Geometry and topology of external and symmetric products of varieties

LAURENTIU MAXIM (UW-Madison) joint with **J. Schürmann** (Münster)

Laurentiu Maxim

External and symmetric products, configuration spaces, Hilbert schemes,...

Let X be a quasi-projective \mathbb{C} -variety. To X, one can associate:

• $X^n := \overbrace{X \times \cdots \times X}^{n \text{ times}}$, the *n*-th external product, with the natural \sum_{n} -action.

- $S^n X := X^n / \Sigma_n$, the *n*-th symmetric product with projection map $\pi_n : X^n \to S^n X$.
- $F^n X := \{(x_1, x_2, ..., x_n) \in X^n \mid x_i \neq x_j \text{ for } i \neq j\}$, the configuration space of *ordered n*-tuples of distinct points in X.
- CⁿX := FⁿX/Σ_n be the configuration space of unordered n-tuples of distinct points in X.
- $Hilb^n X$, the *n*-th Hilbert scheme of points on X.
- • • • •

Understanding the geometry and topology of these new spaces (moduli spaces of objects) associated to X, brings in exchange valuable information about the space X itself.

- If X is a smooth complex projective curve, $\{S^nX\}_n$ are used for studying the Jacobian variety of X (Macdonald).
- If X is a smooth complex algebraic surface, SⁿX is used to understand the topology of the *n*-th Hilbert scheme HilbⁿX of X (Cheah, Göttsche-Soergel)
- If X is a smooth complex algebraic surface, the BKR-correspondence suggests that the *n*-th Hilbert scheme HilbⁿX can be understood via a Σ_n-equivariant study of Xⁿ.

Basic Problem: How does one compute invariants $\mathcal{I}(-)$ of the new spaces associated to X, e.g., $\mathcal{I}(S^nX)$? **Standard approach**:

• Consider the generating series

$$S_{\mathcal{I}}(X) := \sum_{n \ge 0} \mathcal{I}(S^n X) \cdot t^n,$$

provided $\mathcal{I}(S^n X)$ can be defined for all *n*.

- Goal: calculate $S_{\mathcal{I}}(X)$ only in terms of invariants of X.
- Then $\mathcal{I}(S^nX)$ is the coefficient of t^n in the resulting expression in invariants of X.

Classically, the most studied are the symmetric products S^nX , configuration spaces C^nX , and Hilbert schemes $Hilb^nX$ (e.g., by Macdonald, Moonen, Cheah, Götsche, Getzler, Totaro, etc.)

Poincaré polynomial and Euler-Poincaré characteristic

<u>Macdonald</u> ('62): Let X be compact triangulated space with Betti numbers $b_k(X) := \dim H^k(X, \mathbb{Q})$, Poincaré polynomial

$$P(X)(z) := \sum_{k\geq 0} b_k(X) \cdot (-z)^k$$

and Euler characteristic $\chi(X) = P(X)(1)$. Then:

$$\sum_{n\geq 0} P(S^n X)(z) \cdot t^n = \exp\left(\sum_{r\geq 1} P(X)(z^r) \cdot \frac{t^r}{r}\right)$$
$$\sum_{n\geq 0} \chi(S^n X) \cdot t^n = \exp\left(\sum_{r\geq 1} \chi(X) \cdot \frac{t^r}{r}\right) = (1-t)^{-\chi(X)}$$

<u>Moonen</u> ('78): if X is a complex projective variety, and

$$\mathcal{I}(X) = \chi_{a}(X) := \sum_{k \ge 0} (-1)^{k} \cdot \dim H^{k}(X, \mathcal{O}_{X})$$

is the arithmetic genus of X, then

$$\sum_{n\geq 0} \chi_{a}(S^{n}X) \cdot t^{n} = \exp\left(\sum_{r\geq 1} \chi_{a}(X) \cdot \frac{t^{r}}{r}\right) = (1-t)^{-\chi_{a}(X)}$$

<u>Hirzebruch-Zagier</u> ('70): if X is a closed oriented manifold,

$$\sum_{n\geq 0} \sigma(S^n X) \cdot t^n = \frac{(1+t)^{\frac{\sigma(X)-\chi(X)}{2}}}{(1-t)^{\frac{\sigma(X)+\chi(X)}{2}}},$$

for $\mathcal{I} = \sigma$ the signature of a compact rational homology manifold.

