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1 The aim of these notes is to survey the construction and main properties of new invariants
associated to certain singular complex varieties. We begin by recalling classical invariants
in the setting of complex algebraic varieties, such as the topological Euler characteristic and
the E-function. Then we provide a quick introduction to Kontsevich’s motivic integration,
a fundamental tool used in defining the new ’stringy’ invariants. We also survey the basics
of singular elliptic genera, as defined by Borisov and Libgober.

1. Euler characteristic and Hodge-Deligne polynomial of complex
algebraic varieties

Let X be an algebraic variety (not necessarily smooth) over C, of pure dimension d.

1Notes for myself and whoever else is reading this footnote. The text will be updated/revised from time
to time...at least I hope so. Started: November 2005. Last update: July 2006.
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2 LAURENTIU MAXIM

1.1. Euler characteristic. If X is proper, then X(C) is compact, and we may define its
Euler characteristic as

χ(X) =
∑

i

(−1)idimCH i(X(C); C).

There is a unique way to extend χ additively to the category of all complex algebraic
varieties, i.e. by requiring that

χ(X) = χ(Z) + χ(X \ Z),

for Z a Zariski closed subset of X. Indeed, just set:

(1.1) χ(X) =
∑

i

(−1)idimCH i
c(X(C); C),

where H i
c(−; C) stands for cohomology with compact support.

Note that the right-hand side of (1.1) actually defines the Euler characteristic with com-
pact support, χc(X). However, in the category of complex algebraic varieties, the following
holds:

Proposition 1.1. If X is a complex algebraic variety, then:

(1.2) χ(X) = χc(X).

Warning: The equation (1.2) is not true outside the world of complex algebraic varieties:
for example, if M is an oriented n-dimensional topological manifold, then Poincaré duality
yields that χc(M) = (−1)nχ(M).

Proof. ([9])
First note that the equality (1.2) is true whenever X is an even-dimensional oriented man-
ifold, since H i

c(X; C) and HdimX−i(X; C) are dual vector spaces. For a complex algebraic
variety X, take a covering by a finite number of affine open sets Xα. By the Meyer-Vietoris
sequences, we have that:

χ(X) =
∑

r

(−1)r+1χ(Xα1 ∩ · · · ∩Xαr)

χc(X) =
∑

r

(−1)r+1χc(Xα1 ∩ · · · ∩Xαr)

Therefore, it suffices to show that χ(X) = χc(X) if X is affine. Let Z be the singular locus
of X and let U = X \ Z. It suffices by induction on dimension to show that

(1.3) χ(X) = χ(Z) + χ(U).

Indeed, dim(Z) < dim(X) and by induction we may assume that χ(Z) = χc(Z). From the
argument at the beginning of the proof, we also have that χ(U) = χc(U). On the other
hand, by the long exact sequence of the compactly supported cohomology

· · · → H i
c(U ; C)→ H i

c(X; C)→ H i
c(Z; C)→ H i+1

c (U ; C)→ · · ·
we obtain χc(X) = χc(Z) + χc(U). Thus (1.3) is equivalent to (1.2).

In order to prove (1.3), let π : X̃ → X be a resolution of singularities of X, with
Z̃ = π−1(Z) a normal crossing divisor. It follows by induction on the number of components
of Z̃ that χ(Z̃) = χc(Z̃), so, since X̃ is an even-dimensional oriented manifold and X̃\Z̃ ∼= U ,
we have that χ(X̃) = χc(X̃) = χc(Z̃) + χc(U) = χ(Z̃) + χ(U). There is a neighborhood NZ
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of Z in X, such that Z is a deformation retract of NZ and Z̃ is a deformation retract of
π−1(NZ). Now, by a Meyer-Vietoris argument for the covering X̃ = U ∪π−1(NZ), and after
noting that U ∩ π−1(NZ) = π−1(NZ) \ Z̃ ∼= NZ \ Z, the equation χ(X̃) = χ(Z̃) + χ(U) is
equivalent to χ(π−1(NZ) \ Z̃) = 0, i.e. χ(NZ \Z) = 0. Again, by a Meyer-Vietoris sequence
for X = U ∪NZ , this is equivalent to the equation (1.3).

�

Note. When Z is a point and NZ is a small (conical) neighborhood of Z, the relation
χ(NZ \ Z) = 0 says that the link of the singular point Z has zero Euler characteristic.

1.2. Hodge-Deligne polynomial. Deligne showed that the cohomology groups Hk(X; Q)
of a complex algebraic variety X carry a natural mixed Hodge structure, i.e., there exists
an increasing weight filtration

0 = W−1 ⊆ W0 ⊆ · · · ⊆ W2k = Hk(X; Q)

on the rational cohomology of X, and a decreasing Hodge filtration

Hk(X; C) = F 0 ⊇ F 1 ⊇ · · · ⊇ F k ⊇ F k+1 = 0

on the complex cohomology of X, such that the filtration induced by F • on the graded
quotients GrW

l Hk(X) := Wl/Wl−1 is a pure Hodge structure of weight l. The integers

hp,q(Hk(X; C)) := dimCGrp
F (GrW

p+qH
k(X)⊗ C)

are called the Hodge-Deligne numbers of X. Note that if X is smooth and projective, then
GrW

l Hk(X; Q) = 0 unless l = k, in which case the Hodge-Deligne numbers are the classical
Hodge numbers hp,q(X) of the Kähler manifold X.

The cohomology with compact support Hk
c (X; Q) also admits a mixed Hodge structure,

and the corresponding Hodge-Deligne numbers are encoded in the E-polynomial:

Definition 1.2. The Hodge-Deligne polynomial (or the E-polynomial) of X is defined by

E(X) = E(X; u, v) :=
d∑

p,q=0

(
2d∑
i=0

(−1)ihp,q(H i
c(X; C))

)
upvq ∈ Z[u, v]

Note that E(X)|u=1,v=1 = χc(X) = χ(X) is the topological Euler-characteristic of X.

Remark 1.3. Assume X is smooth and projective. Then the E-polynomial of X becomes:

E(X) =
∑
p,q

(−1)p+qhp,q(X)upvq

where hp,q(X) = dimCHq(X; Ωp
X) is the dimension of the (p, q)-component of the Hodge

decomposition of Hp+q(X; C). In particular, in this case we see that

E(X;−y, 1) =
∑
p,q

(−1)qhp,q(X)yp = χy(X)

is the Hirzebruch χy-genus of X [11]. This is the genus associated to the modified Todd class
T ∗

y (TX) that appears in the generalized Hirzebruch-Riemann-Roch theorem, i.e.,

χy(X) =

∫
X

T ∗
y (TX) ∩ [X].
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The characteristic class T ∗
y (TX) is defined in cohomology by the product

T ∗
y (TX) =

d∏
i=1

Qy(αi),

where αi are the Chern roots of the tangent bundle TX , and Qy is the normalized power
series defined by

Qy(α) :=
α(1 + y)

1− e−α(1+y)
− αy.

Since Qy(α) specializes to 1 + α for y = −1, to α
1−e−α for y = 0, and respectively to α

tanh α

for y = 1, the modified Todd class T ∗
y (TX) unifies the total Chern class c∗(TX) for y = −1,

the total Todd class td∗(TX) for y = 0, and respectively the total Thom-Hirzebruch L-
class L∗(TX) for y = 1. In particular, the χy-genus specializes to the topological Euler
characteristic χ(X) for y = −1, to the arithmetic genus χa(X) for y = 0, and respectively
to the signature σ(X) for y = 1.

The E-polynomial has the following properties (similar to those of the topological Euler
characteristic):

Proposition 1.4. ([6]) Let X and Y be complex algebraic varieties. Then

(1) if X = tXi is stratified by a disjoint union of Zariski locally closed strata, then the
E-polynomial is additive, that is, E(X) =

∑
i E(Xi).

