*+1 are differentials of the complex F°.
We define the (reduced) i-th cohomology jump locus of E' as the algebraic
subset of Spec R associated to J*(E"), that is,

VIE") := v( Ji(E')) C SpecR,

where v/T denotes the radical ideal of I. Notice that V(E") is naturally isomorphic
to the reduced induced closed subscheme of Spec R/J!(E").

It is known that I*(E"), J(E') and VI(E") do not depend on the choice of
the finitely generated free resolution F'* of E*; see [13, Section 20.2] and [7, Section
2].

Remark 2.2. The closed points of V(E") can also be described as follows:
VI(E") = {p € Spec R | H'(F" ©r R/p) # 0},

with F'* a bounded above finitely generated free resolution of E°, see [7, Corollary

2.5].

For the rest of this section, we focus on a special class of complexes of finitely
generated free R-modules of finite length, of the form:

0 FF oy pim1 05 i & ity 1 900 e
b)
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with k,¢ > 0. In what follows, we work under the following assumption:
Assumption 2.3. H(F") =0 and H'(Hompg(F*, R)) = 0, for any i < 0.
Here, the complex Hompg(F*, R) is given by:
. i,V . i—1,V
0 — Homp(F*,R) — - — Homp(Fi*!, R) > Homp(F', R) ' —
Hompg(F*"1,R) — -+ — Homg(F~* R) — 0,
with Hompg(F?, R) placed in degree —i.

This section is devoted to proving the following result:

Proposition 2.4. Let F* be a finite length complex of finitely generated free R-
modules, satisfying Assumption 2.5. Then, for any i # 0, we have that:

VIE) =/ J(F),

where \/I denotes the radical ideal of I. Moreover, the following properties hold:

(i) Propagation property:
VHFYC--CYVHF)CVUF)DVYF) D - DVYF).
(i) Depth lower bound: for any i > 0,
depth J¥H(F*) > i.

(iii) Assume thatV is an irreducible component of VO(F*) and let p denote the
corresponding prime ideal. Let p, denote the maximal ideal in the local ring
R,. If d = depthyp,, then there exists an interval [a1, az) with 0 € [a1, as]
and az — a1 > d such that V is an irreducible component of VI(F") exactly
for i € [a1,asz].

Before proving Proposition 2.4, we recall the following two results from [13,
Theorem 20.9, Corollary 20.12, Corollary 20.14] and [24, Lemma 2.3, Proposition
2.5].

Lemma 2.5. A complex of finitely generated free R-modules
F i 0 FF oo 1 05 pi O pitd 0 po

is exact if and only if the following two properties hold for any i < —1:

(i)

Rank F* = Rank &' + Rank 8"~
(ii)
depth I'(F") > —i .
Lemma 2.6. Let F° be an exact complex as in Lemma 2.5. Then for any 1 < —1,
VINE®) C /T=YF*) and \/T{(F*) = \/J{(F").

We will also make use of the following proposition.
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Proposition 2.7. Let R be a noetherian local domain. Let
o 1 0
0O FFos . sp22 ,p1 2 (pof, p

be a complex of finitely generated free R-modules, with H(F") = 0 for i < 0. Let
r; be the rank of F*. If I,,(0~' @ 8°) = R, then I,,(0° ® 0'~') = R for any i < 0.

Proof. First, we recall our convention that Iy(¢) = R for any homomorphism ¢
between free R-modules and if j is larger than the size of ¢, then I;(¢) = 0. By
definition,
JUFT) =Ly (07 @) = 7 L0071 Lry ().
0<j<ro
Since R is a local ring, > o<, I;(071) - I,,—;(8°) = R implies that I;(07!) -
I,—;(0°) = R for some j, or equivalently ;(0~') = I,,_;(8°) = R. Fix this
particular j. Then j < Rank(9~!) and ro — j < Rank(d°). On the other hand,
since (F*,0") is a complex, we have
Rank(0~!) + Rank(0°) < 7.

Therefore, Rank(0~1) = j and Rank(0°) = rg — j.

Since I;(071) = R, 87! has a j x j minor, whose determinant is invertible. By
a suitable base change, this minor is equal to the size j identity matrix. Without
loss of generality, we may assume that this minor is located in the upper left
corner. Then, by a further base change, we can assume that away from the top-left
j X j corner, the top j rows and the left j columns of =1 are all zero. Now, since
Rank(0~!) = j, the lower right corner of ~! is also zero. Thus, the image of
07! is a free direct summand of F°. Therefore, a non-canonical splitting F° =
Im(0~1') ® F°/Im(0~1) induces a splitting of F* into two complexes, one with
only nonnegative degree terms

0— F°/Im(9~ 1) -2 F!
and one with only nonpositive degree terms
—2 —1
0 F* o 5225 12 oY) —o.

The complex with nonpositive degree terms is quasi-isomorphic to zero by assump-
tion. Now, it follows that I, (0" @ 0°~!) = R for all i < 0. O

We have now all the ingredients for proving Proposition 2.4.

Proof of Proposition 2./. Consider the truncated complex F=0:

0 FFo. 5 pt% PS5 S RO

Then for any ¢ < —1,
JHF") = J(F=°).
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Note that the depth of an ideal only depends on its radical ideal ([13, Corollary
17.8]). Therefore, for any ¢ < —1, we have that

depth J(F") = depth \/J{(F*) = depth \/T¢{(F*) = depth I*(F") > |il.

So if i < 0, the claims in (¢) and (i ) follow from Lemma 2.5 and Lemma 2.6.

The similar claims for ¢ > 0 follow from a dual argument, based on the as-
sumption that H(Hompg(F*, R)) = 0 for i < 0. Note that Homr(Hompg(F°, R)) =
F*. This completes the proof of (7).

To finish the proof of (i), it remains to show that V=1(F*) C VO(F") D
VI(F*). The claim is obviously true if VO(F") = Spec R. If V°(F") # Spec R, we
prove the claim by localization. Let m be a maximal ideal such that m ¢ VO(F").
Let Ry be the localization of R at m, and denote F* ®pg Ry by F,,. Since localiza-
tion is an exact functor, we have that H*(F,) = 0 and HZ(HomRm (Fpy,Rm)) =0
for any i < 0. Note that m ¢ V(F") if and only if VO(F,) = 0, i.e., JO(Fy) = Rn.
On the other hand, it follows from Proposition 2.7 that Jfl(Fn'l) = Ry, ie,
m ¢ V71(F"). Therefore, V"1(F") C V°(F"). The inclusion VO(F") D V}(F")
follows from a dual argument.

Let us now prove (iii). Suppose that V # Spec R, otherwise the claim is
automatic. Let p denote the prime ideal associated to the irreducible component
V. Consider the corresponding local ring R,,. Let Fp° be the localization of the
complex F° at p. Since localization is an exact functor, by Assumptions 2.3, we
have H'(F,) = 0 and H'(Hompg, (F,, R,)) = 0 for any ¢ < 0. By Lemma 2.5, for
any i # 0,

(2) Rank Fy = Rank d; + Rank 9, "

Note that V' is an irreducible component of VO(F") if and only if VO(F,) =
{pp}. Since VO(F, ») 7 Spec Ry, the equality (2) also holds for i = 0. The propa-
gation property (i ( ) implies that there exists an interval [a;, as] containing 0, such
that V*(F,) = {pp} for any i € [a1,az], and V*(F,) = 0 for any i ¢ [a1,as]. Note
that the depth of JO(F,) is d. Thus, by equahty (2) and Lemma 2.5, we have
HY(F, )—Oforz<a1—|—d

Slnce VU(F,) = 0 for i > a, we have that J*(F,) = R,. By using the same
argument as in the proof of Proposition 2.7, it follows that Fp' is exact for ¢ > as. If
as < a1+d, then the whole complex Fp' is exact, hence quasi-isomorphic to the zero

complex. But this contradicts the assumption V°(F,) = {p,}. So ag > a1 +d. O

Remark 2.8. Let F° be a finite length complex of finitely generated free R-
modules such that H*(F') = 0 for any i < 0. The above proof of Proposition
2.4(i) yields that

CCVTHEY) CVTHET) V().

Remark 2.9. Let K be a principal ideal domain (PID). Assume that R =
K[tljﬂ7 e ,tﬁl] for some positive integer N. Note that any finitely generated pro-
jective R-module is free [6, Theorem 8.13], hence every complex of R-modules with
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bounded finitely generated cohomology admits a free resolution of finite length.
Moreover, since R is a Cohen-Macaulay ring in this case, the depth of any ideal
in R coincides with its codimension.

