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Obstructions on Fundamental Groups
of Plane Curve Complements

Constance Leidy and Laurentiu Maxim

Abstract. We survey various Alexander-type invariants of plane curve com-
plements and, in relation to a question of Serre, we emphasize certain ob-
structions on the type of groups that can arise as fundamental groups of com-
plements to complex plane curves. These obstructions are then discussed on
special classes of examples. In particular, we give new explicit computations
of higher-order degrees of curves, which are invariants defined in a previous
paper of the authors.

1. Introduction

This paper is an attempt to give partial answers to the following question posed
by Serre: what restrictions are imposed on a group by the fact that it can appear
as fundamental group of a smooth algebraic variety? There are characteristic zero
and respectively finite characteristic aspects of this problem, but we will restrict
ourselves to the zero characteristic case. More precisely, our ground field will be
C. In what follows we only treat the very special case of open varieties which are
complements to hypersurfaces in Cn (note that complements to closed varieties of
complex codimension at least two are simply-connected).

By a Zariski theorem of Lefschetz type (see [Di92], Theorem. 1.6.5), for a
generic plane E relative to a given hypersurface V ⊂ Cn, the natural map

π1(E − E ∩ V ) → π1(Cn − V )

is an isomorphism. Therefore, possible fundamental groups of complements to
hypersurfaces in Cn are precisely the fundamental groups of plane affine curve
complements. Thus, it suffices to restrict ourselves to the case of complements to
curves in C2.

In view of the above, we can ask now the following refinement of Serre’s ques-
tion: what groups can be realized as fundamental groups of plane curve comple-
ments? what obstructions are there?
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In the next sections we will discuss invariants of the fundamental group of an
affine plane curve complement that are obtained by studying certain covering spaces
of the complement: the Alexander polynomial is an invariant of the total linking
number infinite cyclic cover, characteristic varieties (in particular, the support) are
derived from studying the universal abelian cover, and the higher-order degrees
are numerical invariants obtained by studying certain solvable covers associated to
terms of the rational derived series of the group. We will see that these invariants
obstruct many knot groups from being realized as fundamental groups of plane
curve complements.

In the last section we include some examples of explicit calculations of the
higher-order degrees associated to some curve complements. We will also find some
examples of groups that cannot be realized as the fundamental group of a curve
complement (in general position at infinity) because the higher-order degrees ob-
struct this.

2. Plane curve complements

Throughout this paper, we consider the following setting: Let G be a group,
and assume that there is a reduced curve C = {f(x, y) = 0} in C2 of degree d, with
s irreducible components, such that G = π1(C2 \C). For simplicity, we assume that
C is in general position at infinity, that is, its projective completion is transverse
to the line at infinity, though many results remain valid without this restriction on
the behavior at infinity.

We will perform the dual task of studying topological properties of the curve by
studying the fundamental group of its complement, while at the same time deriving
obstructions on a group imposed by the fact that it is the fundamental group of an
affine plane curve complement. For more comprehensive surveys on the topology
of plane curves and a list of open problems, the interested reader may also consult
the papers [Li07, Li07b, O05].

First note that H1(G) = H1(C2 \ C) = G/G′ = Zs, generated by meridians
about the smooth parts of irreducible components of C.

Although in geometric problems fundamental groups of complements to pro-
jective curves play a central role, by switching to the affine setting (i.e., by also
removing a generic line) no essential information is lost. Indeed, if C̄ ⊂ CP2 is the
projective completion of C, the two groups are related by the central extension

(2.1) 0 → Z → π1(CP2 − (C̄ ∪ H)) → π1(CP2 − C̄) → 0.

Moreover, by [O05], Lemma 2, the commutator subgroups of the affine and respec-
tively projective complements coincide:

(2.2) G′ = π1(CP2 − C̄)′.

2.1. The linking number infinite cyclic cover of the complement. We
begin with a brief survey of results on the Alexander polynomial of the curve C.

Let lk : G = π1(C2 − C) → Z be the total linking number epimorphism, i.e.
α &→ lk#(α, C). Note that lk factors through H1(G), sending the basis vectors of
Zs to 1. Let Uc be the covering of U corresponding to Ker(lk). Uc will be called
the total linking number infinite cyclic cover of the complement.

The group of deck transformations of Uc is Z, and it acts on H1(Uc; C) by
a generating transformation, thus making H1(Uc; C) into a module over C[Z] =
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C[t, t−1]. This module is called the infinite cyclic Alexander module of the curve
complement. As C[t, t−1] is a principal ideal domain, H1(Uc; C) decomposes as

H1(Uc; C) ∼= C[t, t−1]m ⊕
(
⊕iC[t, t−1]/λi(t)

)
,

for some m ∈ Z and polynomials λi(t) defined up to a unit of C[t, t−1]. In fact, the
following result holds (e.g., see [Li82], page 838):

Theorem 2.1. H1(Uc; C) is a torsion C[t, t−1]-module.