(2) if (Xi)i is a finite covering of X by locally closed subvarieties, then:

E(X) =
∑

i0<···<ik

(−1)kE(Xi0 ∩ · · · ∩Xik).

(3) the E-polynomial is multiplicative, i.e., E(X × Y ) = E(X) · E(Y ).
(4) if f : Y → X is a Zariski locally trivial fibration and F is the fibre over a closed

point, then E(Y ) = E(X) · E(F ).

Proof. (1) First refine the covering (Xi)i to a covering of smooth Zariski locally closed
subvarieties, such that the closure of each of them is a union of other members of the
covering. The result follows now by induction from the long exact sequence of the compactly
supported cohomology, which is strictly compatible with the filtrations F • and W•, i.e., the
sequence remains exact after application of Grp

F GrW
p+q.

(2) This is an easy application of the first part.
(3) This follows from the Künneth isomorphism.
(4) Let (Xi)i be a Zariski open covering of X that trivializes f . Apply (2) to the covering
f−1(Xi) of the variety Y , using f−1(Xi0) ∩ · · · ∩ f−1(Xik) = (Xi0 ∩ · · · ∩Xik)× F . So,

E(Y ) =
∑

i0<···<ik

(−1)kE(Xi0 ∩ · · · ∩Xik) · E(F ) = E(F ) · E(X),

where in the last equality we use again the formula from (2).
�

Remark 1.5. The additivity property of the E-polynomial makes it possible to define the
E-polynomial for any constructible subset V in a complex algebraic variety X. Indeed, if
we write V = tk

i=1Vi as a finite disjoint union of Zariski locally closed subsets of X (such
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a decomposition exists by the definition of a constructible set), then we define E(V ) :=∑k
i=1 E(Vi). By using the additivity property of Proposition 1.4, it is easy to see that this

definition is independent of the choice of the decomposition of V as a disjoint union of
Zariski locally closed subsets.

For example, E(C1) = uv. This follows easily by first noting that E(P1) = uv + 1 (see
below) and then using the identity E(C1) = E(P1) − E({∞}). By Proposition 1.4 (3), we
get: E(Cn) = (uv)n. Considering Pn as a union of Cn and the hyperplane at infinity Pn−1,
we obtain inductively:

E(Pn) = 1 + uv + · · ·+ (uv)n.

More generally, the E-function of a toric variety can be calculated as follows (for definitions
concerning toric varieties, see [9]):

Example-Proposition 1.6. ([5], Prop 4.1)
For a toric variety XΣ of dimension d we have:

E(XΣ) =
d∑

k=0

ck(uv − 1)d−k

where ck is the number of cones of dimension k in the fan Σ.

Note. By setting u = 1 and v = 1 in the above formula, this yields that

χ(XΣ) = cd = the number of maximal cones in Σ.

Proof. First note that H0(P1; C) = C is pure of type (0, 0), and H2(P1; C) = C is pure of
type (1, 1). Thus E(P1) = uv + 1. Now we compute E(C∗) = E(P1)−E({0})−E({∞}) =
(uv + 1) − 2 = uv − 1. The E-polynomial is multiplicative, so E((C∗)d−k) = E(C∗)d−k =
(uv − 1)d−k.

The action of the torus Td ' (C∗)d on XΣ induces a stratification of XΣ into orbits of
the torus action Oτ

∼= (C∗)d−dimτ , one for each cone τ ∈ Σ. The result follows from the
additivity property of the E-polynomial.

�

Example 1.7. Let Y be a smooth subvariety of codimension r + 1 in a smooth variety X.
Consider π : X̃ → X the blowup of X along Y . The exceptional divisor E = π−1(Y ) is a
Zariski locally-trivial bundle over Y with fibre Pr. By Proposition 1.4 it follows that:

E(X̃) = E(X) + E(Y ) · [uv + · · ·+ (uv)r] .

2. Arc Spaces, Motivic measure and Motivic integral

In this section we provide the basics of Kontsevich’s theory of motivic integration, as
developed by Denef-Loeser.

2.1. Arc Spaces. Let X be a complex algebraic variety (what follows works in general over
a field of characteristic zero). For each n ∈ N consider the space Ln(X) of arcs modulo tn+1

on X. This is a complex algebraic variety whose C-rational points are the C[t]/tn+1-rational
points of X, i.e. morphisms Spec(C[t]/tn+1) → X. We write Ln(X) = X(C[t]/tn+1). For
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example, if X is an affine variety in CM , with defining equations fi(x1, · · · , xM) = 0, for
i = 1, ..,m, then Ln(X) is given by the equations:

fi(a
(1)
0 + a

(1)
1 t + · · ·+ a(1)

n tn, · · · , a(M)
0 + a

(M)
1 t + · · ·+ a(M)

n tn) ≡ 0 mod tn+1

in the variables {a(l)
k }k=0,..n; l=0,..,M , for i = 1, ..,m.

Taking the projective limit of these algebraic varieties Ln(X), we obtain the arc space
L(X) of X. This is a reduced, separated scheme over C, but not of finite type over C, i.e.
L(X) is an algebraic variety of ’infinite dimension’. The C-rational points of L(X) are the
C[[t]]-rational points of X, i.e. morphisms Spec C[[t]] → X. In short, L(X) = X(C[[t]]).
Points of L(X) are called (formal) arcs on X. For example, if X is an affine variety in CM ,
with defining equations fi(x1, · · · , xM) = 0, for i = 1, ..,m, then the C-rational points on

L(X) are the sequences {a(l)
k }k∈N; l=0,..,M satisfying

fi(
∞∑

n=0

a(1)
n tn, · · · ,

∞∑
n=0

a(M)
n tn) = 0

for i = 1, ..,m.

Example 2.1. L(C) = C[[t]].

For any n, and any m > n, we have natural morphisms

πn : L(X)→ Ln(X) and πm
n : Lm(X)→ Ln(X)

obtained by truncation. Note that L0(X) = X and that L1(X) is the total tangent space
of X. For an arc γ on X, π0(γ) = γ(0) is called the origin of the arc γ.

By a result of Greenberg it follows that πn(L(X)) is a constructible subset of Ln(X)
(recall that a constructible set is a finite disjoint union of Zariski locally closed subvarieties).
Moreover, if X is smooth of pure dimension d, then πn is surjective, and each πn+1

n is a locally
trivial fibration (with respect to the Zariski topology) with fibre Cd (e.g., see [2], §2.2).

2.2. Motivic measure. Motivic integrals.

Definition 2.2. The Grothendieck group of complex algebraic varieties, K0(V arC) is the
abelian group generated by symbols [X], for X a variety over C, with the relations [X] = [Y ]
if X and Y are isomorphic, and [X] = [Z] + [X \ Z] if Z is a Zariski closed subset of X.
There is a natural ring structure on K0(V arC), the product of [X] and [Y ] being equal to
[X × Y ]. The universal Euler characteristic associates to an algebraic variety X over C
its class [X] in the Grothendieck group K0(V arC). Let 1 := [point], and consider the Tate
motive L := [C]. Denote byMC the ring obtained from K0(V arC) by inverting the class of
the affine line C, i.e.,

MC := K0(V arC)[L−1]

Note. By its additivity property, the E-polynomial is defined on K0(V arC). Moreover, the
E-polynomial, hence the Euler characteristic extend toMC by setting

E(L−1) := (uv)−1.

Definition 2.3. Let

M̂C := lim←−
MC

Fm
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be the completion of MC with respect to the decreasing filtration {Fm}m∈Z, where Fm

is the subgroup of MC generated by the elements [V ]
Li with V an algebraic variety and

dim(V )− i ≤ −m.

Note that Ker(MC → M̂C) = ∩mFm. Therefore limn→∞
1

Ln = 0.

Definition 2.4. Motivic measure
A subset A of L(X) is called constructible (or cylindrical) if A = π−1

n (C), with C a con-
structible subset of Ln(X) for some n ∈ N. The motivic measure of such a constructible set
A ⊂ L(X) is defined as:

µ(A) := lim
n→∞

[πn(A)]

Lnd
.