<u>Cheah</u> ('96): If X is a complex quasi-projective variety, and $h_{(c)}^{p,q,k}(X) := h^{p,q}(H_{(c)}^k(X, \mathbb{Q})) := \dim_{\mathbb{C}} Gr_F^p Gr_{p+q}^W H_{(c)}^k(X, \mathbb{C})$

are the Hodge numbers of Deligne's mHs on $H^*_{(c)}(X; \mathbb{Q})$, with

$$h_{(c)}(X)(y,x,z) := \sum_{p,q,k\geq 0} h_{(c)}^{p,q,k}(X) \cdot y^p x^q (-z)^k,$$

then:

$$\sum_{n\geq 0} h_{(c)}(S^n X)(y, x, z) \cdot t^n = \exp\big(\sum_{r\geq 1} h_{(c)}(X)(y^r, x^r, z^r) \cdot \frac{t^r}{r}\big)$$

- Our approach (inspired by the BKR-correspondence) derives many of these classical results (and more) as consequences of the Σ_n-equivariant study of external products Xⁿ.
- More generally, we allow arbitrary coefficients on X, e.g., to also derive information about intersection homology invariants.

We start with coefficients $\mathcal{F} \in A(X)$, where A(X) is one of the following:

- D^b_c(X) = bounded derived category of constructible sheaf complexes of C-vector spaces (e.g., F = C_X, IC_X).
- $D^b_{coh}(X)$ = bounded derived category of complexes of \mathcal{O}_X -modules with coherent cohomology, if X projective (e.g., $\mathcal{F} = \mathcal{O}_X$).
- $D^{b}MHM(X)$ = bounded derived category of algebraic mixed Hodge modules on X (e.g., $\mathcal{F} = \mathbb{Q}_{X}^{H}, IC_{X}^{H}$).

For $\mathcal{F} \in A(X)$, $H_{(c)}^k(X, \mathcal{F})$ is a *finite dimensional* \mathbb{C} -vector space (or a \mathbb{Q} -mixed Hodge structure if $A(X) = D^b MHM(X)$). Let $b_{(c)}^k(X, \mathcal{F}) := \dim_{\mathbb{C}} H_{(c)}^k(X, \mathcal{F})$ be the *k*-th Betti number of \mathcal{F} , with corresponding generating Poincaré polynomial

$${\mathcal P}_{(c)}(X,{\mathcal F})(z):=\sum_k b^k_{(c)}(X,{\mathcal F})\cdot (-z)^k\in {\mathbb Z}[z^{\pm 1}].$$

For $\mathcal{F} \in D^b \mathsf{MHM}(X)$, let

$$h^{p,q,k}_{(c)}(X,\mathcal{F}) := h^{p,q}(H^k_{(c)}(X,\mathcal{F})) := \dim_{\mathbb{C}} Gr^p_F Gr^W_{p+q} H^k_{(c)}(X,\mathcal{F})$$

be the mixed Hodge numbers of $\mathcal F,$ with generating mixed Hodge polynomial

$$h_{(c)}(X,\mathcal{F})(y,x,z) := \sum_{p,q,k} h_{(c)}^{p,q,k}(X,\mathcal{F}) \cdot y^{p} x^{q} (-z)^{k} \in \mathbb{Z}[y^{\pm 1}, x^{\pm 1}, z^{\pm 1}]$$

For simplicity, focus here on Poincaré-type identities, but similar results hold in the mixed Hodge context if $A(X) = D^b MHM(X)$.

Cohomology representations of external products

To any $\mathcal{F} \in A(X)$, associate the external product $\mathcal{F}^{\boxtimes n} \in A(X^n)$, with its induced Σ_n -action. There is a Σ_n -equivariant Künneth isomorphism of \mathbb{C} -vector spaces (or \mathbb{Q} -mixed Hodge structures if $A(X) = D^b \mathsf{MHM}(X)$):

$$H^*_{(c)}(X^n,\mathcal{F}^{\boxtimes n})\simeq H^*_{(c)}(X,\mathcal{F})^{\otimes n}.$$

More generally, if $V \in Rep_{\mathbb{C}}(\Sigma_n)$, get twisted coefficients $V \otimes \mathcal{F}^{\boxtimes n} \in A(X^n)$ with the diagonal Σ_n -action, and a Σ_n -equivariant Künneth isomorphism (of mixed Hodge structures):

$$H^*_{(c)}(X^n, V \otimes \mathcal{F}^{\boxtimes n}) \simeq V \otimes H^*_{(c)}(X, \mathcal{F})^{\otimes n}.$$