3. PERVERSE SHEAVES ON COMPLEX AFFINE TORI AND ABELIAN VARIETIES

In this section, we introduce the Mellin transformation functor and recall
some properties of the cohomology jump loci of perverse sheaves on complex affine
tori and abelian varieties, which will later on be generalized to the context of
semi-abelian varieties.

For any complex algebraic variety X and any commutative Noetherian ring
R, we denote by D2(X, R) the derived category of bounded cohomologically con-
structible R-complexes of sheaves on X.

Throughout this section, we fix a coefficient field K, e.g., C or F, = Z/pZ
(for a prime p). Let Perv(X,K) denote the category of perverse sheaves with K-
coeflicients on X.

3.1. Mellin transformation and cohomologi jump loci. Let G be a complex
semi-abelian variety, i.e., a complex algebraic group G which is an extension

1-T—>G—A—1,

where A is an abelian variety of complex dimension g and T' 2 (C*)™ is an affine
algebraic torus of complex dimension m. Set

Tg = K[m (G)] = K[}t - - ,tiﬂﬂg].

Let L& be the rank-one local system of I'g-modules on G associated to the tau-
tological character 7 : m(G) — I'y;, which maps the generators of m1(G) to the
multiplication by the corresponding variables of the Laurent polynomial ring I'¢.

Definition 3.1. [15] The Mellin transformation functors (also called Fourier
transforms in [4, Definition 2.5]) M., M, : D%(G,K) — D’ ,(T¢) are defined
by

M (F):=Ra.(Leg®x F), M(F):=Ra(Ls®kF),
where Db , (I'c) denotes the derived category of bounded coherent complexes of
I'g-modules, and a : G — pt is the constant map to a point.

Definition 3.2. For any K-constructible complex F € D%(G,K), the cohomology
jgump loci of F are defined as:

(3) Vi(G, F) = {p € Specl'q | H'(G, F @k L,) # 0},

where L, is the rank-one local system of K,-vector spaces on G associated to the
maximal ideal p of I'g, with K, = T'¢/p the residue field of p.

Remark 3.3. The relation between cohomology jump loci and the Mellin trans-
formation is provided by the identification

(4) VI(G, F) =V (M.(F)),
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with the right-hand side defined as in Section 2. This is a consequence of the
following isomorphism obtained by using the projection formula and Remark 2.2
(e.g., see the proof of [24, Theorem 3.3], and compare also with [4, Lemma 2.6]
and [34, Proposition 13.4]):

(5) HY(G,F ®x L,) = H(M.(F) @r, K,).

3.2. Perverse sheaves on complex affine tori. If G is a complex affine torus,
i.e., G =T, the following result was proved by Gabber-Loeser [15, Theorem 3.4.1
and Theorem 3.4.7] in the ¢-adic context, and then extended to the present form
in [24, Theorem 3.2].

Theorem 3.4. Let K be a fixed field. The Mellin transformation functor M, is
t-exact, i.e., for any K-perverse sheaf P on T, we have that H (M.(P)) = 0 for
i # 0. Moreover, a constructible complex F € Db(T,K) is perverse if and only if
M., (F) is isomorphic to a complex concentrated in degree zero.

3.3. Perverse sheaves on abelian varieties. If G is a complex abelian variety,
i.e., G = A, one has the following results proved by Bhatt-Schnell-Scholze and
Schnell.

Theorem 3.5. [34, Theorem 7.4] A C-constructible complexr F € D%(A,C) is
perverse on the abelian variety A if and only if for any i € Z,
codim V¥(A, P) > |2i|.
Theorem 3.6. [4, Proposition 2.7] Let K be a fized field. For any P € Perv(A,K),
we have that M,(P) € DZ%(T'4) and Dr,(M.(P)) € DZ°(T 4), i.e.,
H{(M,(P)) =0 and H (Dr,(M4(P))) =0 for all i < 0.

Here Dr,(—) := RHomr, (—,T4) is the dualizing functor for the ring T 4.

The codimension lower bound for cohomology jump loci of perverse sheaves,

given in Theorem 3.5, was more recently reproved in [4, Theorem 3.1] by using the
Hard Lefschetz theorem.

Theorem 3.7. (Hard Lefschetz, [29]) Let K be a fized field of characteristic
zero. If ¢ € H?(A;K) is the Chern class of an ample line bundle (ignoring twists)
and if P € Perv(A,K) is semi-simple, then the cup product map

H'(A,P) S H'(A,P)
is an isomorphism for any i > 0.

As a direct application of the Hard Lefschetz theorem, one also has the fol-
lowing.

Corollary 3.8. Let K be a fized field of characteristic zero. For any semi-simple
perverse sheaf P € Perv(A,K) and for any integer i, we have that

VA, P) = V(A,P).

A more refined result on the nonvanishing of cohomology groups for simple
perverse sheaves on abelian varieties was obtained by Weissauer in [39].



PERVERSE SHEAVES ON SEMI-ABELIAN VARIETIES 13

4. PERVERSE SHEAVES ON SEMI-ABELIAN VARIETIES

In this section, we employ the Mellin transformation to study properties of
the cohomology jump loci of K-perverse sheaves on a semi-abelian variety, with K
a fixed field of coefficients.

In order to prove the main results of this section, we need a few preparatory
facts, analogous to [15]. As in [14], by choosing a splitting 7' = (C*)™, we can
write the semi-abelian variety G as

G:Gl XAG2 XA"'XAGm

where each Gy, is an extension of the abelian variety A by C*. Then each Gy, is a
principal C*-bundle over A. Let

G/:GQ XA Gsg X Xp G,
with G’ = Aif m=1.

Lemma 4.1. Let f : G — G’ be the projection onto the semi-abelian variety G’,
given by forgetting the first coordinate of T. Then for any P € D%(G,K), we have:

L
M*(Rf*P) = M*(P) ®rg e,
and
L
M(RAP) = Mi(P) ®@rg Ters
where Ty 2 Tq/(t1 — 1) as a T'g-module.
Proof. The proof is very similar to that of [15, Proposition 3.1.3(c)]. The latter is
phrased in the f-adic setting on complex affine tori, but the arguments carry over
to the topological context on semi-abelian varieties. We only indicate here the key

points, while leaving the details to the interested reader.
The main ingredient for the calculation of M,(RfiP) is the classical pro-

L
jection formula, by making use of the isomorphism f*Lo =2 Lo ®r, 'gr in
DY(G,T¢). The computation of M. (Rf.P) rests on a similar projection formula

Rf.(P®k f*La) = Rf.(P) @k Lo,

which can be deduced by checking that the natural projection morphism (e.g., see
[35, Lemma 1.4.1])

Rf. (P) Rk Lo — Rfs (P QK f*EG/)

induces stalkwise isomorphisms (since L¢- is locally constant). O

We also need the following compatibility of the Mellin transformation with
pullbacks (compare with [15, Proposition 3.1.3(d)]):

Lemma 4.2. Let f : G — G’ be the projection onto the semi-abelian variety G',

as above, obtained by forgetting the first coordinate of T. Let P’ € Db(G',KK). Then

the following (non-canonical) isomorphisms hold in D%, (U'c):
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(i)
M(f*P) = My(P")[-2].
(it)
M. (f*P) = ML (P)[-1].
where T'qr is viewed as a T'g-module via the isomorphism U'gy 2T /(t1 — 1).
Proof. After fixing a splitting G = G’ x C* as topological spaces, we have the
isomorphisms (compare with [15, Proposition 3.1.1]):
RfiLe = Lo [-2]
and
Rf.La = Lo[—1],
with L& viewed as a ['g-sheaf. Here the shift on the right hand side corresponds

to the C*-factor in the splitting. The desired isomorphisms follow then from the
projection formula as in the proof of [15, Proposition 3.1.3(d)]. O

Let £ denote the dual of the local system L. Define
MY (P) := Ra)(P @k LL).
As in [15, Proposition 3.1.3(b)], we have that
(6) Drg (M. (P)) = M) (DP),

where Dr,, is the duality functor RHomr (—,'g) in D, (Tg).

The following result is inspired by Gabber-Loeser’s Theorem 3.4 for perverse
sheaves on a complex affine torus and Bhatt-Schnell-Scholze’s Theorem 3.6 for
perverse sheaves on abelian varieties.