This limit exists in M̂C.

Note. The reasoning behind this definition is the following. Suppose X is non-singular, of
pure dimension d. Then a constructible set A = π−1

m (C), with C a constructible subset of
Lm(X), satisfies the property

[πn(A)] = L(n−m)d[C], for all n ≥ m,

since πn
m : Ln(X) = πn(L(X)) → Lm(X) = πm(L(X)) is a Zariski locally trivial fibration

with fibre C(n−m)d. In particular
[πn(A)]

Lnd

stabilizes in MC for n ≥ m. Thus it makes sense to take the naive motivic measure
µ(A) = limn→∞

[πn(A)]
Lnd = [C]L−md ∈ MC. However, for singular X, this limit doesn’t exist

inMC and one has to work in the completed Grothendieck group M̂C.

Remark 2.5. If X is smooth, then: µ(L(X)) = [X].

Definition 2.6. Motivic integral
Let A ⊂ L(X) be a constructible subset, and α : A → Z ∪ {+∞} a function with con-
structible (hence measurable) fibers α−1(n), n ∈ Z. Then the motivic integral of α is
defined by ∫

A

L−αdµ :=
∑
n∈Z

µ(α−1(n)) · L−n

in M̂C, whenever the right-hand side converges in M̂C. This will always be the case if α is
bounded from below. Then we say that L−α is integrable on A.

Example 2.7. Let D be an effective Cartier divisor on a non-singular variety X (so D
is a subvariety of X which is locally given by one equation), and let α = ordtD. Here
ordtD : L(X)→ N ∪ {+∞} is defined by

γ 7→ ordtfD(γ)

where fD is a local equation of D in a neighborhood of the origin π0(γ) of γ. One can check
that the function L−ordtD is integrable on L(X) (see [5]).
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Example 2.8. Let X = C1 and D be the divisor associated to the function xa, with a ∈ N,
i.e., D is the origin {0} with multiplicity a. Let A be the set of arcs with the origin at
0 ∈ C:

A = {γ ∈ L(C1) | π0(γ) = γ(0) = 0} = π−1
0 ({0}).

By its definition, A is a constructible subset of L(C1), and it consists of all power series in
the variable t with zero constant term (i.e., of order at least 1). Our goal is to calculate:∫

A

L−ordtDdµ.

By definition, this equals ∑
k≥0

µ({γ ∈ A | (ordtD)(γ) = k}) · L−k

and note that (ordtD)(γ) = ordt(γ
a) has only values in positive multiples of a (since

ordt(γ) := n ≥ 1). Then the only values k ≥ 0 that appear in the sum are of the form
k = na, with n ≥ 1. Therefore, by re-indexing, we can now write:∫

A

L−ordtDdµ =
∑
n≥1

µ({γ ∈ L(C1) | ordt(γ) = n}) · L−na.

Next note that

πn({γ ∈ L(C1) | ordt(γ) = n}) = {an · tn | an 6= 0} = C \ {0}.
Hence, given that X is smooth, we have that

µ({γ ∈ L(C1) | ordt(γ) = n}) =
[C \ {0}]

Ln
=

L− 1

Ln
.

We can now finish calculating our integral:

(2.1)

∫
A

L−ordtDdµ =
∑
n≥1

(L− 1)

Ln
· L−na = (L− 1) ·

∑
n≥1

L−n(a+1) = (L− 1) · L−(a+1)

1− L−(a+1)

=
L− 1

L(a+1) − 1
=

1

1 + L + · · ·+ La
=

1

[Pa]
.

If in the above example one considers the integral over the whole arc space L(C1), one
obtains similarly (the summation above starts at n = 0):∫

L(C1)

L−ordtDdµ =
(L− 1)L(a+1)

L(a+1) − 1
= (L− 1) +

L− 1

L(a+1) − 1
.

The above example can be regarded as a motivation for the following very useful formula:

Proposition 2.9. ([5], Thm 2.15) Let X be non-singular and D =
∑

i∈S aiDi an effec-
tive simple normal crossing divisor (i.e., all Di are nonsingular hypersurfaces intersecting
transversally, and occurring with multiplicity ai). Denote D◦

I = (∩i∈IDi) \ (∪l /∈IDl) for
I ⊂ S. The sets D◦

I form a locally closed stratification of X (with D◦
∅ = X \Dred). Then∫

L(X)

L−ordtDdµ =
∑
I⊂S

[D◦
I ]
∏
i∈I

L− 1

Lai+1 − 1
=
∑
I⊂S

[D◦
I ]∏

i∈I [Pai ]
.
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The next result may be interpreted as a change of variable formula for the motivic integral.
We will state the result in its simplest form, the one most frequently used in practice. For
a more general statement, we refer to [14], §3.8.

Proposition 2.10. ([5], Thm 2.18)
Let h : Y → X be a proper birational morphism between smooth complex algebraic varieties,
and let KY |X = KY − h∗KX be its discrepancy divisor 2. If D is an effective divisor on X,
then

(2.2)

∫
L(X)

L−ordtDdµ =

∫
L(Y )

L−ordt(h∗D+KY |X)dµ.

Here h∗D is the pull-back of D, i.e. locally given by the equation f ◦ h, if D is locally given
by the equation f .

Remark 2.11. In the equality (2.2), one may replace L(X) by any constructible set A ⊂
L(X), and L(Y ) by the preimage h−1(A) of A. More generally, one can replace ordtD by
any function α : A → Z ∪ {∞} such that L−α is integrable on A (in which case ordt(h

∗D)
will be replaced by α ◦H, for H : L(Y )→ L(X) the map on the spaces of formal arcs that
is induced by h). In particular, in the setting of the above theorem, for a constructible set
A ⊂ X we have:

µ(A) =

∫
A

L0dµ
(2.2)
=

∫
h−1(A)

L−ordtKY |X =
∑
n≥0

µL(Y )({γ ∈ h−1(A) | ordtJach(γ) = n}) · L−n.

(recall here that KY |X is the effective divisor of the Jacobian determinant of h, since we
assume that X and Y are smooth).

Remark 2.12. Let D be an effective divisor on a non-singular variety X. If D is a simple
normal crossing divisor, then we calculate the motivic integral

∫
L(X)

L−ordtDdµ by using the

formula in Proposition 2.9. If D is not a simple normal crossing divisor, then we choose a
log resolution of the pair (X,D), that is, a proper birational morphism h : Y → X from
a non-singular variety Y , which is an isomorphism outside h−1(D) and such that h−1(D)
is a divisor with strict normal crossings (i.e. the irreducible components of h−1(SuppD),
denoted by {Ei}i∈J , are smooth and intersect each other transversally). To the Ei’s there
are associated natural multiplicities ai and νi as follows: we set h∗D =

∑
i∈J aiEi and

KY |X =
∑

i∈J νiEi. Then the divisor h∗D + KY |X on Y is effective with simple normal
crossings, given by h∗D+KY |X =

∑
i∈J(ai +νi)Ei. By the change of variables formula (2.2)

and the calculation from Proposition 2.9, we now obtain (with the obvious notations):∫
L(X)

L−ordtDdµ =

∫
L(Y )

L−ordt(h∗D+KY |X)dµ =
∑
I⊂J

[E◦
I ]
∏
i∈I

L− 1

Lai+νi+1 − 1
.

This formula can be regarded as a motivic integral associated to the pair (X, D).

3. Birational Calaby-Yau manifolds. K-equivalent varieties

This section deals with some of the first applications of motivic integration, which in fact
motivated the development of the theory of motivic integration.

2since X and Y are smooth, KY |X is exactly the effective divisor of the Jacobian determinant of h.