Therefore, it does make sense to associate to C a polynomial, namely the order
of H1(Uc; C) (cf. [Mi67]). This is a global invariant of C (or of G) defined as
follows:

Definition 2.2. ∆C(t) =
∏

i λi(t) is called the Alexander polynomial of C (or
G).

It is easy to see that the exponent of (t − 1) in ∆C(t) is s − 1, where s is the
number of irreducible components of C (e.g., see [O05], Lemma 21). In particular,
if the curve C is irreducible, the Alexander polynomial ∆C(t) can be normalized
so that ∆C(1) = 1.

2.1.1. Libgober’s divisibility theorem for Alexander polynomials. In [Li82, Li83,
Li87], Libgober gives an algebraic-geometrical meaning of the Alexander polyno-
mial of C as follows.

With each singular point x ∈ C there is an associated local Alexander poly-
nomial, ∆x(t), defined as the characteristic polynomial of the monodromy of local
Milnor fibration at x (cf. [Mi68]). Then (cf. [Li82], Theorem 1, or [Li83], §4):

Theorem 2.3 (Libgober). Up to a power of (t − 1), the Alexander polyno-
mial ∆C(t) of a plane curve in general position at infinity divides the product∏

x∈Sing(C)∆x(t) of the local Alexander polynomials at the singular points of C.
Therefore the local type of singularities has an effect on the topology of C.

Zariski also showed that the position of singularities has an influence on the
topology of C. Moreover, as Libgober observed, the Alexander polynomial is sensi-
tive to the position of singularities ([Li82], §7). The classical example of Zariski’s
sextics with six cusps will be discussed in section 3.

Theorem 2.3 remains true without any assumption on the behavior of C at
infinity, but one has to take into account the contribution of singularities at infinity.
As a corollary of this fact, we have that

Corollary 2.4. ∆C(t) is cyclotomic. Moreover, for a curve C in general
position at infinity, the zeros of ∆C(t) are roots of unity of order d = deg(C).

For the last part of the above result see [Li83], Theorem 4.1 (2) and Example 3.4.
It follows that many knot groups, e.g. that of figure eight knot (whose Alexan-

der polynomial is t2−3t+1), cannot be of the form π1(C2−C). However, the class
of possible fundamental groups of plane curve complements includes braid groups,
or groups of torus knots of type (p, q) (see [LM06] §5, and the references therein).

Remark 2.5. The above divisibility result has been generalized to higher di-
mensions by Libgober ([Li85, Li94]), who considered complements to affine hy-
persurfaces with only isolated singularities, and also by Maxim ([M06]), who in
his thesis treated the case of hypersurfaces with non-isolated singularities. From
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Theorem 4.5 of [M06], it follows that in Libgober’s divisibility result it suffices to
consider only the contribution of local Alexander polynomials at singular points con-
tained in some fixed irreducible component of the hypersurface. In particular, this
shows that the Alexander polynomial does not provide enough information about
the topology of reducible curves (hypersurfaces). For example, if C is a union of two
curves that intersect transversally, then ∆C(t) = (t − 1)s−1 (see [O05], Theorem
34). To overcome this problem, we study higher coverings of the complement.

2.2. The universal abelian cover of the complement. In this section,
following [Li92] we define invariants associated to the universal abelian cover of
the complement.

Let Uab be the universal abelian cover of U, i.e., the covering associated to the
subgroup G′. Under the action of the covering transformation group, the universal
abelian module H1(Uab; C) = G′/G′′ ⊗C becomes a finitely generated module over
C[G/G′] = C[t±1

1 , .., t±1
s ] =: Rs. Note that Rs is a Noetherian domain and a unique

factorization domain (UFD for short).
Now let M be a presentation matrix of A := H1(Uab; C) corresponding to a

sequence
(Rs)m → (Rs)n → A → 0

Definition 2.6. The order ideal of A, E0(A), is the ideal in Rs generated by
the n × n-minor determinants of M , with the convention E0(A) = 0 if n > m.
The support of A, Supp(A), is the reduced sub-scheme of the s-dimensional torus
Ts = Spec(Rs) defined by the order ideal. Equivalently, a prime ideal p is in
Supp(A) if and only if Ap ,= 0 (that is, if and only if p ⊃ Ann(A)).