Theorem 4.3. Fix a field K. Let P € Perv(G,K) be a perverse sheaf on the
semi-abelian variety G. Then the following properties hold:
(i) M.(P) € D=°(T¢q), i.e.,
H{(M.(P)) =0 for all i < 0.
(ii) Dro(M.(P)) € DX(Tq), i,
H(Dr,(M.(P))) =0 for all i < 0.

Here Dr., denotes as above the dualizing functor for the ring I'c.

Proof. The Mellin transformation commutes with field extensions, so
M.(P @k K) = M.(P) @k K,

where K is the algebraic closure of K. Therefore, it suffices to prove the theorem
in the case when K is algebraically closed.

The abelian category of K-perverse sheaves is Artinian and Noetherian, hence
there is a well-defined notion of length of K-perverse sheaves. By induction on the
length of K-perverse sheaves, all claims in the statement can be reduced to the
case of simple perverse sheaves.
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Therefore, without any loss of generality, we can assume that P is a simple
K-perverse sheaf on G, with K an algebraically closed field. We prove the theorem
by induction on the dimension of the torus 7. If dim 7" = 0, then G is an abelian
variety, so both assertions follow directly from Theorem 3.6. For the induction step
we proceed as follows.

Proof of Claim (7).

Let f : G — G be the projection onto the semi-abelian variety G’ as in
Lemma 4.1. Since the relative dimension of the affine morphism f is 1, the only
possibly non-trivial perverse cohomology sheaves PH!Rf.(P) may appear in the
range i € {—1,0} (see, e.g., [12, Corollary 5.2.14(ii), Theorem 5.2.16(i)]). Since f
is a smooth morphism of relative dimension one, it follows from [3, Page 111] that
there is a canonical monomorphism of perverse sheaves

(7) P PHTIRE(P)) 1] = P
If PH~LRf.(P) is non-zero then, since P is simple, the monomorphism (7) is an
isomorphism:

f(PHTIRE(P)) 1] = P.
The desired claim follows in this case from Lemma 4.2(ii), by using the induction
hypothesis applied to the perverse sheaf PH"'Rf.(P) on G'.

On the other hand, if PH™ 1 Rf.(P) is zero, then Rf.(P) is a perverse sheaf
on G’. Recall that by Lemma 4.1 we have the isomorphism

M.(R.(P)) & M.(P) &r, Tar.

Since I'gr = T'/(t1 — 1), the complex T'g g T'c is a free resolution of the
I'¢-module I'g/. Thus,

(8) M. (Rf(P)) 2 M.(P)&rs (Lo "= Ta).
By the induction hypothesis applied to the perverse sheaf Rf.(P) on G’, it follows
that HY (M. (Rf«(P))) = 0 for i < 0. Hence by (8), we get that the multiplication
by tl —1

Hi(M.(P)) “= H'(M.(P))
is surjective for ¢ < 0. Let m C I'¢ be any maximal ideal such that (t; — 1) € m.
Then, by localization at m, we get that

H (M(P))m “= HY (Mo (P))m
is surjective for ¢ < 0. Therefore, by Nakayama’s Lemma for the local ring (I'¢)m,
we get that H (M (P))m =0 for i <0 if (¢; — 1) € m.
In general, fix a maximal ideal m and assume that (t; —A;) € m for some \; €
K* (here we use the assumption that K is algebraically closed). Consider the rank-
one K-local system L)\;1,17m 1 on G. Then, as above, Hi(M*(P®L>\;171,M 71))m =0
fori <0if (t; —1) € m, ie,

H{(M.(P))m =0 for i <0 if (t;, — A1) € m.
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Therefore, the vanishing H*(M.(P))m = 0 for i < 0 holds for any maximal ideal
m C ', which implies the desired result.

Proof of Claim (it):

The proof of (ii) is obtained by dualizing the arguments used for proving
(i). Indeed, we get by (6) that Dp, (M. (P)) = M) (DP). Moreover, since DP €
Perv(G, K) if and only if P € Perv(G,K), after replacing P by its dual, it suffices
to show that H*(M, (P)) =0 for all i < 0.

If dimT = 0, then G is an abelian variety, so the assertion follows from Theo-
rem 3.6. For the induction step, let f : G — G’ be the map considered above. The
only possibly non-trivial perverse cohomology sheaves PH!Rf,(P) may appear in
the range ¢ € {0,1} (see, e.g., [12, Corollary 5.2.14(ii), Theorem 5.2.16(ii)]). Since
f is a smooth morphism of relative dimension 1, one has a canonical epimorphism
of perverse sheaves (cf. [3])

(9) P f (PHRAP)) [-1] = £ ("M RAP)) [

So if PHIRfi(P) is non-zero then, since P is simple, the epimorphism (9) is an
isomorphism:
[ (PH'RA(P)) [1] = P.

The desired cohomology vanishing follows in this case from Lemma 4.2(i), by using
the induction hypothesis applied to the perverse sheaf PH! Rp;(P) on G’. On the
other hand, if PH!Rf|(P) is zero, then Rfi(P) is a perverse sheaf on G’. The
desired vanishing then follows as in part (i) by using Lemma 4.1, the induction
hypothesis for the perverse sheaf Rfi(P) on G', and localization. O

Remark 4.4. Our proof of the above Theorem 4.3 follows the strategy employed
for proving Gabber-Loeser’s Theorem 3.4 for perverse sheaves on a complex affine
torus T'. In the case of an abelian variety A, Bhatt-Schnell-Scholze [4] proved The-
orem 3.6 by using the projection formula and Artin’s vanishing theorem on the
universal cover of A, together with duality statements warranted by the compact-
ness of A. In our context, i.e., working with perverse sheaves on a semi-abelian
variety G, since the universal cover of G is still a Stein space, we get by the pro-
jection formula and Artin’s vanishing theorem on the universal cover of G that
HY(M,(P)) = 0 for all i < 0. However, the lack of compactness of G' does not
allow us to translate this vanishing into part (i) of Theorem 4.3. Instead, upon
composing with the natural involution on I'¢ and using the duality formula (6),
this gives an alternative proof of part (é¢) in Theorem 4.3. We leave the details to
the interested reader.

Corollary 4.5. Let P be a K-perverse sheaf on G. Any bounded complex F* of
finitely generated free T'-modules representing M.(P) satisfies Assumption 2.5.

Proof. The assertion follows immediately from statements (i) and (ii) of Theorem
4.3. (]
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Corollary 4.6. Let K be a fired field. If F € PDZ°(G,K), then M,(F) €
DZ%(T¢q).

Proof. Since M, is a functor of triangulated categories, the assertion follows from
Theorem 4.3 and dévissage. O

We can now prove the main result of this section.

Theorem 4.7. Let K be a fized field. For any perverse sheaf P € Perv(G,K), the
cohomology jump loci of P satisfy the following propagation package:

(i) Propagation property:
VTG, P)C - CVTHG,P) CVU(G,P) 2 VG, P) D - 2 VI(G,P).
Furthermore, V{(G,P) =0 if i ¢ [-m — g,g].
(ii) Codimension lower bound: for any i > 0,
codim V¥(G, P) > i.

Proof. We begin by showing that V{(G,P) = 0 for i ¢ [-m — g,g]. Since the
projection map 7 : G — A is an affine morphism of relative dimension m, by [12,
Corollary 5.2.14(ii), Theorem 5.2.16(i)], we have

(10) PH Ry, (P) =0 if ¢ [—m,0].

On the other hand, since A is an irreducible algebraic variety of complex dimension
g and PH R, (P) is a perverse sheaf on A, we have

(11) H*(APH'Rr(P)) =0 if k¢ [—g,9],

e.g., see [12, Proposition 5.2.20]. By the perverse Leray spectral sequence for ,
ie.,

(12) EXY = H*(A,"H'Rr,(P)) = H*(G,P),

and the vanishing properties (10) and (11), it follows readily that H*(G,P) = 0
for i ¢ [-m — g,g]. In order to show that Vi(G,P) = 0 for i ¢ [-m — g,g], we
apply the above reasoning to the K,-perverse sheaf P @k L,, with L, the rank-one
local system associated to any p € SpecT'¢g.