10 LAURENTIU MAXIM

Definition 3.1. A Calabi-Yau manifold of dimension d is a non-singular complete (i.e.
compact) complex algebraic variety M , which admits a nowhere vanishing regular differen-
tial d-form ωM . Alternative formulations of this condition are that the first Chern class of
the tangent bundle of M is zero, or that the canonical divisor KM of M is trivial. Recall
that the canonical divisor is the divisor of zeros and poles of a differential d-form.

Definition 3.2. Two non-singular complete algebraic varieties X and Y are called K-
equivalent if there exists a non-singular complete algebraic variety Z and birational mor-
phisms hX : Z → X an hY : Z → Y such that h∗XKX = h∗Y KY .

Proposition 3.3. If X and Y are birational equivalent Calabi-Yau manifolds or, more

generally, K-equivalent non-singular varieties then [X] = [Y ] in M̂C.

Proof. If X and Y are birationally equivalent there exist a non-singular complete algebraic
variety Z and birational morphisms hX : Z → X an hY : Z → Y . For K-equivalent
manifolds, these objects are part of the definition. Now, for X non-singular, and for Z and
hX as above, if one denotes KZ|X := KZ − hX

∗(KX) then:

[X] = µ(L(X))
(∗)
=

∫
L(X)

L0 dµ
(∗∗)
=

∫
L(Z)

L−ordtKZ|Xdµ,

where (∗) follows by the definition of the motivic integral for α = 0, and (∗∗) is the change
of variable formula. For Calabi-Yau’s X and Y , we have that KZ|X = KZ|Y = KZ . For
K-equivalent manifolds, we also have KZ|X = KZ|Y . This finishes the proof.

�

Corollary 3.4. (Kontsevich) In particular, it follows that birationally equivalent Calabi-
Yau manifolds or, more generally, K-equivalent manifolds, have the same E-polynomial,
therefore they have the same Hodge numbers (hence the same Betti numbers).

Remark 3.5. Intermezzo on Birational Geometry.
An irreducible complex projective variety X is called a minimal model if X is terminal
(for a definition see §4) and KX is numerically effective (shortly, nef ), i.e. the intersection
number KX · C ≥ 0 for any irreducible curve C on X. The Minimal Model Program pre-
dicts the existence of a minimal model in every birational equivalence class of non-negative
Kodaira dimension. The conjecture is proved in dimension 2, where there exists a unique
minimal model, which moreover is smooth. In dimension 3, a minimal model exists but it
is not unique in a given birational equivalence class of non-negative Kodaira dimension. In
dimensions ≥ 4, the Minimal Model Program is still a major conjecture in algebraic geom-
etry. In [15], Wang showed that birationally equivalent minimal models, if they exist, are
K-equivalent (see definition 8.6). Therefore, by the above corollary, birationally equivalent
smooth minimal models have the same Hodge numbers, hence the same Betti numbers.

Remark 3.6. Let h : Y → X be a proper birational morphism between non-singular
algebraic varieties. Assume that the exceptional locus of h, i.e. the subvariety of Y where
h is not an isomorphism, is a simple normal crossing divisor, and let Di, i ∈ S be its
irreducible components. The relative canonical divisor (i.e. the discrepancy divisor of h) is
supported on the exceptional locus, and let νi − 1 be the multiplicity of Di in this divisor.
So KY |X =

∑
i∈S(νi−1)Di. Note that, since X and Y are non-singular, KY |X is an effective
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divisor, more precisely it is locally defined by the ordinary Jacobian determinant with respect
to local coordinates on X and Y . Denoting D◦

I = (∩i∈IDi) \ (∪l /∈IDl) for I ⊂ S, we have:

(3.1) [X] =
∑
I⊂S

[D◦
I ]
∏
i∈I

L− 1

Lνi − 1
=
∑
I⊂S

[D◦
I ]
∏
i∈I

1

[Pνi−1]
∈ M̂C

Indeed, since X is non-singular, by the change of variable formula we have:

[X] = µ(L(X)) =

∫
L(X)

1 dµ =

∫
L(Y )

L−ordtKY |Xdµ,

and Proposition 2.9 yields the above formula. Specializing to the topological Euler char-
acteristic yields the following formula which motivates the definition of the stringy Euler
number (see §4):

χ(X) =
∑
I⊂S

χ(D◦
I )
∏
i∈I

1

νi

.

4. Stringy invariants

Stringy invariants are associated to certain singular spaces with mild singularities, and
extend the classical corresponding topological invariants of smooth varieties. Stringy in-
variants are defined in terms of data of log resolutions, however they are independent of all
choices involved.

Definition 4.1. Gorenstein condition
A complex algebraic variety X is called Q-Gorenstein if X is normal, irreducible (or pure
dimensional), and some multiple rKX (r ∈ N) of the canonical Weil divisor KX is a Cartier
divisor. The case r = 1 corresponds to a Gorenstein variety, e.g. if X is smooth. Here
KX is the Zariski-closure of a canonical divisor on the regular part of X (it is well-defined
by the normality assumption), or equivalently, the divisor of zeros and poles of a rational
differential d-form on X. With this, X is Gorenstein if the rational differential d-forms on
X which are regular on Xreg are locally generated by one element.

Example 4.2. All normal hypersurfaces and complete intersections are Gorenstein.

Definition 4.3. Let X be a Gorenstein variety of dimension d and let h : Y → X be a
log resolution of singularities of X, so the exceptional divisor D is a simple normal crossing
divisor. Denote by Di , i ∈ S, the irreducible components of the exceptional locus. Since
KX is a Cartier divisor, the pullback h∗KX makes sense. The discrepancy divisor of h
is Kh = KY |X := KY − h∗KX . h is called a crepant resolution/desingularization of X if
Kh = 0.

The discrepancy divisor of h is supported on the exceptional locus, and we write

KY |X =
∑
i∈S

(ai − 1)Di.

We call ai the log discrepancy of Di with respect to X, and call ai−1 its discrepancy. The log
discrepancies of a Q-Gorenstein variety are defined analogously by KY |X =

∑
i∈S(ai− 1)Di,

which should be interpreted as rKY |X = rKY − h∗(rKX) =
∑

i∈S r(ai − 1)Di.
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Note that, if X is Gorenstein then ai ∈ Z, and when X is non-singular ai ≥ 2, for all
i ∈ S. For Q-Gorenstein varieties, we have that ai ∈ Q for all i ∈ S (more precisely,
r(ai − 1) ∈ Z, so ai ∈ 1

r
Z).

Definition 4.4. Let X be a Q-Gorenstein variety , and take a log resolution h : Y → X of
X with log discrepancies ai ∈ Q, i ∈ S. Then X is called

(1) terminal if ai > 1 for all i ∈ S;
(2) canonical if ai ≥ 1 for all i ∈ S;
(3) log terminal if ai > 0 for all i ∈ S;
(4) log canonical if ai ≥ 0 for all i ∈ S;
(5) strictly log canonical if it is log canonical but not log terminal.

Remark 4.5. Note that 0 is the relevant border value, since if some ai < 0 on some
log resolution, then one can construct log resolutions with arbitrarily negative ai. The
log terminal singularities are considered as being mild ; the singularities which are not log
canonical are considered as general.

Proposition 4.6. Relation with arc spaces (Ein, Mustata, Yasuda)
Let X be a normal variety which is locally a complete intersection. Then X is terminal,
canonical and log canonical if and only if Ln(X) is normal, irreducible and equidimensional,
resp., for all n.

For a log terminal algebraic variety X, one can define stringy invariants in terms of a log
resolution of X.

Definition 4.7. Let X be a log terminal algebraic variety and h : Y → X a log resolu-
tion. Let Di, i ∈ S be the irreducible components of the exceptional locus of h, with log
discrepancies ai ∈ Q>0. Denote D◦

I = (∩i∈IDi) \ (∪l /∈IDl) for I ⊂ S.

(1) The stringy Euler number of X is:

χst(X) :=
∑
I⊂S

χ(D◦
I )
∏
i∈I

1

ai

∈ Q.