Similarly, the i-th (algebraic) characteristic variety is defined by the i-th elementary
ideal of A. Away from the trivial character, characteristic varieties of A coincide
with jumping loci of homology of rank-one local systems on the complement (cf.
[Li01], §1.4.1), defined as

V t
i (G) = {λ ∈ C∗s|dimCH1(G, Lλ) ≥ i}, 1 ≤ i ≤ s,

where Lλ is the rank-one local system associated to the character λ. In [DM07],
these jumping loci are called topological characteristic varieties. By a result of
Arapura ([A97]), each V t

i (G) is a union of subtori of the character torus, possibly
translated by unitary characters. This fact imposes strong obstructions on the
group G. Characteristic varieties, both algebraic and topological, give very precise
information about the homology of (finite) abelian covers of U (e.g., see [Li92]).

Example 2.7. (1) If C is irreducible, then Supp(A) = {∆C(t) = 0}.
(2) If L is a link in S3 and G = π1(S3 − L) then Supp(A) is the zero-set of the
multivariable Alexander polynomial of the link.

Remark 2.8. A multivariable Alexander polynomial of C could be defined as
the greatest common divisor of all elements of the order ideal E0(A). However,
if codimTsSupp(A) > 1, then this polynomial is trivial, so it doesn’t contain any
interesting information about the topology of C.

The support of the universal abelian module is restricted by the following result
([Li92], Corollary 3.3):
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Theorem 2.9 (Libgober). If C is a curve in general position at infinity, then

Supp(A) ⊂ {(λ1, ..,λs) ∈ Ts |
s∏

i=1

λdi
i = 1}

where di is the degree of the i-th irreducible component of C.

In [DM07], a similar characterization is given for the supports of universal
abelian invariants associated to complements of hypersurfaces in Cn+1, with any
type of singularities. The supports are also shown to depend on the local type of
singularities.

2.3. Higher-order coverings of the complement. In this section we study
covers of the curve complement that are associated to terms in the rational derived
series of the fundamental group. The invariants arising in this way were originally
used in the study of knots and respectively 3-manifolds, e.g. to show that certain
groups cannot be realized as the fundamental group of the complement of a knot, or
as the fundamental group of a 3-manifold. Some very useful background material
is presented in [C04, H05].

Let G(0)
r = G. For n ≥ 1, we define the nth term of the rational derived series

of G inductively by:

G(n)
r = {g ∈ G(n−1)

r |gk ∈ [G(n−1)
r , G(n−1)

r ], for some k ∈ Z − {0}}.

It is easy to see that G(i)
r $G(j)

r $G, if i ≥ j ≥ 0, so we can consider quotient groups.
Set Γn := G/G(n+1)

r . We use rational derived series as opposed to the usual derived
series in order to avoid zero-divisors in the group ring ZΓn.

The successive quotients of the rational derived series are torsion-free abelian
groups. Indeed (cf. [H05], Lemma 3.5),

G(n)
r /G(n+1)

r
∼=

(
G(n)

r /[G(n)
r , G(n)

r ]
)

/{Z − torsion}.

Therefore, if G = π1(C2 −C), then G′ = G′
r (this follows from the trivial fact that

G′ is a subgroup of G′
r, together with G/G′ ∼= Zs).

By construction, it follows that Γn is a poly-torsion-free-abelian group, in short
PTFA ([H05], Corollary 3.6), i.e., it admits a normal series of subgroups such that
each of the successive quotients of the series is torsion-free abelian. Then ZΓn is a
right and left Ore domain, so it embeds in its classical right ring of quotients Kn,
a skew-field.

Definition 2.10. The n-th order Alexander modules of C are

AZ
n(C) = H1(U; ZΓn) = H1(UΓn ; Z)

where UΓn is the covering of U corresponding to the subgroup G(n+1)
r . That is,

AZ
n(C) = G(n+1)

r /[G(n+1)
r , G(n+1)

r ] as a right ZΓn-module.
The nth order rank of (the complement of) C is:

rn(C) = rkKnH1(U; Kn)

Remark 2.11. Note that AZ
0 (C) = G(1)

r /[G(1)
r , G(1)

r ] = G′/G′′ is just the uni-
versal abelian invariant of the complement.
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Remark 2.12. If C is an irreducible curve (or β1(G) = 1), it follows directly
from [C04], Proposition 3.10 that AZ

n(C) is a torsion ZΓn-module. In [LM06], the
authors showed that this is also true for the reducible case (at least for curves in
general position at infinity). (See Theorem 2.16.)

Example 2.13. (1) If C is non-singular and in general position at infinity,
then G = Z.
(2) If C has only nodal singular points (locally defined by x2 − y2 = 0), then G is
abelian.
In both cases above it follows that AZ

0 (C) = 0, and therefore AZ
n(C) = 0 for all n

(cf. [LM06], Remark 3.4).