We next notice that, by Remark 2.9, we can represent M. (P) by a bounded
complex of finitely generated free I'g-modules F'*. By Corollary 4.5, F" satisfies
Assumption 2.3. Now, the codimension lower bound (i7) follows from Proposition
2.4 and Remark 3.3 using the fact that I'¢ is a Cohen-Macauley ring (hence the
depth is same as the codimension). t

As an immediate consequence of Theorem 4.7, we get a new proof of the
following known result:

Corollary 4.8. Let K be a fized field. Any perverse sheaf P € Perv(G,K) satisfies:

(i) Generic vanishing: there exists a non-empty Zariski open subset U C
SpecT'¢ such that, for any mazimal ideal p € U, H(G,P ®k L,) = 0
for all i # 0.
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(i) Signed Euler characteristic property:
X(G,P) = 0.
Moreover, the equality holds if and only if V°(G,P) # SpecT'g.
Proof. The generic vanishing of (i) is a direct consequence of Theorem 4.7. In-

deed, by the codimension lower bound, it follows that (J;_, Vi(G, P) has at least
codimension 1 in SpecI'¢. Moreover, the propagation property yields that if p ¢
Uizo Vi{(G,P) then H'(G,P @x L,) = 0 for all i # 0. For such a generic choice of
p € SpecI'g, we have that

X(G,P) = x(G,P ®k L,) = dimg H*(G,P @« L,) > 0.
The last claim in (i¢) follows immediately from the propagation property of The-
orem 4.7. (]

Remark 4.9. An equivalent formulation of the propagation property for co-
homology jump loci of perverse sheaves (Theorem 4.7(i)) is the following. For
P € Perv(G,K), suppose that not all cohomology groups H’ (G, P) are zero. Let
ky := max{j|H’(G,P) # 0} and k_ := min{j|H/ (G, P) # 0}.
Then Theorem 4.7(i) is equivalent to k4 > 0, k— < 0 and
HI(G,P)#0 <= k_<j<k,.

Moreover, if K is a field of characteristic zero and if P is a semi-simple perverse
sheaf on an abelian variety G = A, then the Hard Lefschetz Theorem 3.7 yields
that k_ = —k;. Then by the relative Hard Lefschetz theorem for the Albanese
map of a smooth projective variety, we also recover [39, Corollary 1].

5. SIMPLE C-PERVERSE SHEAVES WITH VANISHING EULER NUMBER

In this section, we investigate simple perverse sheaves with Euler number
zero. Throughout this section, we fix K = C, thus SpecI'g = (C*)™+29.

Definition 5.1. A linear subvariety of SpecT'¢ is a closed subvariety of SpecT'g
of the form:
p-Im(f# : SpecT'¢: — Specl'g)
where f : G — G’ is a surjective homomorphism of semi-abelian varieties with
connected fibers and p € SpecI'¢ is a rank-one character.
Definition 5.2. For any F € D%(G,C), set
VY(G,F):={p € Specl'¢ | H(G,F @c L,) # 0}.

The following important property for V¢(G, F) follows from the proof of [8,
Theorem 10.1.1].

Theorem 5.3 (Structure Theorem). Let G be a complex semi-abelian variety and
let F € D%G,C) be a bounded C-constructible complex on G. Then each V(G, F)
is a finite union of linear subvarieties of Spec .
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We also need the following fact, similar to [15, Proposition 3.4.6].

Proposition 5.4. A constructible complex F € D%(G,C) is the zero object if and
only if M. (F) = 0. In particular, if F € D%(G,C) is nonzero, then V¥(G,F) # 0
for some i € Z.

Proof. We can use the same argument as in the proof of [15, Proposition 3.4.6],
together with our inductive scheme from Theorem 4.3, to reduce the proof to
the case when G = A is an abelian variety. Then the assertion follows from the
Riemann-Hilbert correspondence and the fact that the Fourier-Mukai transform is
an equivalence of categories (see [34]). O

The following theorem provides a unification and generalization to the semi-
abelian context of similar statements from the abelian case (cf. [37, Theorem 2],
[22, Proposition 10.1(a)], [34, Theorem 7.6]) and from the affine torus case (cf. [15,
Theorem 5.1.1]), respectively.

Theorem 5.5. Let G be a complex semi-abelian variety. If P € Perv(G,C) is a
simple perverse sheaf on G with x(G,P) = 0, then there exists a positive dimen-
sional semi-abelian subvariety G” of G, a rank-one C-local system L, on G and a

simple perverse sheaf P’ on G' = G/G" with x(G',P’) # 0, such that

(13 P L, e fPdimG"),

with f: G — G' = G/G" denoting the quotient map. Moreover,
VUG, P)=p~ ' -Im(f# : SpecTq: — SpecT'¢)

is an trreducible linear subvariety.

Proof. Since x(G,P) = 0, Corollary 4.8(ii) yields that V°(G, P) # SpecT'g. Propo-
sition 5.4 and the propagation property in Theorem 4.7 show that V°(G,P) is
non-empty. Assume that V(G, P) has codimension d, and let V be an irreducible
component of VO(G,P) of codimension exactly d. By Theorem 5.3, V is a lin-
ear variety. Without loss of generality, (after a suitable twist) we may assume
that V contains the constant sheaf. Then there exists a map of algebraic groups
f:G — G from G to a semi-abelian variety G’ such that

V= f# (Spec Fgl).

Assume that the semi-abelian variety G” = ker(f) has the affine torus part 7" of
dimension m’" and the abelian variety part A” of dimension g”. Then d = m'' +2g"”
and dim G’ = m" + ¢".

Write f as a composition of an affine map f; : G — G/T" of relative dimen-
sion m' and a proper map fs : G/T" — G/G" of relative dimension ¢g”. By [12,
Corollary 5.2.14(ii) and Theorem 5.2.16(i)], we have

Rf1.(P) € PD>"""(G/T",C)n *D=°(G/T",C).
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By [12, Corollary 5.2.14], using the properness of fs, the t-amplitude of Rfs. is
[—g”,g"]. Hence, we have

Rf.(P) e PD="""=9"(¢'.C)n PD=Y" (&', C).
Thus, the only possibly non-trivial perverse cohomology sheaves PH!Rf.(P) ap-
pears in the range i € [-m” — ¢”, ¢"]. By the perverse hypercohomology spectral
sequence, we have that

"

g
VG REP)C | VTG PHIREP).
j=—m—g"

By Theorem 4.7(ii), this yields VI(G’, Rf.P) # SpecT'¢ for i ¢ [-m" — g",g"].

On the other hand, for any C-coefficient local system L on G’, we have the
projection formula

Rf\P®c L= Rf.(P®c f*L),
which implies that
fFVHG Rf.P)) =V NVI(G,P).

By Theorem 4.3 and Proposition 2.4(7ii), there exist integers a; and ag with
VG, Rf.P) = SpecT'g for i € [ay,as]. So the interval [—m/ — ¢”, "] contains
the interval [a;,as]. However, since the interval [—m” — ¢”, ¢”] has length d and
[a1, as] has length at least d, we get

[_m// _ g”,g/l] — [a17a2].

We next note that V=™"~9" (G, Rf,P) = SpecT¢ if and only if
pH—m"~9"Rf(P)#0 and x(G',PH™ ~9"Rf.(P)) 0.

Indeed, by the perverse hypercohomology spectral sequence, we have that

"

g
v (G REPY | v UG PHIRLLP).
i=—m''—g'"’

Moreover, by Theorem 4.7(i4), V=™ =9" (G’ ,PH' Rf,P) has codimension at least
1 in SpecD¢ for i > —m” — g”. Hence, for V=™"=9" (&', Rf.P) = Spec ¢ the
only possibility is that VO(G',PH~™"~9"Rf,P) = SpecT'¢:. By Corollary 4.8(ii),

this is equivalent to the fact that y(G’,?H " "~9"Rf.(P)) # 0.
Since f is a smooth map of relative dimension m” + ¢”, it follows from [3,
Page 111] that there is a canonical monomorphism of perverse sheaves

(14) (P RE(P)) I + ") > P
Since P is simple, the monomorphism (14) is an isomorphism. So
P = P~ ~9"Rf,(P) € Perv(G,C)

satisfies all properties required in the theorem.
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For any rank-one C-local system L ¢ V, since L|f-1(,) is a non-trivial local
system for any point y € G’, we have (Rf.L), = 0 for any point y € G’. Hence
Rf.L = 0. Therefore,

Rf.(P®c L) = Rf.(f*P'[dim G”] @c L) = P'[dim G ®c Rf.L = 0.