(2) The stringy E-function of X is:

Est(X) = Est(X; u, v) :=
∑
I⊂S

E(D◦
I )
∏
i∈I

uv − 1

(uv)ai − 1

and the stringy χy-genus of X is defined by

χst
y (X) = Est(X;−y, 1).

(3) The stringy E-invariant of X is:

Est(X) :=
∑
I⊂S

[D◦
I ]
∏
i∈I

L− 1

Lai − 1
.

Note. From the above definition, we see that χst(X) = lim(u,v)→(1,1) Est(X). Note that we
have specialization maps Est 7→ Est 7→ χst. When X is nonsingular, we have Est(X) = [X]
(by (3.1)), and so Est(X) = E(X) and χst(X) = χ(X). Thus these are new singularity
invariants generalizing the invariants [·], E(·) and χ(·) resp., for X smooth.
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Remark 4.8. If X has at worst Gorenstein canonical singularities, or equivalently Goren-
stein log-terminal singularities (since ai ∈ Z) then KY |X is an effective normal crossing
divisor. By Proposition 2.9, Est(X) =

∫
L(Y )

L−ordtKY |Xdµ.

In general, for a (Q-Gorenstein) log terminal algebraic variety X, Est(X) can also be
defined intrinsically by using motivic integration on X. More precisely,

Est(X) =

∫
L(X)

LordtIXdµ,

where IX is an ideal sheaf on X defined as follows: let Ωd
X be the sheaf of regular differential

d-forms on X, and ωX be the sheaf of differential d-forms on X which are regular on Xreg;
we have a natural map Ωd

X → ωX whose image is IXωX . Here we define ordtIX as:

ordtIX : L(X)→ N ∪ {+∞}

γ 7→ ming(ordtg(γ))

where the minimum is taken over local sections g of IX in a neighborhood of π0(γ).

Remark 4.9. The crucial feature of the stringy invariants defined above is that they don’t
depend on the chosen resolution. This can be already seen from the intrinsec realization of
Est(X). Here we indicate a different argument (due to Batyrev) in the case X is Gorenstein
(and log terminal), i.e. ai ∈ Z>0 (so KY |X is an effective divisor on the log resolution Y of
X). As noted above, the formula of Proposition 2.9 yields that:

Est(X) =

∫
L(Y )

L−ordtKY |Xdµ.

So, if h1 : Y1 → X and h2 : Y2 → X are two log resolutions of X, we need to show that:∫
L(Y1)

L−ordtKY1|Xdµ =

∫
L(Y2)

L−ordtKY2|Xdµ.

To this end, we take a log resolution α : Z → X, dominating both h1 and h2 (thus obtaining

a Hironaka hut). So we have α : Z
σ1→ Y1

h1→ X and α : Z
σ2→ Y2

h2→ X. Moreover,

KZ = α∗KX+KZ|X = σ∗i h
∗
i KX+KZ|X = σ∗i (KYi

−KYi|X)+KZ|X = σ∗i KYi
+(KZ|X−σ∗i KYi|X).

So the discrepancy divisor of σi is KZ|Yi
= KZ|X − σ∗i KYi|X , i = 1, 2. Therefore, by the

change of variable formula, for i = 1, 2 we obtain:∫
L(Yi)

L−ordtKYi|Xdµ =

∫
L(Z)

L−ordt(σ∗i KYi|X+KZ|Yi
)dµ =

∫
L(Z)

L−ordtKZ|X .

This finishes the proof.

The independence of stringy invariants on the chosen resolution is used for proving the
following theorem of Kontsevich:

Proposition 4.10. ([5], Thm 3.6) Let X be a complex projective variety with at worst
Gorenstein canonical singularities. If X admits a crepant resolution h : Y → X, then the
Hodge numbers of Y are independent of the choice of crepant resolution.
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Proof. The discrepancy divisor of a crepant resolution h : Y → X is zero by definition, so
ai = 1 for all i ∈ S. Therefore,

Est(X) =
∑
i∈S

E(D◦
I ) = E(Y ).

On the other hand, the stringy E-function of X is independent of the chosen resolution;
in particular, E(Y ) = Est(X) = E(Y ′), for any other crepant resolution h′ : Y ′ → X. It
remains to note that E(Y ) determines the Hodge-Deligne numbers of Y , and hence the
Hodge numbers since Y is smooth and projective.

�

5. Motivic volume

Definition 5.1. Motivic volume
If X is a complex algebraic variety of pure dimension d, the motivic volume of X is the
motivic measure of the whole arcspace of X, i.e. µ(L(X)). Recall the latter was defined by

µ(L(X)) = lim
n→∞

[πn(L(X))]

Lnd
,

and it equals [X] when X is non-singular.

A formula for the motivic volume of X can be given in terms of a suitable resolution of
singularities, by using Proposition 2.9 (see [14], §5.1).

Definition 5.2. arc-Euler characteristic
Let Mloc be the subring of M̂C obtained from (the image of) MC by inverting all the
elements [Pj], j ∈ N (since [Pj] = 1 + L + · · ·Lj, this is equivalent to inverting 1

Lj−1
, j ∈ N).

As noted before, the E-polynomial and the Euler characteristic extend from MC to Mloc.
The arc-Euler characteristic of a variety X is defined as χ(µ(L(X))), and it generalizes the
usual Euler characteristic χ(X) for non-singular X.

6. Motivic zeta function. Monodromy conjecture

Let M be a non-singular irreducible variety of dimension m, and f : M → C a non-
constant regular function. Let X := {f = 0}. For each n ∈ N, let fn : Ln(M) → Ln(C)
be the morphism induced on the arc-space level by the morphism f . Any point δ ∈ Ln(C)
corresponds to an element δ(t) ∈ C[t]/(tn+1); denote by ordtδ the largest k ∈ {1, .., n, +∞}
such that tk|δ(t). Set

Xn := {γ ∈ Ln(M) | ordtfn(γ) = n}, for n ∈ N.

Then Xn is a locally closed subvariety of Ln(M). Moreover, if n ≥ 1, then πn
0 (Xn) ⊂ X.

Definition 6.1. The motivic zeta function of f : M → C is the formal power series:

Z(T ) :=
∑
n≥0

[Xn](L−mT )n

in MC[[T ]].
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Remark 6.2. If D is the (effective) divisor of zeros of f , then:∫
L(X)

L−ordtDdµ = Z(L−1).

The following result shows how to calculate the motivic zeta function Z(T ) in terms of a
resolution:

Proposition 6.3. Let h : Y → M be an embedded resolution of {f = 0}, i.e. h is a
proper birational morphism from a non-singular variety Y such that h is an isomorphism
on Y \ h−1({f = 0}), and h−1({f = 0}) is a normal crossing divisor. Let {Di}i∈S be the
irreducible components of h−1({f = 0}), and set D◦

I = (∩i∈IDi) \ (∪l /∈IDl), for I ⊂ S. If we
set div(f ◦ h) =

∑
i∈S aiDi and Kh = KY |M =

∑
i∈S(νi − 1)D1, then:

Z(T ) =
∑
I⊂S

[D◦
I ]
∏
i∈I

(L− 1)T ai

Lνi − T ai
.

In particular, Z(T ) is rational and belongs to the subring ofMC[[T ]] generated byMC and
the elements T a

Lν−T a , where ν, a ∈ Z>0.

Remark 6.4. The motivic zeta function Z(T ) specializes to the topological zeta function of
f . Indeed, evaluate Z(T ) at T = L−s, for any s ∈ N, and obtain the well-defined elements∑

I⊂S

[D◦
I ]
∏
i∈I

L− 1

Lνi+sai − 1
=
∑
I⊂S

[D◦
I ]
∏
i∈I

1

[Pνi+sai−1]

inMloc. Applying the Euler characteristic χ(·) yields the rational numbers

(6.1)
∑
I⊂S

χ(D◦
I )
∏
i∈I

1

νi + sai

for s ∈ N. The topological zeta function Ztop(s) of f is the unique rational function in one
variable s admitting the above values for s ∈ N. In particular, this specialization argument
together with the intrinsec definition of the motivic zeta function (based on the notion of
arc spaces) show that Ztop(s) does not depend on the chosen resolution h : Y → M (a
priori, this fact is not clear at all, if one takes the equation (6.1) as the definition of the
value Ztop(s)).