In particular, for any $k \in \mathbb{Z}$:

$$H^k_{(c)}(X^n, \mathcal{F}^{\boxtimes n}) \ , \ H^k_{(c)}(X^n, V \otimes \mathcal{F}^{\boxtimes n}) \in Rep_{\mathbb{C}}(\Sigma_n) \stackrel{char}{\hookrightarrow} C(\Sigma_n)$$

Define the generating Poincaré polynomial of characters in $C(\Sigma_n) \otimes \mathbb{Z}[z^{\pm 1}]$ by:

$$char ig(H^*_{(c)}(X^n,V\otimes \mathcal{F}^{\boxtimes n})ig) := \sum_k char ig(H^k_{(c)}(X^n,V\otimes \mathcal{F}^{\boxtimes n})ig)\cdot (-z)^k$$

Goal: Compute $char(H^*_{(c)}(X^n, V \otimes \mathcal{F}^{\boxtimes n}))$ in terms of invariants of (X, \mathcal{F}) and V, with $\mathcal{F} \in A(X)$ and $V \in Rep_{\mathbb{C}}(\Sigma_n)$. **Approach:**

- compute the generating series $\sum_{n\geq 0} char(H^*_{(c)}(X^n, \mathcal{F}^{\boxtimes n})) \cdot t^n$
- identify the coefficient of tⁿ
- twist by V and use multiplicativity of characters.

After composing with the Frobenius character homomorphism

$$ch_F: C(\Sigma)\otimes \mathbb{Q}:=\bigoplus_n C(\Sigma_n)\otimes \mathbb{Q} \xrightarrow{\simeq} \mathbb{Q}[p_i, i \geq 1]$$

to the graded ring of \mathbb{Q} -valued symmetric functions in infinitely many variables x_m ($m \in \mathbb{N}$), with $p_i := \sum_m x_m^i$ the *i*-th power sum function, the generating series $\sum_{n\geq 0} char(H^*_{(c)}(X^n, \mathcal{F}^{\boxtimes n})) \cdot t^n$ can be regarded as an element in the \mathbb{Q} -algebra $\mathbb{Q}[p_i, i \geq 1, z^{\pm 1}][[t]]$.

Theorem A. (M.-Schürmann)

(a) For $\mathcal{F} \in A(X)$, the following generating series identity holds in the \mathbb{Q} -algebra $\mathbb{Q}[p_i, i \ge 1, z^{\pm 1}][[t]]$:

$$\sum_{n\geq 0} char(H^*_{(c)}(X^n, \mathcal{F}^{\boxtimes n})) \cdot t^n = \exp\left(\sum_{r\geq 1} p_r \cdot P_{(c)}(X, \mathcal{F})(z^r) \cdot \frac{t^r}{r}\right)$$

(b) For $V \in Rep_{\mathbb{C}}(\Sigma_n)$ and $\mathcal{F} \in A(X)$, the following identity holds in the \mathbb{Q} -algebra $\mathbb{Q}[p_i, i \ge 1, z^{\pm 1}]$:

$$char(H^*_{(c)}(X^n, V \otimes \mathcal{F}^{\boxtimes n})) = \sum_{\lambda \dashv n} \frac{p_\lambda}{z_\lambda} \chi_\lambda(V) \cdot \prod_{r \ge 1} \left(P_{(c)}(X; \mathcal{F})(z^r) \right)^{k_r},$$

where for a partition $\lambda = (k_1, k_2, \dots)$ of n (i.e., $\sum_{r \ge 1} r \cdot k_r = n$) corresponding to a conjugacy class of an element $\sigma \in \Sigma_n$, we set: $z_{\lambda} := \prod_{r \ge 1} r^{k_r} \cdot k_r!$, $\chi_{\lambda}(V) := trace_{\sigma}(V)$, and $p_{\lambda} := \prod_{r \ge 1} p_r^{k_r}$.