Hence HY(G,P ®c L) = H'(G',Rf.(P ®c L)) = 0 for all i. This shows that
VO(G,P) =V, and hence irreducible. O

Corollary 5.6. If V is an irreducible component of VO(G,P) of codimension d,
then V is also an irreducible component of V{(G,P) exactly fori € [-m" —g",¢"],
where m” and g" are the dimensions of the affine part and, resp., the abelian part
of G”, as introduced in Theorem 5.5. In particular, d = m" + 2g".

Proof. Indeed, in the proof of Theorem 5.5, one gets the equality
[_m// _ g//7g//] — [a17a2]

without making use of the fact that the perverse sheaf P was assumed to be simple.
So the assertion holds for any perverse sheaf. O

Remark 5.7. Assume that G = A is an abelian variety. If V' is an irreducible
component of V°(A, P) of codimension d, the structure theorem shows that d has
to be even and g” = £. So V is an irreducible component of V¥(A4, P) exactly for
d d
i€ [—57 5] Moreover, if V(A,P) has codimension d > 0, then
VYA, P) =VE(G, P) = = VEU2(A,P) £ VEITY2 (4 P).

Similar results for the case of a complex affine torus have been obtained in [24,
Theorem 1.2(iv)].

6. CHARACTERIZATION OF C-PERVERSE SHEAVES

In this section, we use the Structure Theorem 5.3 and more refined codimen-
sion lower bounds for cohomology jumping loci to give a complete characterization
of C-perverse sheaves on semi-abelian varieties. Results in this section generalize
the corresponding results for perverse sheaves on abelian varieties obtained by
Schnell (cf. [34, Theorem 7.4]), as well as the results of Gabber-Loeser for perverse
sheaves on complex affine tori (cf. [15, Theorem 3.4.7]).

Throughout this section we fix K = C. Let G be as before a complex semi-
abelian variety of dimension m 4 g, with T := C[r1(G)] = C[t{?, - ,tfﬁmg].
Here g denotes the complex dimension of the abelian part, and m is the dimension
of the affine torus part.

Let F € D%(G,C) be a bounded constructible complex of C-sheaves on G,
and let V be an irreducible component of V¢(G, F). By the Structure Theorem
5.3, we know that V is linear, and hence there is a surjective homomorphism
f(V) : G = G'(V) of semi-abelian varieties such that, up to a translate, V is
equal to the image of

f(V)# : Spec Lgr(vy — Specl'a.
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Let
1-T'(V)=G V)= AV)=1

be the group extension corresponding to G'(V'), with T"(V') a complex affine torus
and A'(V) a complex abelian variety. Let G”(V) := ker f(V), with T"(V) and
A" (V) denoting the affine torus and, resp., the abelian variety part of G”(V'). To
formulate the results of this section, we introduce the following terminology.

Definition 6.1. In the above notations, we define the semi-abelian dimension of
VI(G,F) by
dimg, V'(G, F) = max{dim G'(V)}

and the semi-abelian codimension of V(G, F) by
codimg, V'(G, F) = dim G — dim,, V'(G, F) = min{dim G"(V)},
where V' runs over all irreducible components of W(_G7 F).
Similarly, we define the abelian dimension of V*(G,F) by
dim, V(G, F) = mvax{dim A (W)},
and its abelian codimension by

codim, V¥ (G, F) = dim A — dim, V'(G, F) = m‘;n{dim A"(V)},

where V' runs over all irreducible components of V(G, F).

Remark 6.2. Let V be a nonempty linear subvariety of SpecT'g.

(1) If G = T is a complex affine torus, then dim, (V) = dim(V'), codim,, (V) =
codim(V), and dim, (V) = codim, (V) = 0, dim, () = —oo, codim, () =
00.

(2) If G = A is a complex abelian variety, then dimg,(V) = dim,(V) =
2 dim(V), codimg, (V) = codim, (V) = £ codim (V).

The first result of this section provides more refined codimension lower bounds
for the cohomology jump loci of C-perverse sheaves on G, as follows.

Proposition 6.3. Let P be a C-perverse sheaf on the semi-abelian variety G.

(1) For any i > 0, we have the following abelian codimension bound:
codim, V(G,P) > i.

Moreover, there exist iy > 0, such that codim, Vi+ (G, P) =i.
(2) For any i <0, we have the following semi-abelian codimension bound:

codimg, V' (G, P) > —i.

Moreover, there exist i <0, such that codimg, V- (G, P) =i_.
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Proof. We first prove the existence of iy and i_. If V(G,P) = SpecI'q is the
whole moduli space, one can take iy = ¢_ = 0. Otherwise, let V' be an irreducible
component of V°(G,P). One can take i, = dim A”(V) and i_ = —dim G"(V),
with A”(V) and G”(V) as in Definition 6.1. Then the desired equalities follow
from Corollary 5.6.

Next, we prove the codimension lower bounds. By induction on the length of
C-perverse sheaves, we may assume that P is simple since the conclusion behaves
well under exact sequences.

We prove the codimension bounds by induction on the dimension of the torus
T.If dimT = 0, then G is an abelian variety, and the assertions are equivalent to
Theorem 3.5. For the induction step we proceed as follows.

Let f : G — G’ be the projection map defined as before, by forgetting the
first coordinate of the affine torus T'. Set

Vi :={t € SpecT'¢ | t1 = A},
which is a codimension-one subtorus of Spec ', and note that
(15) U VA = SpecT¢.
AeC*
The map f : G — G’ induces an embedding on the moduli spaces:
f# :SpecT'e — Speclg,

whose image coincides with V;, i.e., f#(SpecTq/) = V.
If PH 'Rf.(P) # 0, then we get as in the proof of Theorem 4.3(7) an iso-
morphism:

FT(PHTRL(P)) 1] = P

In other words, fixing a splitting G = G’ x C* as topological spaces, we can express
‘P as an external product

P = PH IR (P) X Ce-[1].
Then the Kiinneth formula (see, e.g., [12, Theorem 4.3.14]) yields that

VG, P) = JVHG PHTIRS(P)) x VF(C*, Cc- 1)),
E
where we identify Spec'¢ with SpecI'gs x SpecT'¢c+ by the natural isomorphism
induced by 71 (G) & m1(G’) x 71 (C*). Since
0 if k#—1,0
VH(C*, Ce-[1]) = T
(€, Ce-[1) {{1} if k=—1,0,

we have

(16) VUG, P) = fFV(G ,PH 'RE(P) U fEVTHG PR RE(P))).
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In particular, in this case, VI(G,P) C V;. Since G and G’ have the same abelian
part, for any ¢ > 0 we have that

(17)  codim, VI(G,P) =
min{codimg VY (G',PH ' Rf.(P)), codim, VITH(G' ,PH ' Rf.(P))}.

On the other hand, by the induction hypothesis for the perverse sheaf PH ' Rf, (P)
on G, for any ¢ > 0 we have

(18) codimg VI(G',PH ' Rf.(P)) > i,
and
(19) codim, VY (G, PH ' Rf.(P)) > i + 1.

Therefore, by (17), (18) and (19), we get that for any ¢ > 0,
codim, V'(G,P) > i.
Similarly, by (16), we have
(20) _ ' '
dim,, V¥ (G, P) = max{dims, VI(G',PH ' Rf.(P)),dime VTG, PH ' Rf.(P))}.
By the induction hypothesis for the perverse sheaf PH 'Rf.(P) on G’, for any
1 < 0 we have that

(21) dimg, V(G PH 'Rf.(P)) < dim G’ +1,
and
(22) dimg VITY(G , PH'Rf.(P)) <dim G’ +i+1=dim G + 1.

By (20), (21) and (22), we get that for any ¢ <0,
dim,, V(G,P) < dim G + 1,
and hence
codimg, VI(G, P) > —i.

So far, we proved the codimension lower bounds assuming PH~'Rf,(P) #
0. More generally, if there exists a rank-one C-local system L on G, such that
PHLRf.(P ®@c L) # 0, then one obtains the same codimension lower bounds. In
fact, tensoring with L induces a translation on the cohomology jump loci, and in
particular preserves the (semi-)abelian codimensions.

Assume next that there is no rank-one local system L on G satisfying the
condition PH " Rf.(P ®c L) # 0. For any A € C*, let us choose a rank-one local
system L) whose corresponding point in SpecI'¢ is contained in V.