There is a conjectural relation between the poles of the topological zeta function and the
eigenvalues of the local monodromy of f . This is know as the monodromy conjecture
and asserts the following: If s0 is a pole of Ztop(s), then e2πis0 is an eigenvalue of the local
monodromy action on the cohomology of the Milnor fiber of f at some point of {f = 0}.
One can formulate a motivic monodromy conjecture as follows: Z(T) belongs to the ring
generated by MC and the elements T a

Lν−T a , where ν, a ∈ Z>0 and e2πi ν
a is an eigenvalue of

the local monodromy as above.

7. McKay Correspondence

One of the most striking application of motivic integration is Batyrev’s proof of the
conjecture of Reid on the generalized McKay correspondence.
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Theorem 7.1. McKay correspondence
Let G ⊂ SL(n, C) be a finite subgroup acting on Cn. Assume that there exists a crepant
resolution Y of the quotient variety X := Cn/G. Then the Euler number of Y equals the
number of conjugacy classes of G.

The proof is based on Batyrev’s formula for the stringy E-function of the Gorenstein
canonical quotient singularity Cn/G, in terms of the representation theory of the finite
subgroup G ⊂ SL(n, C) (cf. [1]):

(7.1) Est(Cn/G) =
∑

[g]∈C(G)

(uv)n−age[g],

where the sum is over a set C(G) of representatives of conjugacy classes of G.
Here, age[g] is defined as follows. Each g ∈ G is conjugate to a diagonal matrix

g = diag(e2πiα1(g)/r(g), · · · , e2πiαn(g)/r(g)), with 0 ≤ αj(g) < r(g),

where r(g) is the order of g. To each conjugacy class [g] of the group G, we associate an
integer age[g] ∈ {0, 1, · · · , n− 1}, defined by

age[g] :=
1

r(g)

n∑
j=1

αj(g).

Proof. of Thm. 7.1.
Let Y be a crepant resolution of X = Cn/G. For proving the theorem, it suffices to show

that the non-zero Betti numbers of Y are:

dimCH2k(Y ; C) = #{age k conjugacy classes of G},
for k = 0, · · · , n− 1.

Indeed, the Hodge structure in H i
c(Y ; Q) is pure for each i, and the Poincaré duality

isomorphism
H2n−i

c (Y ; C)⊗H i(Y ; C)→ H2n
c (Y ; C) ∼= C(n)

respects the Hodge structure. So it is enough to show that the only non-zero Hodge-Deligne
numbers of the compactly supported cohomology of Y are

hn−k,n−k(H2n−2k
c (Y ; C)) = #{age k conjugacy classes of G}.

Note that hn−k,n−k(H2n−2k
c (Y ; C)) is the coefficient of (uv)n−k in the E-polynomial of Y .

Moreover, since Y is a crepant resolution, we know that E(Y ) = Est(X). The result follows
now from (7.1).

�

8. Stringy Chern classes of singular varieties ([8])

8.1. MacPherson’s Chern class. Fix a complex algebraic variety, X. Let F (X) be the
group of constructible functions on X, i.e. the subgroup of the abelian group of all Z-
valued functions f : X(C) → Z that is generated by characteristic functions 1S, where
S ranges among closed subvarieties of X. Note that F (X) is a commutative ring, with
the multiplication defined pointwise: for two constructible sets S and T on X, we have
1S · 1T = 1S∩T . The zero element 1∅ is the constant funtion 0, and the identity is the
constant function 1, i.e. 1X .
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Associated to any morphism of varieties f : X → Y , there is a group homomorphism, the
pushforward f∗ : F (X) → F (Y ) such that, for any constructible set S ⊂ X, the function
f∗1S is defined pointwise by setting

f∗1S(y) = χc(f
−1(y) ∩ S), for any y ∈ Y.

In particular, if S is a subvariety of X and g = f |S, then f∗1S = g∗1S.
On any variety X, the Chow group Ak(X) is defined to be the free abelian group on the

k-dimensional irreducible closed subvarieties of X, modulo the subgroup generated by the
cycles of the form [div(f)], where f is a non-zero rational function on a (k + 1)-dimensional
subvariety of X.

Given a complex variety X, MacPherson defined a homomorphism of additive groups

c : F (X)→ A∗(X)

such that, when X is smooth and pure dimensional, one has c(1X) = c(TX) ∩ [X], where
c(TX) is the total Chern class of X and [X] is the class representing X in A∗(X). Moreover,
the transformation c commutes with pushforwards along proper morphisms. The total
Chern class of a singular variety X is defined as

cSM(X) := c(1X).

As a consequence of the functoriality of MacPherson transformation, one has that∫
X

cSM(X) = χ(X)

where the integral sign means to take the degree of the zero-dimensional piece of the term
following.

8.2. Stringy Chern classes.

8.2.1. Relative motivic ring and relative motivic integration ([12]). Fix a complex algebraic
variety X. Let V arX be the category of X-varieties, that is, integral, separated schemes

of finite type over X. Given an X-variety V
g→ X, denote by {V } the corresponding

class modulo isomorphisms over X. Set LX := {A1
X}. Let K0(V arX) be the free Z-

module generated by the isomorphism classes of X-varieties, modulo the relation {V } =
{V \W}+ {W}, for W a closed subvariety of an X-variety V (here both W and V \W are
viewed as X-varieties under the restriction of the morphism V → X). K0(V arX) becomes
a ring when the product is defined by setting {V } · {W} = {V ×X W}, and extending it

associatively. This ring has as zero element {∅}, and the identity element {X} = {X id→ X}.
We define

MX := K0(V arX)[L−1
X ],

and still use the symbol {V } to denote the class of the X-variety V in MX . Completing
with respect to the dimensional filtration Fm

X (as m → ∞) we obtain the relative motivic

ring M̂X . Here Fm
X is the subgroup of MX generated by elements {V } · L−i

X , with V an
X-variety such that dimC(V )− i ≤ −m. We denote by

τ = τX : K0(V arX)→ M̂X

the composition of maps K0(V arX)→MX → M̂X .
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All main definitions and properties valid for motivic integration over SpecC translate to
the relative setting by remembering the maps over X. For instance, let {Y } be a smooth
X-variety, represented by a morphism f : Y → X. Let L(Y ) be the space of formal arcs on
Y , and denote by Cyl(L(Y )) the set of cylinders (i.e. constructible subsets) on L(Y ). Then
the relative motivic (pre-)measure

µX : Cyl(L(Y ))→ M̂X

is defined as follows. For A ∈ Cyl(L(Y )), we choose an integer m such that π−1
m (πm(A)) = A

(this is possible since Y is smooth, hence any cylinder is stable), and put

µX(A) := {πm(A)} · L−m·dimC(Y )
X

where πm(A) is regarded as a constructible set over X under the composite morphism
Lm(Y )→ Y → X. This definition does not depend on the choice of m.

In order to define the relative motivic integral, consider an effective divisor D on Y ,
together with the associated function ordtD : L(Y )→ N ∪ {∞}. Its level set are cylinders
(except the one at infinity, which will be declared to have zero measure). Then the relative
motivic integral is defined by

(8.1)

∫
L(Y )

L−ordtD
X dµX :=

∑
n≥0

µX
(
{(ordtD)−1(n)}

)
· L−n

X .