$$\sum_{n\geq 0} char(H^*_{(c)}(X^n, \mathcal{F}^{\boxtimes n})) \cdot t^n = \exp\left(\sum_{r\geq 1} p_r \cdot P_{(c)}(X, \mathcal{F})(z^r) \cdot \frac{t^r}{r}\right)$$

$$char(H^*_{(c)}(X^n, V \otimes \mathcal{F}^{\boxtimes n})) = \sum_{\lambda \dashv n} \frac{p_\lambda}{z_\lambda} \chi_\lambda(V) \cdot \prod_{r \ge 1} \left(P_{(c)}(X; \mathcal{F})(z^r) \right)^{k_r}$$

We can specialize the above results for:

- special choices of the variable z (e.g., for z = 1 get Euler characteristic type formulae).
- special choices of coefficients $\mathcal{F} \in A(X)$.
- special choices of the Frobenius parameters p_r .
- special choices of the representation $V \in Rep_{\mathbb{C}}(\Sigma_n)$.

If $p_r = 1$ for all r, the effect is to take the \sum_{n} -invariant part in the Künneth formula, i.e., to compute the Betti (or mixed Hodge) numbers of

$$H^*_{(c)}(X^n,V\otimes \mathcal{F}^{oxtimes})^{\Sigma_n}\simeq H^*_{(c)}(S^nX,S_V(\mathcal{F}))$$

where

$$S_V(\mathcal{F}) := \left(\pi_{n*}(V \otimes \mathcal{F}^{\boxtimes})\right)^{\Sigma_n}$$

is the Schur power of \mathcal{F} with respect to $V \in Rep_{\mathbb{C}}(\Sigma_n)$. These Schur-type objects $S_V(\mathcal{F})$ generalize the symmetric powers $S^n\mathcal{F}$ and alternating powers $C^n\mathcal{F}$ of \mathcal{F} , which correspond to the *trivial* and resp. *sign* representation.

- if $\mathcal{F} = \mathbb{C}_X \in D^b_c(X)$, then $S^n \mathbb{C}_X = \mathbb{C}_{S^n X}$
- if $\mathcal{F} = IC'_X := IC_X[-\dim X] \in D^b_c(X)$, then $S^n IC'_X = IC'_{S^n X}$
- if $\mathcal{F} = \mathcal{O}_X \in D^b_{coh}(X)$, then $S^n \mathcal{O}_X = \mathcal{O}_{S^n X}$
- if $V = V_{\mu}$ is the irred rep of Σ_n corresponding to the partition μ of *n*, then $S_{V_{\mu}}(IC'_X) \cong IC'_{S^nX}(V_{\mu})$

Special cases of Thm.A for $p_r = 1$ for all r

• if $\mathcal{F} = \mathbb{C}_X$, Thm.A(a) yields Macdonald's formula for $P_{(c)}$:

$$\sum_{n\geq 0} P_{(c)}(S^n X)(z) \cdot t^n = \exp\left(\sum_{r\geq 1} P_{(c)}(X)(z^r) \cdot \frac{t^r}{r}\right)$$

- if *F* = *IC_X*, Thm.A(a) yields an intersection cohomology version of Macdonald's formula.
- if $\mathcal{F} = \mathcal{O}_X$, z = 1, Thm.A(a) yields Moonen's formula for χ_a

$$\sum_{n\geq 0}\chi_{a}(S^{n}X)\cdot t^{n} = \exp\left(\sum_{r\geq 1}\chi_{a}(X)\cdot \frac{t^{r}}{r}\right) = (1-t)^{-\chi_{a}(X)}$$

Special cases of Thm.A for $p_r = 1$ for all r (cont'd)

• if $\mathcal{F} = \mathbb{Q}_X^H$, Thm.A(a) yields Cheah's formula for $h_{(c)}^{p,q,k}(S^nX)$

$$\sum_{n\geq 0} h_{(c)}(S^n X)(y, x, z) \cdot t^n = \exp\left(\sum_{r\geq 1} h_{(c)}(X)(y^r, x^r, z^r) \cdot \frac{t^r}{r}\right)$$

- if $\mathcal{F} = IC'_X^H$, Thm.A(a) yields an intersection cohomology version of Cheah's formula.
- if X is projective, \$\mathcal{F} = IC'_X^H\$, \$x = z = 1\$ and \$y = -1\$, Thm.A(a) yields an intersection cohomology version of Hirzebruch-Zagier's formula, i.e., for the Goresky-MacPherson signature of symmetric products. If, moreover, \$X\$ is an orbifold, this gives Hirzebruch-Zagier's formula in the complex algebraic case.