By the above assumption, PH 1 Rf,(P ®c L) = 0, and hence Rf.(P ®c L))
is a perverse sheaf on G’. By the projection formula, we have that

VG, P ®c L) NV, = f#(VIG', Rf.(P ®c Ly))),
or, equivalently,

VUG, P)N Vi1 = AL fE(V(G, Rf.(P &c Ly))).
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By the induction hypothesis for the perverse sheaf Rf.(P ®c Ly) on G’, we have
that

(23) codim,(VY(G,P) N Vy-1) = codim, V' (G', Rf.(P ®c Ly)) > i
for any ¢ > 0, and
(24) dim,, (VH(G,P) N Vy-1) = dimy, V(G Rf(P ®c Ly)) < dim G’ + i
for any ¢ < 0. We can interpret (24) as saying that the semi-abelian codimension
of VI(G,P) N Vy-1 within Vy-1 is no less than i. Since (23) holds for any A\ € C*,
by (15), we have ‘
codim,(V*(G,P)) > ¢
for any ¢ > 0. Similarly, since (24) holds for any A € C*, by (15), we get that
codim, (V' (G, P)) > —i
for any 7 < 0. O

Remark 6.4. If P is a simple C-perverse sheaf on G with x(G,P) # 0, then it
can be shown by using methods similar to those in Theorem 5.5 that the following
stronger codimension bounds hold:

codim, V{(G,P) > i+ 1, fori >0,
and ‘
codimg, V'(G,P) > —i+1, for i <0.

This generalizes a fact obtained by Schnell in the abelian context, cf. [34, Section
5].
Corollary 6.5. Let F € D%(G,C) be a bounded C-constructible compler on G.

(1) If F € PD=9(@G,C), that is, PHI (F) = 0 for any j > 0, then for any i > 0,

codim, V' (G, F) > i.
(2) If F € PD=%(@G, C), that is, PH’ (F) = 0 for any j < 0, then for any i < 0,
codimyg, Vi(G,]-") > —i.
Proof. Given any rank-one C-local system L on G, notice that
PHI(F ®@c L) = P! (F) @c L.
Therefore, by the perverse cohomology spectral sequence
Ey 7 = H'(G, PH!(F) ®c L) = H'(G, F ®c L),
we get an inclusion
(25) VG, F) c | VTG, PH (F)).
J
If 7 € PD<°(G,C), then
codim, V(G, F) > rjngi](f)lcodima VTG PH (F)) > Ijllglgl(l —J) >4,
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where the second inequality follows from Proposition 6.3 (1). Similarly, if F €
PD=9(@, C), Proposition 6.3 (2) yields that

codim,, VI(G, F) > m>151 codimg, VI (G, PH? (F)) > m>151(] —i)>—i. O
3> 3>

The main result of this section provides a complete description of C-perverse
sheaves on a semi-abelian variety G in terms of their cohomology jump loci, as
follows.

Theorem 6.6. Let F € D2(G,C) be a bounded C-constructible compler on G. We
have:

(a) F € PD=Y(G,C) < codim, V{(G,F) >i for anyi >0,

(b) F € PD2°(G,C) <= codim,, V(G,F) > —i for any i < 0.
Thus, F is a C-perverse sheaf on G if and only if the following two conditions are
satisfied:

(1) codim, V(G,F) > i for anyi >0,

(2) codimg, V{(G, F) > —i for any i < 0.

Proof. (a) The implication = follows from Corollary 6.5. For the converse, let F €
D%(G, C) be a bounded constructible complex satisfying the abelian codimension
bound in nonnegative degrees i > 0. Suppose F ¢ pDS(_)(G, C).

Let 4o be the largest positive integer such that PH* (F) # 0. Then there is a
morphism in D%(G, C),

F = PH™ (F)[—io]
inducing an isomorphism on the ig-th perverse cohomology. Let Fy[1] be the map-
ping cone of the above morphism. Then we have the distinguished triangle in
DY@, C):
F = PH (F)[—io] = Foll] 5.

By tensoring with any rank-one local system L, and considering the associated
cohomology long exact sequence, we get the following inclusion of cohomology
jump loci

(26) VE=io(q, P (F)) c V¥(G, F) UV Y(G, F),

for any k > ig. Since Fy = Pr<%F,, we have by Corollary 6.5, after a shift of
degree, that

(27) codim, VFTH(G, Fo) > k —ig + 2,

for any k > ig. Since PH (F) is a nonzero perverse sheaf, by Proposition 6.3 (1),
there exists ky > ig such that

codim, V* = (G, PH (F)) = ko — io.

Plugging in k = kg in (26) and (27), we get that codim, V* (G, F) < ko —ig < ko,
thus contradicting the hypothesis.
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(b) The implication = follows from Corollary 6.5. For the converse, let
F € Db, C) be a bounded constructible complex satisfying the semi-abelian
codimension bound in nonpositive degrees i < 0. Suppose F ¢ ?D=°(G,C).

Let i1 be the smallest negative integer such that PH* (F) # 0. Then there is
a morphism in D%(G,C),

PHY(F)[—ir] = F

inducing an isomorphism on the i;-th perverse cohomology. Let F; be the map-
ping cone of the above morphism. By turning the resulting triangle, we get a
distinguished triangle in D%(G, C):

(28) Fil-1] = PHY(F)[—i] » F 5

By using the same argument as above, we have an inclusion
(29) VETI(G, PHIY(F)) < VRG, F)u VT H(G, R,
and inequality

(30) codimg, VF7H(G, F1) > =k +i1 + 2,

for any k < iy. Since PH" (F) is a nonzero perverse sheaf, by Proposition 6.3 (2),
there exists k1 < 7; such that

codimg, V’“*“(G, PHU(F)) =iy — k.

Plugging in k = k; in (29) and (30), we get that codimg, V1 (G, F) < iy — ky <
—ky. This contradicts the hypothesis. O

Remark 6.7. In general, one can not construct a t-structure on D, (T'g) as in [1]
such that the Mellin transformation M, : D%(G,C) — D% , (T'¢) is t-exact. In fact,
let A be an abelian variety of dimension two, let T' = (C*)* be the affine torus and
let G = T x A be the splitting semi-abelian variety. Pulling back via the projections,
we can consider SpecI'4 and Spec ' as linear subvarieties of SpecI'. According
to [1] (see also [19]), the existence of such a t-structure on D2 , (I'g) is equivalent
to the existence of a monotone and comonotone perversity function p extending
—dim, on SpecT'¢ (regarded as spectrum instead of maximum spectrum). By
using Bertini’s theorem repeatedly, we can construct a 5-dimensional irreducible
subvariety Z containing both SpecI'r and SpecI' 4. Since dim, SpecI'y = 2 and
dim, Spec 't = 0, the monotonicity of p implies that

p(xz) < p(zspecr,) = — dim, SpecT 4 = —2
and the comonotonicity of p implies that
p(rz) > p(zspecry) — 1 = —dim, SpecT'p — 1 = —1

where 7, Zspecr, and Tspecr, are the generic points of Z, SpecI'y and Spec'r
as subschemes of SpecT'g, respectively. Such a perversity function can not exist.

The following consequence of Theorem 6.6 complements the results of Gabber-
Loeser [15] (see Theorem 3.4) on characterization of perverse sheaves on complex
affine tori.



28 YONGQIANG LIU, LAURENTIU MAXIM, AND BOTONG WANG

Corollary 6.8. Suppose G =T is a complex affine torus. A constructible complex
F € Db(T,C) is perverse on T if and only if the following conditions hold.

(1) For anyi> 0, V{(T,F) = 0.

(2) For any i <0, codim V{(T,F) > —i.
Remark 6.9. Ttem (1) of Corollary 6.8 is equivalent to Artin’s vanishing theorem
for perverse sheaves on T (see, e.g., [12, Corollary 5.2.18]).

Corollary 6.10. Let0 — P’ — P — P” — 0 be a short exact sequence of perverse
sheaves in Perv(G,C). Then

VG, P) =V(G,P") UV (G, P").
Proof. By tensoring the given short exact sequence of perverse sheaves with any

rank one local system L, and considering the associated cohomology long exact
sequence, we have the following inclusion of cohomology jump loci

VG, P) c VUG, PHYuV (G, P").

On the other hand, let V be an irreducible component of V° (G, P )UVY(G, P")
such that V' ¢ V°(G, P). Suppose that V is an irreducible component of V(G, P’).
By Proposition 6.3 (2), there exists i; < 0 such that

(31) codimg, V' (G, P') = —iy.