We associate to any curve C (or equivalently, to its group G) a sequence of non-
negative integers δn(C) as follows (it is more convenient to work over a principal
ideal domain, or a PID for short, so we look for a “convenient” one): Let ψ ∈
H1(G; Z) be the primitive class representing the linking number homomorphism
G

ψ→ Z, α &→ lk(α, C). Since G′ is in the kernel of ψ, we have a well-defined
induced epimorphism ψ̄ : Γn → Z. Let Γ̄n = Kerψ̄. Then Γ̄n is a PTFA group,
so ZΓ̄n has a right ring of quotients Kn = (ZΓ̄n)S−1

n , for Sn = ZΓ̄n − 0. Set
Rn = (ZΓn)S−1

n . Then Rn is a flat left ZΓn-module.
Crucially, Rn is a PID, isomorphic to the ring of skew-Laurent polynomials

Kn[t±1]. Indeed, by choosing a t ∈ Γn such that ψ̄(t) = 1, we get a splitting φ of ψ̄,
and the embedding ZΓ̄n ⊂ Kn extends to an isomorphism Rn

∼= Kn[t±1]. However
this isomorphism depends in general on the choice of splitting of ψ̄ !

Definition 2.14. (1) The nth-order localized Alexander module of the curve
C is defined to be An(C) = H1(U; Rn), viewed as a right Rn-module. If we choose
a splitting φ to identify Rn with Kn[t±1], we define Aφ

n(C) = H1(U; Kn[t±1]).
(2) The nth-order degree of C is defined to be:

δn(C) = rkKnAn(C) = rkKnAφ
n(C).

Remark 2.15. Note that δn(C) < ∞ if and only if rkKnH1(U; Kn) = 0, i.e.
An(C) is a torsion module.

The degrees δn(C) are integral invariants of the fundamental group G of the
complement. Indeed, by [H06] §1, we have:

δn(C) = rkKn

(
G(n+1)

r /[G(n+1)
r , G(n+1)

r ] ⊗ZΓ̄n
Kn

)
.

Since the isomorphism between Rn and Kn[t±1] depends on the choice of splitting,
we cannot define in a meaningful way a “higher-order Alexander polynomial”, as
we did in the infinite cyclic case. However, for any choice of splitting, the degree of
the associated higher-order Alexander polynomial is the same. Therefore although
a higher-order Alexander polynomial is not well-defined in general, the degree of
the polynomial associated to a choice of a splitting yields a well-defined invariant
of G. This is exactly the higher-order degree δn defined above.

The higher-order degrees of C may be computed by means of Fox free calculus
by using a presentation of π1(C2 − C). The latter can be obtained by means of
Moishezon’s braid monodromy [Mo]. In general, these steps are difficult to achieve.
However in section 3, some examples are explicitly computed.
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The obstructions on G obtained from analyzing the higher-order degrees of a
plane curve complement are contained in the following result (cf. [LM06], Theorem
4.1 and Corollary 4.8):

Theorem 2.16 (Leidy-Maxim). If G = π1(C2 − C) for some plane curve C
in general position at infinity, then the higher-order degrees δn(C) are finite. More
precisely:

(1) there exists a uniform upper bound in terms of the degree of C: δn(C) ≤
d(d − 2), for all n.

(2) for each n, there is an upper bound in terms of local invariants at singular
points of C

δn(C) ≤ Σl
k=1 (µ(C, ck) + 2nk) + 2g + d − l

where ck, 1 ≤ k ≤ l, are the singularities of C, nk is the number of
branches through the singularity ck, µ(C, ck) is the Milnor number of the
singularity germ (C, ck), and g is the genus of the normalized curve.

We have the following important corollary that provides an obstruction to a
group being the fundamental group of the complement of a curve in general position
at infinity. This can be combined with the central extension (2.1) in order to obtain
obstructions on the fundamental groups of projective plane curve complements. (In
the last section of this paper we will use this corollary to find such examples.)

Corollary 2.17. If C is a plane curve in general position at infinity, then
AZ

n(C) is a torsion ZΓn-module.

3. Examples

In this section, we will present some explicit calculations of the higher-order
degrees of various curve complements. Although computing higher-order degrees
can be difficult, we hope that these examples will aide the reader in understanding
how a general calculation can be carried out.

Before presenting the calculations, we recall some results from [LM06].
• If C is either non-singular or has only nodal singular points (and is in

general position at infinity), it follows from Example 2.13 that δn(C) = 0
for all n ≥ 0.

• If C is defined by a weighted homogeneous polynomial f(x, y) = 0, then
either:

– if either n > 0 or β1(U) > 1, then δn(C) = µ(C, 0) − 1.
– if β1(U) = 1, then δ0(C) = µ(C, 0), where µ(C, 0) is the Milnor

number of the singularity germ at the origin.
• If C is an irreducible affine curve, then δ0(C) = deg∆C(t), where ∆C(t)

denotes the Alexander polynomial of the curve complement. If, moreover,
the Alexander polynomial is trivial then all higher-order degrees vanish,
see [LM06], Proposition 5.1.