Let $V = \operatorname{Ind}_{K}^{\Sigma_{n}}(triv)$ be the representation induced from the trivial representation of a subgroup K of Σ_{n} , and let $\mathcal{F} = \mathbb{C}_{X} \in D_{c}^{b}(X)$. Thm.A(b) specializes for $p_{r} = 1$ (for all r) to Macdonald's Poincaré polynomial formula for the quotient X^{n}/K :

$$P_{(c)}(X^n/\mathcal{K},\mathbb{C})(z) = \sum_{\lambda \dashv n} \frac{1}{z_\lambda} \chi_\lambda(\operatorname{Ind}_{\mathcal{K}}^{\Sigma_n}(triv)) \cdot \prod_{r \ge 1} (P_{(c)}(X;\mathbb{C})(z^r))^{k_r}$$

Theorem A. follows from a generating series identity for abstract characters of tensor powers $\mathcal{V}^{\otimes n}$ of an element \mathcal{V} in a suitable symmetric monoidal category (A, \otimes) . In our case:

- $\mathcal{V} = H^*_{(c)}(X, \mathcal{F})$ (or $Gr^*_F Gr^W_* H^*_{(c)}(X, \mathcal{F})$ if $\mathcal{F} \in D^b \mathsf{MHM}(X)$),
- A = abelian tensor category of finite dimensional (multi-)graded C-vector spaces.

This abstract character formula can also be used to derive equivariant versions of Theorem A for varieties X with additional symmetries, e.g.,

- an algebraic action on X of a finite group G;
- an algebraic automorphism $g: X \rightarrow X$ of finite order;
- a (proper) algebraic endomorphism $g: X \to X$,

and equivariant coefficients.

For example, if $\mathcal{F} = \mathbb{C}_X$ and $g : X \to X$ is a (proper) algebraic endomorphism of X, we get an equivariant version of Macdonald's generating series formula, expressed in terms of the (graded) Lefschetz Zeta function:

Theorem B. (M.-Schürmann)

The following holds in $\mathbb{C}[z][[t]]$:

$$\sum_{n\geq 0} P_{(c)}^g(S^nX)(z) \cdot t^n = \exp\left(\sum_{r\geq 1} P_{(c)}^{g^r}(X)(z^r) \cdot \frac{t^r}{r}\right)$$

where

$$\mathcal{P}^{g}_{(c)}(X)(z) := \sum_{k} trace_{g}\left(\mathcal{H}^{k}_{(c)}(X;\mathbb{C})\right) \cdot (-z)^{k}.$$

THANK YOU !!!

Laurentiu Maxim

Let A_{Σ_n} be the additive category of the Σ_n -equivariant objects in A, with corresponding Grothendieck group $K_0(A_{\Sigma_n})$. Then:

 $[\mathcal{V}^{\otimes n}] \in K_0(A_{\Sigma_n}) \simeq K_0(A) \otimes_{\mathbb{Z}} Rep_{\mathbb{Q}}(\Sigma_n)$

Let cl_n be the composition:

 $K_0(A_{\Sigma_n}) \simeq K_0(A) \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{Q}}(\Sigma_n) \xrightarrow{id \otimes char} K_0(A) \otimes_{\mathbb{Z}} C(\Sigma_n) \stackrel{id \otimes ch_r}{\hookrightarrow} K_0(A) \otimes \mathbb{Q}[p_i, i \geq 1]$

Theorem C. (M.-Schürmann)

For any $\mathcal{V} \in A$, the following holds in $(K_0(A) \otimes \mathbb{Q}[p_i, i \geq 1])[[t]]$:

$$\sum_{n\geq 0} c l_n([\mathcal{V}^{\otimes n}]) \cdot t^n = \exp\left(\sum_{r\geq 1} \psi_r([\mathcal{V}]) \otimes p_r \cdot \frac{t^r}{r}\right)$$

with ψ_r the r-th Adams operation of the pre-lambda ring $K_0(A)$. For $V \in Rep_{\mathbb{Q}}(\Sigma_n)$, the following holds in $K_0(A) \otimes \mathbb{Q}[p_i, i \ge 1]$:

$$cl_n(V\otimes \mathcal{V}^{\otimes n}) = \sum_{\lambda \dashv n} \frac{p_\lambda}{z_\lambda} \chi_\lambda(V) \otimes \prod_{r\geq 1} (\psi_r([\mathcal{V}]))^{k_r}$$