After turning once the distinguished triangle associated to the given short exact
sequence of perverse sheaves, we have that

(32) VG, P) C VG, P)UVETHG, PY).

By Proposition 6.3, we get that codims, V-G, P") > 1—i; > —iy, thus by (31)
and (32) we have that V.cpn (G, P). The propagation property of Theorem 4.7
then yields that V' C Vi1 (G, P) C V°(G, P), which contradicts our hypothesis. If
V is an irreducible component of V°(G,P”), the claim follows in a similar way by
using abelian codimension bound of Proposition 6.3. O

We conclude this section with the following result, which will be needed in
the applications discussed in the next section.

Proposition 6.11. Let F € D%(G,C) be a C-constructible complex on G. Then
we have the equality

Uvia r) =V, 1 (F)).
i J
Proof. As in the proof of Corollary 6.5, the perverse cohomology spectral sequence
By = H'7(G, PH/ (F) ®c L) = H'(G, F ®c L),
yields an inclusion

Uviern cU | Uvie m# @) | = UV, m#i(r)),

J
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where the last equality follows from the propagation property of Theorem 4.7.
On the other hand, let V' be an irreducible component of (J; VO(G, PH/(F)).

Let jo € Z be largest such that V is an irreducible component of VO(G, PH% (F)).
Let k = codim, V' be the abelian codimension of V. By Corollary 5.6, we have
V C VG, PHI(F)).
By the definition of jy and the propagation property of Theorem 4.7, we have
(33) V ¢ V(G PH(F))
for any i and j > jo. Furthermore, by the abelian codimension bound in Theorem
6.6,
(34) V ¢ VUG, PH (F))
for any j and ¢ > k. Now, let L be a C-local system on G corresponding to a
general point in V. By (33) and (34), if j > jo or ¢ > k, then
HY(G,"H(F)®c L) = 0.
Therefore, the above spectral sequence satisfies
H*(G,"H"(F) ®c L) = E7° = ERJo £ 0.
Thus, V C V(G F) |, VI(G, F), and hence
VoG, () c| VG, ). O

J
7. APPLICATIONS

In this section, we present applications of our main results to the cohomology
jump loci of quasi-projective manifolds, to the topology of the Albanese map, and
to the study of abelian duality spaces.

7.1. Cohomology jump loci of quasi-projective manifold. In this subsec-
tion, we give some applications of Theorem 4.7 and Theorem 6.6 to the study of
cohomology jump loci of smooth complex quasi-projective varieties.

Let X be a smooth connected complex quasi-projective variety. The character
variety Char(X) is the connected component of Hom(m;(X),C*) containing the
identity. Char(X) is isomorphic to (C*)**(X) and it is identified with the maximal
spectrum Spec C[H; ;(X,Z)] of the group ring C[H; ;(X,Z)] of the free part of
H(X,Z).

Let alb : X — Alb(X) be the Albanese map associated to X (see e.g.
[18]). The Albanese variety Alb(X) is a semi-abelian variety and the Albanese
map alb induces an isomorphism between the free abelian part of H;(X,Z) and
H,(Alb(X),Z). Therefore, Char(X) = Char(Alb(X)).

Definition 7.1. The cohomology jump loci of X are defined as:
(35) Vi(X) = {p € Char(X) | H'(X, L,) # 0},

where L, is as before the rank-one C-local system on X associated to p.
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Note that V°(X) = {1}, where 1 denotes the trivial character.

Corollary 7.2. Let X be a smooth quasi-projective variety of complex dimension
n. Assume that PH?(Ralb, Cx[n]) = 0 for j ¢ [b,c]. Then the cohomology jump
loci VI(X) have the following properties:

(1) Propagation property:
V(X)) 2 VX)) 2 V(X)) = {1
yrte(x) D yrterl(X) D ... D VY2(X).
(2) Codimension lower bound: for any i > 0,
codimg, V"'H’_i(X) >4 and codim, V"+C+i(X) > g,

(3) For generic p € Char(X) and all i ¢ [n+b,n + ¢,
H'(X,L,) =0.

(4) b;(X) >0 for any i € [0,n + b, and b1(X) > n +b.

Proof. The second and third claims follow directly from Theorem 6.6. The first
part of the propagation property follows from Corollary 4.6 and Remark 2.8. The
second part of the propagation property follows from an analogous dual argument.

The fact that b;(X) > 0 for any ¢ € [0,n + b] follows from the propa-
gation property, since {1} € V°(X). The codimension lower bound yields that
codimg, VO (X) = by(X) > n + b. Therefore, by (X) >k > n + b. O

Remark 7.3. Assume that the Albanese map alb : X — Alb(X) is proper. Let
r(alb) = dim(X X op(x) X) — dim X

be the defect of semi-smallness of alb. Then, by the decomposition theorem [3], in
Corollary 7.2 we have that [b, ¢c] = [-r(alb),r(alb)].

One particular interesting case is when alb is proper and semi-small, in which
case r(alb) = 0. It was shown in [23, Remark 1.3] that X admits a proper semi-
small map f: X — G to some complex semi-abelian variety G if and only if the
Albanese map alb : X — Alb(X) is proper and semi-small. It is sometimes easier
to construct a proper semi-small map f to a complex semi-abelian variety than
to check directly if alb is proper and semi-small, e.g., see Examples 7.12 and 7.13
below.

7.2. Topology of the Albanese map. In this subsection, we give some appli-
cations of Theorem 4.7 and Theorem 5.5 to the topological study of the Albanese
map alb : X — Alb(X) corresponding to a smooth complex quasi-projective vari-
ety X.

Corollary 7.4. Let X be an n-dimensional smooth complex quasi-projective vari-
ety. If UZO V(X)) contains an isolated point, then alb : X — Alb(X) is dominant.
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Proof. Set F := Ralb, Cx[n], which is a bounded C-constructible complex on
Alb(X). By the projection formula, we have

UVix) =V (ab(x), F).
Furthermore, Proposition 6.11 shows that

UViam(x), F) = JV(AIb(X), PH/ (F)).

J

Since, by our assumption, U?go Vi(X) contains an isolated point, this isolated
point is contained in VO(Alb(X), PH7(F)), for some integer jo.

Corollary 6.10 yields that there exists at least one simple perverse sheaf P on
Alb(X) such that P is a decomposition factor of PH7(F) and V'(Alb(X),P) is
exactly this isolated point. Then it follows from Theorem 5.5 that P is a rank-one
C-local system on Alb(X). So alb is dominant. O

Corollary 7.5. Let X be an n-dimensional smooth complex quasi-projective vari-
ety with Albanese map alb : X — Alb(X). If U?go Vi(X) consists of finitely many
points, then R'alb, Cx is a C-local system on Alb(X) for every i. If, moreover,
alb is proper, then Ralb, Cx|[n] is a direct sum of shifted rank-one C-local system
on Alb(X).

Proof. Set F := Ralb,Cx[n]. As in the proof of Corollary 7.4, for each integer
7, VO(AIb(X), PHI(F)) is either empty or consists of finitely many points. Since
every perverse sheaf is the extension of finitely many simple perverse sheaves, we
have by Theorem 5.5 and Corollary 6.10 that PH7 (F) is a shift of a local system on
Alb(X) for every j. Thus, R*alb, Cx = H'~"(F) is a C-local system on Alb(X)
for every i (see, e.g., [26, Proposition 4.3]).

For the last assertion, we use the decomposition theorem [3] which yields
that Ralb, Cx|[n] is a direct sum of (shifted) simple perverse sheaves. As above,
Theorem 5.5 implies that each of these simple perverse sheaves is (up to a shift) a
rank-one C-local system on Alb(X). O

Corollary 7.6. Let X be a connected smooth complex quasi-projective variety of
dimension n, with proper and semi-small Albanese map alb : X — Alb(X). Then
V(X)) consists of finitely many points if, and only if, alb is an isomorphism.