In the next three examples, we consider an irreducible curve C̄ ⊂ CP2 and a
generic line (at infinity) H , then set C = C̄ − H .

Example 3.1. Let C̄ ⊂ CP2 be a degree d curve having only nodes and cusps
as its only singularities. If d ,≡ 0 (mod 6), then all higher-order degrees of C vanish.
(This follows from the divisibility results on ∆C(t), which imply that ∆C(t) = 1).
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Example 3.2. If C̄ is Zariski’s three-cuspidal quartic, then G = π1(C2 −C) =
〈a, b | aba = bab, a2 = b2〉. Thus G′ ∼= Z/3Z. So δn(C) = 0, for all n. For all
other quartics, the corresponding group of the affine complement is abelian, so the
higher-order degrees vanish again.

Example 3.3. Zariski’s sextics with 6 cusps
Let C̄ ⊂ CP2 be a curve of degree 6 with 6 cusps.

• If the 6 cusps are on a conic, then π1(C2 − C) = π1(CP2 − C̄ ∪ H) is iso-
morphic to the fundamental group of the trefoil knot, and has Alexander
polynomial t2 − t + 1. Thus, δ0(C) = 2, and δn(C) = 1 for all n > 0.

• If the six cusps are not on a conic, then π1(C2 −C) is abelian. Therefore,
δn(C) = 0 for all n ≥ 0.

Remark 3.4. From the above example we see that the higher-order degrees
of a curve, at any level n, are also sensitive to the position of singular points. An
interesting open problem is to find Zariski pairs that are distinguished by some δk,
but not distinguished by any δn for n < k.

3.1. Line Arrangements. Since we are assuming that our curves are in
generic position at infinity, the arrangements that we will consider do not have
parallel lines. If we have an arrangement with two intersecting lines, the only
singularity is a node, and therefore δn is trivial for all n. Similarly, δn = 0 if
we have three lines arranged so that the singularities are each nodes. Hence the
first interesting case to consider is the arrangement of three lines intersecting in
a triple point. Using the techniques of [CS97] we can find a presentation for the
fundamental group of U, the complement of the three lines in C2:

π1(U) ∼= 〈σ1,σ2,σ3|σ1σ2σ3 = σ2σ3σ1 = σ3σ1σ2〉.

Here σ1, σ2, and σ3 correspond to the meridians of the lines. In particular, each
one of them maps to a different generator of of H1(U) ∼= Z3 and they are all
mapped to the same generator of Z under the total linking number homomorphism
π1(U) → H1(U) → Z. It is easier to work with a presentation for π1(U) where
only one generator maps to the generator of Z under the total linking number
homomorphism. Hence we choose new generators: a = σ1, b = σ2σ

−1
1 , and c =

σ3σ
−1
1 . With these new generators we have the following presentation:

π1(U) ∼= 〈a, b, c|abac = baca = ca2b〉.

Using Fox calculus [F53], [F54], we can obtain a presentation matrix for
H1(U, u0; Zπ1(U)), the homology of the universal cover of U relative to a base-
point u0 as a left Zπ1(U)-module. The 1-chains for the universal cover of U are
generated as a Zπ1(U)-module by α, β, and γ, where α, β, and γ each represent
a single lift of the 1-chains of U corresponding to a, b, and c, respectively. Since
we are computing the homology relative to a basepoint, α, β, and γ are in fact
1-cycles in H1(U, u0; Zπ1(U)). It remains to consider the 2-chains of the universal
cover of U. First, the 2-chain of U corresponding to the relation abaca−1c−1a−1b−1

in π1(U) lifts to a 2-chain of the universal cover of U whose boundary is:

α + a ∗ β + ab ∗ α + aba ∗ γ − abaca−1 ∗ α− abaca−1c−1 ∗ γ
−abaca−1c−1a−1 ∗ α− abaca−1c−1a−1b−1 ∗ β
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Using the relation abaca−1c−1a−1b−1 = 1 in π1(U), we can rewrite this boundary
as:

α + a ∗ β + ab ∗ α + aba ∗ γ − bac ∗ α− ba ∗ γ − b ∗ α− β

= (1 + ab − bac − b) ∗ α + (a − 1) ∗ β + (aba − ba) ∗ γ

Similarly, the 2-chain of U corresponding to the relation bacab−1a−2c−1 in π1(U)
lifts to a 2-chain of the universal cover of U whose boundary is:

β + b ∗ α + ba ∗ γ + bac ∗ α− bacab−1 ∗ β − bacab−1a−1 ∗ α
−bacab−1a−2 ∗ α− bacab−1a−2c−1 ∗ γ.