This yields an element in M̂X .
The change of variable formula also holds in the relative setting, more precisely:

Proposition 8.1. Let g : Y ′ → Y be a proper birational morphism between smooth varieties
over X, and let KY ′|Y be its discrepancy divisor. If D is an effective divisor on Y , then

(8.2)

∫
L(Y )

L−ordtD
X dµX =

∫
L(Y ′)

L−ordt(g∗D+KY ′|Y )

X dµX .

The change of variables formula, together with Hironaka resolution of singularities, re-
duces the computations to the case of a simple normal crossing effective divisor D =∑

i∈J aiEi on a smooth X-variety Y (here Ei are the irreducible components of SuppD).
Then a calculation like in Proposition 2.9 yields the following:

(8.3)

∫
L(Y )

L−ordtD
X dµX =

∑
I⊆J

{E◦
I}∏

i∈I{P
ai
X}

,

where E◦
I = (∩i∈IEi) \ (∪l /∈IEl) for I ⊂ J .

As a corollary of this formula, we obtain the important fact that every integral of the
form (8.1) is an element in the image NX := Im(ρ) of the natural ring homomorphism

ρ : K0(V arX)[{Pa
X}−1]a∈N → M̂X .

8.2.2. Definition of stringy Chern classes. The crucial step in defining the stringy Chern
classes is to construct a ring homomorphism from a certain relative motivic ring to the
Q-valued constructible functions on X. (Then compose with MacPherson’s Chern class
transformation in order to obtain the stringy Chern classes.) We will do this in few steps,
starting with the case of an effective divisor on a smooth X-variety Y , then considering the
case when X itself is a Q-Gorenstein log-terminal variety. In the latter case, we choose a
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log resolution of X, say Y , thus obtaining a pair of a smooth X-variety Y and a Q-Weil
divisor, KY |X . This case requires more work, since we deal with Q-divisors, and we need to
extend the motivic ring in order to be able to integrate order functions with rational values.

Case I. D is an effective divisor on a smooth X-variety Y .
We begin by observing that if Y and Y ′ are X-varieties, then the fibers over x ∈ X satisfy:
(Y ×X Y ′)x = Yx × Y ′

x. So we can define a ring homomorphism Φ0 : K0(V arX)→ F (X) by
setting

Φ0({V
g→ X}) = g∗1V .

This is indeed a ring homomorphism since, by definition, for x ∈ X we have: g∗1V (x) =
χc(g

−1(x)) = χc(Vx). Then for any x ∈ X: (Φ0({V } · {V ′})) (x) = χc((V ×X V ′)x) =
χc(Vx × V ′

x) = χc(Vx) · χc(V
′
x) = (Φ0({V }) · Φ0({V ′}))(x).

We proceed by extending Φ0 to a ring homomorphism Φ : NX → F (X)Q. In order to
do this, first note that Φ0({Pa

X}) = (a + 1)1X is an invertible element in F (X)Q, thus Φ0

extends uniquely to a ring homomorphism

Φ̃ : K0(V arX)[{Pa
X}−1]a∈N → F (X)Q.

In order to get the desired extension to NX it suffices to observe that Φ̃ kills the kernel of

ρ : K0(V arX)[{Pa
X}−1]a∈N → M̂X (cf. [8], (2.1)).

Now let D be an effective divisor on a smooth X-variety Y . Define

Φ(Y,D) = ΦX
(Y,D) := Φ

(∫
L(Y )

L−ordtD
X dµX

)
∈ F (X)Q.

When D = 0 write ΦX
Y , or just ΦY .

With the notations from the change of variable formula, i.e. for g : Y ′ → Y a birational
morphism between smooth X-varieties (represented by morphisms f : Y → X and resp.
f ′ : Y ′ → X) and D an effective divisor on Y , by applying Φ to both sides of formula (8.2)
we obtain the following identity in F (X)Q:

Φ(Y,D) = Φ(Y ′,g∗D+KY ′|Y ).

Moreover, assuming that g∗D + KY ′|Y =
∑

i∈J aiEi is a simple normal crossing divisor, by
applying Φ to formula (8.3) for the pair (Y ′, g∗D + KY ′|Y ) we obtain the following identity
in F (X)Q:

(8.4) Φ(Y,D) = Φ(Y ′,g∗D+KY ′|Y ) =
∑
I⊆J

f ′∗1E◦
I∏

i∈I(ai + 1)

In particular, if D = 0, then ΦY = Φ({Y }) = Φ0({Y
f→ X}) = f∗1Y .

Case II. X is a Q-Gorenstein log-terminal variety.
In this case, we first choose a log resolution h : Y → X of X, i.e. the exceptional divisor
h−1(Xsing) is a simple normal crossing divisor, and denote by Ei, i ∈ J the irreducible
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components of the exceptional locus. The discrepancy divisor KY |X is a Q-divisor, uniquely
defined by its discrepancies, i.e.

KY |X =
∑
i∈J

aiEi

with all ai ∈ Q and ai > −1 (this is the log-terminal condition). This should be interpreted
as rKY |X = rKY − h∗(rKX) =

∑
i∈J raiEi, for some r ∈ Z such that rai ∈ Z for every

i ∈ J .
We would like to define a ring homomorphism Φ as in the previous case, and then an

element in F (X)Q, namely by setting

(8.5) ΦX := ΦX
(Y,KY |X) = Φ

(∫
L(Y )

L−ordtKY |X
X dµX

)
.

Given that the divisor KY |X is now a Q-divisor, in order to make sense of this defin-
ition we need to enlarge the motivic ring so that we can integrate order functions with
rational values. We also need to adapt the definition of the ring homomorphism Φ to this
enlarged motivic ring. We will do this in what follows. But before that, notice that if X
is a Gorenstein canonical variety, then KY |X is an effective normal crossing divisor on the
smooth X-variety Y , and formula (8.5) makes sense from the considerations made in Case I.

Extending the relative motivic ring.
Recall that by choosing a log resolution, we are in the following setting: Y is a smooth
X-variety, and D =

∑
i∈J aiEi is a simple normal crossing Q-divisor on Y , with ai > −1

for every i (here, D is the discrepancy divisor of our log resolution). Since Y is smooth, this
is equivalent to saying that (Y,−D) is a Kawamata log-terminal pair. Choose an integer r

such that rai ∈ Z for every i, and define the ring M̂1/r
X to be the completion of

K0(V arX)[L±1/r
X ]

with respect to a similar dimensional filtration as the one used in the case r = 1. Here L1/r
X

is a formal variable with (L1/r
X )r = LX , and we assign to it the dimension dimC(X) + 1

r
.

Then we define

(8.6)∫
L(Y )

L−ordtD
X dµX notation

=

∫
L(Y )

(L1/r
X )−ordt(rD)dµX :=

∑
n∈Z

µX
(
{(ordt(rD))−1(n)}

)
· (L1/r

X )−n.

In fact, an explicit computation shows that the summation is taken over N. This is the
crucial point in order to make sure that the sum in the right-hand side defines indeed an

element in M̂1/r
X ; it is precisely at this point where we need the assumption of log-terminality.

In addition, a standard computation yields the following formula for the integral:

(8.7)

∫
L(Y )

L−ordtD
X dµX =

∑
I⊆J

{E◦
I}
∏
i∈I

∑r−1
t=0 (L1/r

X )t∑r(ai+1)−1
t=0 (L1/r

X )t
.

This is just formula (8.3), with L regarded as (L1/r)r. From this formula we also see that
the assumption ai > −1 is necessary indeed.
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Extending the homomorphism Φ.

In view of the desired formula (8.5), we want to be able to extend Φ to M̂1/r
X . More precisely,

by formula (8.7), it suffices to extend Φ to the smallest subring of M̂1/r
X that contains the

values of the relative motivic integral. This subring will be denoted by N 1/r
X .