Proof. The “if” part is obvious. We prove the “only if” part. Since alb : X —
Alb(X) is proper and semi-small, Ralb, Cx[n] is a perverse sheaf on Alb(X). By
Corollary 7.2(1) we have

Uvix) =vx).
=0

If V*(X) consists of finitely many points, then by Corollary 7.5 we have that
R"alb, Cx is a finite direct sum of rank-one C-local systems for every i. Since
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Ralb, Cx|[n] is a perverse sheaf on Alb(X), R*alb, Cx = 0 unless i = 0. Further-
more, Corollary 5.6 yields that V°(X) = V*(X). But V°(X) consists of only one
point, the constant sheaf. This implies that Ralb, Cx = (Cfﬁa( x) @ finite direct
sum of the constant sheaf on Alb(X). Since X is connected,

C = H°(X,Cx) = H°(AIb(X), Ralb, Cx) = CP*,

which means that ¥ = 1. Since Ralb,Cx = (Cflkb(X)? all fibers of alb are zero-
dimensional. In other words, alb is quasi-finite. A proper quasi-finite map is finite.
Since k = 1, the Albanese map alb : X — Alb(X) is a finite morphism of degree

one, that is, an isomorphism. O

The following generalization of [2, Corollary 2.6] gives a topological charac-
terization of semi-abelian varieties.

Proposition 7.7. Let X be a smooth quasi-projective variety with proper Albanese
map (e.g., X is projective), and assume that X is homotopy equivalent to a torus.
Then X is isomorphic to a semi-abelian variety.

Proof. Since X is homotopy equivalent to a torus, | J,~, V*(X) = {1}. By Corollary
7.5, Ralb, Cy is a direct sum of shifted rank-one constant sheaves on Alb(X).
Since X and Alb(X) are both homotopy equivalent to tori, and since by (X) =
b1(Alb(X)), we have that b;(X) = b;(Alb(X)) for any i. Therefore, Ralb, Cx =
Calb(x)- Now, the same argument as in Corollary 7.6 shows that alb : X — Alb(X)
is an isomorphism. O

7.3. Abelian duality spaces. Let us recall the definition of (partial) abelian
duality spaces from [24], see also [11].

Let X be a connected finite CW complex, and denote 71(X) by 7. Let ¢ :
7 — 7 be a non-trivial homomorphism to an abelian group #’. There is a canonical
Z[r']-local coefficient system L4 on X, whose monodromy action is given by the

composition of % n' with the natural multiplication 7’ x Z[r'] — Z[r'].
Definition 7.8. We call X a partially abelian duality space of dimension n with
respect to ¢ : m — 7', if the following two conditions are satisfied:

(a) HY(X,Z[r"]) =0 for i # n,
(b) H™(X,Z[r']) is a (non-zero) torsion-free Z-module.

If 7/ = 7% = H,(X,Z) and ¢ is the abelianization map, then a finite connected
CW complex X satisfying (a) and (b) is called an abelian duality space of dimension
n, see [11].

Remark 7.9. There is a canonical Z[7']-module isomorphism
H'(X,Z[r'"]) = H'(X, Ly),

for any 1.



PERVERSE SHEAVES ON SEMI-ABELIAN VARIETIES 33

Examples of (partially) abelian duality spaces where constructed in [24, The-
orem 4.11] via algebraic maps to complex affine tori. The following two results
provide generalizations of [24, Theorem 4.11] to the semi-abelian setting.

Theorem 7.10. Let X be an n-dimensional smooth complex quasi-projective va-
riety, and let f : X — G be an algebraic map to a semi-abelian variety G. Assume
that X is homotopy equivalent to an n-dimensional CW complex (e.g., X is affine).
If Rf.Kx[n] € PD=°(G,K) for any field K (e.g., if f is quasi-finite), then X is a
partially abelian duality space of dimension n with respect to fi : m(X) = 71 (G).

Proof. We first show that for any field K, the value of the corresponding Mellin
transformation on F := Rf.Kx[n] has nonzero cohomology only in degree zero.
First, by Corollary 4.6, we have that

(36) HY(M,(F)) =0, fori<0.
Secondly,
Hi (M, (F)) =2 H™(G, Lg @k Rf.Kx) = HT™ (X, f*Lg),

where the last isomorphism follows by the projection formula (since L is a local
system). Finally, since X has the homotopy type of an n-dimesional CW-complex,
and f*Lg is a local system on X, we have that H™ (X, f*Lg) = 0 for i > 0.
Hence,

(37) HY(M.(F)) =0, fori>0.
Altogether,
HY (M. (F)) =0, for i #0.

The desired result follows now by using the same argument as in [24, Theorem
4.11](1). O

Let us now specialize to the case when G = Alb(X) is the Albanese variety
of X, and f = alb is the Albanese map.

Theorem 7.11. Let X be an n-dimensional smooth complex quasi-projective va-
riety, which is homotopy equivalent to an n-dimensional CW complez (e.g., X is
affine). Suppose the Albanese map alb is proper and semi-small, or alb is quasi-
finite. Then X is an abelian duality space of dimension n.

Proof. The assumptions on alb imply that Ralb, L[n| is a perverse sheaf for any
local system L over any field K. By the arguments in the proof of [24, Theorem
4.11], it suffices to show that M, (Ralb, L[n]) has nonzero cohomology only in
degree zero. The assertion follows exactly as in the proof of Theorem 7.10. O

Example 7.12. Let X be an n-dimensional very affine manifold, i.e., a smooth
closed subvariety of a complex affine torus T = (C*)™ (e.g., the complement
of an essential hyperplane arrangement or of a toric arrangement). The closed
embedding ¢ : X < T is a proper semi-small map, and hence alb : X — Alb(X) is
also proper and semi-small. Since X is also affine, we get by Theorem 7.11 that X
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is an abelian duality space of dimension n. (This example generalizes [24, Example
5.1].)

Example 7.13. Let Y be a smooth complex projective variety, and let £ be a
very ample line bundle on Y. Consider an N-dimensional sub-linear system |F| of
|£| such that E is base point free over Y. Then a basis {sg, s1, - , sy} of E gives
a well-defined morphism

Qip 1Y — CPY.

Each {s, = 0} defines a hypersurface V; in Y. In particular, ﬂfio V; = 0. Then
| is a finite morphism; for a proof, see [24, Example 5.4]. Taking the restriction

f of ojg over X =Y\ Uﬁio Vi, we get a map

= (81’527... ’$N> 5X—>T=((C*)N
S0 So S0

which is finite, hence proper and semi-small. As discussed in Remark 7.3, this

implies that the albanese map alb is also proper and semi-small. Theorem 7.11

yields that X is an abelian duality space.

Remark 7.14. Example 7.13 above extends [24, Example 5.4], where the first
Betti number of Y was required to vanish. If all hypersurfaces V; are smooth and
they intersect locally like hyperplanes, then the above example is a special case of
[10, Theorem 1.1]. However, we do not need any assumption on the singularities
of the V;’s and their intersections.

Example 7.15. It is shown in [10, 11] that the complement of an elliptic ar-
rangement is an abelian duality space. This fact also follows from Theorem 7.11
as we shall now indicate. Let E be an elliptic curve, and let A be an essential
elliptic arrangement in E™ with complement X := E"™ \ A. Then X is a com-
plex n-dimensional affine variety. By the universal property of the Albanese map,
the natural embedding X < E™ factorizes through alb : X — Alb(X). Hence
the Albanese map alb : X — Alb(X) is also an embedding (hence, in particular,
quasi-finite). So Theorem 7.11 applies to show that X is an abelian duality space
of dimension n.

The affine condition is a sufficient but not a necessary condition for an n-
dimensional smooth complex quasi-projective variety to be homotopy equivalent
to a finite CW-complex of dimension n. The following is a simple example of an
n-dimensional smooth complex quasi-projective variety which is an abelian duality
space of dimension n, but which is not affine.

Example 7.16. Let X be the blowup of (C*)? at a point. Then X is an abelian
duality space of dimension 2. Indeed, the Albanese map is the blowdown map
X — (C*)2, which is proper and semismall. Moreover, X is homotopy equivalent
to the 2-dimensional CW-complex T2 V S2, where T? = S x S! is the real 2-
dimensional torus. Thus, X is an abelian duality space by Theorem 7.11. However,
X is not affine because it contains a closed subvariety CP!.
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If an n-dimensional smooth complex quasi-projective variety X is an abelian
duality space and alb : X — Alb(X) is proper, then alb is semi-small. Indeed,
by using the decomposition theorem and the relative hard Lefschetz theorem, one
can readily see that Ralb, Cx[n] is a perverse sheaf. We conjecture that, in some
sense, the converse of Theorem 7.11 is also true.

Conjecture 7.17. Let X be an n-dimensional smooth complex quasi-projective
variety with proper Albanese map alb : X — Alb(X). Then X is an abelian duality
space of dimension n if and only if alb is semi-small and X is homotopy equivalent
to a finite n-dimensional CW complez.
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