Using the relation bacab−1a−2c−1 = 1 in π1(U), we can rewrite this boundary as:

β + b ∗ α + ba ∗ γ + bac ∗ α− ca2 ∗ β − ca ∗ α− c ∗ α− γ

= (b + bac − ca − c) ∗ α + (1 − ca2) ∗ β + (ba − 1) ∗ γ

We can collect this information to write a presentation matrix:

H1(U, u0; Zπ1(U)) =
(

1 + ab − bac − b a − 1 aba − ba
b + bac − ca − c 1 − ca2 ba − 1

)

Here the columns correspond to the generators, α, β, and γ, respectively, and the
rows correspond to relations.

If we allow elements of π1(U)(n+1)
r to be set equal to 1 in Zπ1(U), we can also

consider the above as a presentation matrix for H1(U, u0; ZΓn). Furthermore, since
Rn is a flat ZΓn-module, we can also consider it to be a presentation matrix for
H1(U, u0; Rn). If we think of the matrix in this way, any non-zero element in ZΓ̄n

has an inverse. (Recall that Γ̄n is the kernel of the map ψ̄ : Γn → Z, induced by
the total linking number homomorphism.)

If we choose a splitting of ψ̄, there is an isomorphism between Rn and Kn[t±1].
For our example, we choose the splitting that maps t to a. To obtain a presentation
for H1(U, u0; Kn[t±1]) we must replace each entry in the above matrix with its image
under the isomorphism Rn → Kn[t±1]. This results in the following presentation
matrix for H1(U, u0; Kn[t±1]):

(
1 + aba−1t − baca−1t − b t − 1 aba−1t2 − bt

b + baca−1t − ct − c 1 − ct2 bt − 1

)

Notice that because Kn[t±1] is a skew Laurent polynomial ring, we must be careful
when writing elements where t is not originally on the right. For example, tb =
aba−1t in Kn[t±1].

The next step in finding δn is diagonalizing this matrix, which is possible since
Kn[t±1] is a PID. Since c ,= 1 in π1(U)/π1(U)′, it follows that c /∈ π1(U)(n)

r for
all n ≥ 1. Therefore c ,= 1 in Γn for all n ≥ 0. Hence 1 − c ,= 0 in ZΓn and is
therefore invertible in Kn[t±1]. This allows us to multiply the last column in our
presentation matrix by the unit 1 − c. Since our matrix is a presentation of a left
module and since columns correspond to generators, we multiply columns on the
right. The result of multiplying the last column (on the right) by the unit 1 − c is
the following:
(

(aba−1 − baca−1)t + (1 − b) t − 1 (aba−1 − abaca−2)t2 + (baca−1 − b)t
(baca−1 − c)t + (b − c) 1 − ct2 (b − baca−1)t + (c − 1)

)
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Figure 1

Next we add the first column times 1− t and the second column times 1− b to the
last column. The result is the following:

(
(aba−1 − baca−1)t + (1 − b) t − 1 0

(baca−1 − c)t + (b − c) 1 − ct2 0

)

This means that we have a free generator, which is expected since we are computing
the homology relative to a basepoint.

Next we multiply the first row by ct + c and add it to the second. Since our
matrix is a presentation of a left module and since rows correspond to relations, we
multiply rows on the left. The result of multiplying the first row (on the left) by
ct + c and adding it to the second is:

(
(aba−1 − baca−1)t + (1 − b) t − 1 0

(1 − c)(baca−1t2 + baca−1t + b) 1 − c 0

)

Now we multiply the second row (on the left) by the unit (1−c)−1. Then we multiply
the second row by 1− t and add it to the first. This results in the following matrix:

(
1 − baca−1t3 0 0

(baca−1t2 + baca−1t + b) 1 0

)

Notice that we can now eliminate the second column and row. Hence we have shown
that H1(U, u0; Kn[t±1]) ∼= Kn[t±1]⊕Kn[t±1]/〈1−baca−1t3〉. To find H1(U; Kn[t±1]),
we consider the long exact sequence of a pair:

0 → H1(U; Kn[t±1]) → H1(U, u0; Kn[t±1]) → H0(u0; Kn[t±1]).

Since H1(U; Kn[t±1]) is a torsion module and H0(u0; Kn[t±1]) is a free module,
we conclude that H1(U, u0; Kn[t±1]) ∼= Kn[t±1]/〈1 − baca−1t3〉. Therefore, for the
arrangement of three lines intersecting in a triple point, δn = 3 for all n ≥ 0.

If we add an additional line to this arrangement that intersects previous three
lines in nodes (as in the wiring diagram of Figure 1), δn = 0 for all n ≥ 0. In fact,
for any line arrangement that contains a line whose only intersections are nodes,
δn = 0 for all n ≥ 0.

If instead we add an additional line to this arrangement so that all lines intersect
in a single point, δn = 8 for all n ≥ 0. The arrangement of five lines intersecting in
a single point has δn = 15 for all n ≥ 0. Each of these calculations can be done in
the same fashion as the one above. We conjecture that for m lines intersecting in a
single point, δn = m(m − 2) for all n ≥ 0.

3.2. Artin groups of spherical-type. Deligne [D72] showed that each Artin
group of spherical-type appears as the fundamental group of the complement of a
complex hyperplane arrangement. Mulholland and Rolfsen [MR06] showed that
the commutator subgroups of the following Artin groups are perfect (i.e. G′ = G′′):
An, n ≥ 4; Bn, n ≥ 5; Dn, n ≥ 5; En, n = 6, 7, 8; Hn, n = 3, 4. It follows that
all higher-order degrees are trivial for curves whose complements have the above
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fundamental groups. We will explicitly compute the higher-order degrees of the
Artin group of type A3.

The Artin group of type A3 is the braid group on four strands, B4. A standard
presentation for the braid group on four strands is:

B4 = 〈σ1,σ2,σ3|σ1σ3 = σ3σ1,σ1σ2σ1 = σ2σ1σ2,σ2σ3σ2 = σ3σ2σ3〉.

We give a new presentation by choosing new generators: x = σ1, y = σ2σ
−1
1 , and

z = σ3σ
−1
1 .

B4 = 〈x, y, z|xz = zx, xyx = yx2y, yxzxy = zxyxz〉

Notice that the abelianization of B4 is Z, and that under the abelianization map,
x maps to a generator of Z, while y and z are mapped to 0.

If U is a curve complement with π1(U) ∼= B4, we can use Fox calculus to obtain
the following presentation for H1(U, u0; Zπ1(U)), as a left Zπ1(U)-module:




1 − z 0 x − 1

1 + xy − yx − y x − yx2 − 1 0
y + yxz − zxy − z 1 + yxzx − zx yx − zxyx − 1





Here the columns correspond to generators and the rows correspond to relations.
To obtain a presentation for H1(U, u0; Kn[t±1]), we choose the splitting that

maps t to x. Then we have the following presentation for H1(U, u0; Kn[t±1]):



1 − z 0 t − 1

1 + xyx−1t − yt − y t − yt2 − 1 0
y + yzt − zxyx−1t − z 1 + yzt2 − zt yt − zxyx−1t2 − 1





We remind the reader that x and z commute in B4 and therefore in Kn[t±1], we
have tz = zt.

It follows from Theorem 3.6 of [MR06] that B′
4/B′′

4
∼= Z2, generated by y and

xyx−1. In particular, y /∈ (B4)
(n)
r for n ≥ 2. Therefore, 1− y ,= 0 in ZΓn for n ≥ 1.

Hence 1 − y is invertible in Kn for n ≥ 1. We first consider the case when n = 0
and then continue the calculation for n ≥ 1.

If n = 0, then we set y = z = 1 in the above matrix to obtain:



0 0 t − 1
0 −t2 + t − 1 0
0 t2 − t + 1 −t2 + t − 1





After adding the second row along with t times the first row to the last row, we
are able to eliminate the last row and column. Therefore, H1(U, u0; K0[t±1]) ∼=
K0[t±1]⊕K0[t±1]/〈t2 − t + 1〉. Hence δ0 = 2. (Note that this is simply the compu-
tation of the degree of the classical Alexander polynomial.)

We now assume that n ≥ 1, and therefore can use the fact that 1 − y is a unit
in Kn[t±1]. We begin the process of diagonalizing the matrix by multiplying the
second column (on the right) by 1 − y. The result is:
(

1 − z 0 t − 1
(xyx−1 − y)t + 1 − y (xyx−1 − y)t2 + (1 − xyx−1)t + (y − 1) 0

(yz − zxyx−1)t + y − z (yz − zxyx−1z)t2 + (zxyx−1 − z)t + (1 − y) −zxyx−1t2 + yt − 1

)
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Next we add the first column times 1 − t and the last column times 1 − z to the
second column. This gives us our expected free generator:




1 − z 0 t − 1

(xyx−1 − y)t + 1 − y 0 0
(yz − zxyx−1)t + y − z 0 −zxyx−1t2 + yt − 1





Now we subtract the first row from the third, add the second row to the third, and
then multiply the third row (on the left) by t−1. The result is:




1 − z 0 t − 1

(xyx−1 − y)t + 1 − y 0 0
x−1yxz − zy + y − x−1yx 0 −zyt + x−1yx − 1





Next we add zy times the first row to the third:



1 − z 0 t − 1

(xyx−1 − y)t + 1 − y 0 0
x−1yxz + y − x−1yx − zyz 0 x−1yx − 1 − zy





We now have to consider two cases: whether or not z ∈ (B4)
(n)
r . From [MR06],

we know that z ∈ (B4)
(3)
r , but it is unclear if this holds for n ≥ 4. If z ∈ (B4)

(n+1)
r ,

then z = 1 in ZΓn. In this case, our presentation matrix is:



0 0 t − 1

(xyx−1 − y)t + 1 − y 0 0
0 0 x−1yx − 1 − y





Since x−1yx − 1 − y has three terms, it cannot be equal to zero in Kn[t±1], and
therefore is a unit. Hence we can eliminate the last column and row. Therefore, if
z ∈ (B4)

(n+1)
r ,

H1(U, u0; Kn[t±1]) ∼= Kn[t±1] ⊕ Kn[t±1]/〈(xyx−1 − y)t + 1 − y〉.
From [MR06], we know that y ,= xyx−1 in B′

4/B′′
4 , and therefore xyx−1 − y ,= 0

in Kn[t±1] for n ≥ 1. Thus, if z ∈ (B4)
(n+1)
r , it follows that δn = 1. In particular,

δ2 = 1.
Now we consider the case where z /∈ (B4)

(n)
r . In this case, 1 − z is invertible

in Kn[t±1]. Continuing with our calculation above, we can then multiply the first
row by (1 − z)−1 to obtain:




1 0 (1 − z)−1(t − 1)

(xyx−1 − y)t + 1 − y 0 0
x−1yxz + y − x−1yx − zyz 0 x−1yx − 1 − zy





Next we multiply the first row by (y − xyx−1)t + y − 1 and add it to the second.
Also we multiply the first row by x−1yx+zyz−x−1yxz−y and add it to the third.
This allows us to eliminate the first column and row. The result is:(

0 (y − xyx−1)t(1 − z)−1(t − 1) + (y − 1)(1 − z)−1(t − 1)
0 x−1yx − 1 − zy

)

Since x−1yx − 1 − zy has three terms, it cannot be equal to zero, and therefore is
a unit in Kn[t±1]. Hence, H1(U, u0; Kn[t±1]) ∼= Kn[t±1]. Thus if z /∈ (B4)

(n+1)
r ,

δn = 0.
To summarize, for curves whose complement has the fundamental group B4, we

have shown that δ0 = 2 and δ1 = 1. Furthermore, δn = 1 as long as z ∈ (B4)
(n+1)
r .
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If this is not the case, then δn = 0. So if it can be shown that z /∈ (B4)
(ω)
r , then

there is an integer m ≥ 2 such that δn = 0 for all n ≥ m.
The same kind of calculations can be carried out for the other Artin groups of

spherical-type. We summarize these results without providing the explicit calcula-
tions. For the Artin group of type A2, δ0 = 2 and δn = 1 for n ≥ 1. For the Artin
group of type B2, δn = 2 for n ≥ 0. For the Artin group of type B3, δ0 = 4 and
δn = 3 for n ≥ 1. For the Artin groups of types B4 and F4, δ0 = 1 and δn = 0 for
n ≥ 1. For the Artin group of type D4, δ0 = 2, δ1 = 1, and δn = 0 for n ≥ 2. For
the Artin group of type I2(m), where m is odd, δ0 = m − 1 and δn = m − 2 for
n ≥ 1. For the Artin group of type I2(m), where m is even, δn = m − 2 for n ≥ 0.

3.3. Obstructions on fundamental groups of plane curve comple-
ments. It follows from Theorem 2.16, that if C is a plane curve in general position
at infinity, then δn < ∞ for all n ≥ 0. This is not true for a free group with at
least three generators. Therefore, such a group cannot be the fundamental group
of a plane curve complement in general position at infinity. Also Harvey [H05]
has shown that δ0 = ∞ for the fundamental group of a boundary link complement.
(Recall that a boundary link is a link whose components bound mutually disjoint
Seifert surfaces.) An example of such a group (which is Ex. 8.3 of [H05]) is:

〈a, b, c, d, e, f, g, h, i, j, k, l | bg−1ic−1i−1g, cj−1la−1l−1j, fe−1hg−1h−1e,

ih−1kj−1k−1h, lk−1ed−1e−1k, da−1e−1a, ebf−1b−1, gb−1h−1b,

hci−1c−1, jc−1k−1c, kal−1a−1〉

Therefore such a group cannot be the fundamental group of a plane curve comple-
ment in general position at infinity. These facts can be combined with the sequence
(2.1) in order to obtain classes of groups that cannot be the fundamental group of
a projective plane curve complement.
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