We first extend the ring homomorphism Φ0 : K0(V arX)→ F (X) to a ring homomorphism

Φ0 : K0(V arX)[L1/r
X ]→ F (X)

by setting Φ0(L1/r
X ) = 1X . Observing that Φ0(

∑b
t=0(L

1/r
X )t) = (b + 1)1X , conclude as in

Case I that Φ0 induces a ring homomorphism

Φ : N 1/r
X → F (X)Q.

Also note that for every rational number a > −1 and any choice of r ∈ Z such that ra ∈ Z,
we have:

Φ

( ∑r−1
t=0 (L1/r

X )t∑r(a+1)−1
t=0 (L1/r

X )t

)
=

r

r(a + 1)
1X =

1X

a + 1
,

which, in particular, does not depend on the choice of r. Therefore, formula (8.5) makes
now complete sense:

ΦX := ΦX
(Y,KY |X) = Φ

(∫
L(Y )

L−ordtKY |X
X dµX

)
.

This definition is independent of the choice of resolution since any two resolutions are
dominated by a third, and it is enough to observe the following:

Proposition 8.2. ([8], Prop. 3.2) Let Y be a smooth X-variety, and D be a simple normal
crossing divisor on Y such that (Y,−D) is a log-terminal pair. Let g : Y ′ → Y be a proper
birational morphism such that Y ′ is smooth and KY ′|Y + g∗D is a simple normal crossing
divisor. Then (Y ′,−(KY ′|Y + g∗D)) is a log-terminal pair, and

ΦX
(Y,D) = ΦX

(Y ′,KY ′|Y +g∗D).

Now if D = KY |X is the discrepancy divisor of the log resolution Y of X, the above
identity turns into ΦX

(Y,KY |X) = ΦX
(Y ′,KY ′|X), by noting that KY ′|X = KY ′|Y + g∗KY |X .

Formula (8.4) from Case I still holds in this more general setting by allowing ai to be
rational numbers larger than −1.

We have now all the ingredients for defining the stringy Chern classes.

Definition 8.3. Let X be a Q-Gorenstein log-terminal variety. The stringy Chern class of
X is the class

cst(X) := c(ΦX) ∈ A∗(X)Q,

where c : F (X)Q → A∗(X)Q is MacPherson’s Chern class transformation, tensored with Q.
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8.2.3. Properties of stringy Chern classes.

Proposition 8.4. Let X be a proper Q-Gorenstein log-terminal variety. Then∫
X

cst(X) = χst(X).

Proof. Let h : Y → X be a log resolution of singularities for X, and let Ei, i ∈ J , denote the
irreducible components of the exceptional locus. Then KY |X =

∑
i kiEi is a simple normal

crossing Q-divisor. By formula (8.4), adapted to the case of log-terminal pairs, and using
the properness of h, we have:

cst(X) = c(ΦX) = c(ΦX
(Y,KY |X)) = c

(∑
I⊆J

h∗1E◦
I∏

i∈I(ki + 1)

)
= h∗c

(∑
I⊆J

1E◦
I∏

i∈I(ki + 1)

)
Since the clossure of each stratum of the stratification X = tI⊆JE◦

I is a union of strata,
there exist rational numbers bI such that:∑

I⊆J

1E◦
I∏

i∈I(ki + 1)
=
∑
I⊆J

bI1Ē◦
I
.

Therefore,∫
X

cst(X) =

∫
Y

∑
I⊆J

bIcSM(Ē◦
I ) =

∑
I⊆J

bI

∫
Ē◦

I

cSM(Ē◦
I ) =

∑
I⊆J

bIχ(Ē◦
I ) =

∑
I⊆J

χ(E◦
I )∏

i∈I(ki + 1)
= χst(X).

�

Proposition 8.5. If X admits a crepant resolution h : Y → X, then

cst(X) = h∗(c(TY ) ∩ [Y ]).

In particular, if X is smooth, then cst(X) = c(TX) ∩ [X].

Proof. Since KY |X = 0, h is proper and Y is smooth, we have

cst(X) = c(ΦX) = c(ΦX
Y ) = c(h∗1Y) = h∗c(1Y) = h∗(c(TY ) ∩ [Y ]).

�

For the next result, we need the following extension of the definition of K-equivalence.

Definition 8.6. Two normal Q-Gorenstein varieties X and X ′ are said to be K-equivalent
if there exists a smooth variety Y and proper birational morphisms f : Y → X and f ′ :
Y → X ′ such that KY |X = KY |X′ .

If X and X ′ are K-equivalent varieties, then the condition on the relative canonical
divisors is satisfied for every choice of Y , f and f ′.

Theorem 8.7. Let X and X ′ be Q-Gorenstein log-terminal varieties, and assume that they

are K-equivalent. Consider any diagram X
f← Y

f ′→ X ′ with Y a smooth variety and f and
f ′ proper birational morphisms. Then:

(1) There is a class C ∈ A∗(Y )Q such that f∗(C) = cst(X) in A∗(X)Q and f ′∗(C) =
cst(X

′) in A∗(X
′)Q.
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(2) Assume that K := KY |X = KY |X′ is a simple normal crossing divisor
∑

i∈J kiEi.
Then

C = c

(∑
I⊆J

1E◦
I∏

i∈I(ki + 1)

)
.

Proof. It suffices to prove the theorem under the assumption that K is simple normal cross-
ing divisor. Indeed, by further blowing up Y , we can always reduce to this case, and note
that push-forward on Chow groups is functorial for proper morphisms. Then, defining C as
in the second part of the statement, we have:

f∗(C) = c

(∑
I⊆J

f∗1E◦
I∏

i∈I(ki + 1)

)
= c(ΦX

(Y,K)) = c(ΦX) = cst(X),

and similarly f ′∗(C) = cst(X
′).

�

8.3. McKay correspondence for stringy Chern classes. Here we survey [8] §6, where
the authors compare the stringy Chern classes of quotient varieties with Chern-Schwartz-
MacPherson classes of fixed point-set data.

Let M be a smooth quasi-projective complex variety, and let G be a finite group with
an action on M such that the canonical line bundle on M descends to the quotient (the
example that should be kept in mind is that of a finite subgroup of SL(n, C) acting on
Cn). Let X := M/G, with projection π : M → X. Then X is normal and has Gorenstein
canonical singularities.

There are two ways of breaking the orbifold X into simpler pieces. (1.) The first way
is to stratify X according to the stabilizers of the points on M . For any subgroup H of
G, let XH ⊆ X be the set of points x such that for every y ∈ π−1(x) the stabilizer of y,
Gy = {g ∈ G : gy = y}, is conjugate to H. If we let H run in a set S(G) of representatives
of conjugacy classes of subgroups of G, obtain a stratification of X as

X = tH∈S(G)X
H .

(2.) The second way is to look at fixed-point sets as orbifolds under the action of the
corresponding centralizers. For every g ∈ G, consider the fixed-point set M g = {x ∈ M :
gx = x}. The centralizer of g, defined as C(g) = {h ∈ G : gh = hg}, acts on M g and there
is a commutative diagram:

M g

��

// M

��
M g/C(g)

πg // X

Moreover {M g/C(g)}, as an element in K0(V arX), is independent of the representative g
chosen for its conjugacy class. Also note that πg is a proper morphism.

Fix a set C(G) of representatives of conjugacy classes of elements of G.

Theorem 8.8. With the above assumptions and notations, ΦX is an element in F (X) and
the following identities hold in F (X):

(8.8) ΦX =
∑

H∈S(G)

|C(H)| · 1XH =
∑

g∈C(G)

(πg)∗1Mg/C(g).
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The first equality follows from the motivic McKay correspondence. For the second equal-
ity, the language of stacks is used.

As a corollary, we obtain a McKay correspondence for the stringy Chern classes. More
precisely:

Theorem 8.9.

(8.9) cst(X) =
∑

g∈C(G)

(πg)∗cSM(M g/C(g)) ∈ A∗(X)

Proof. This follows by applying the transformation c : F (X)→ A∗(X) to the first and last
members of formula (8.8):

cst(X) =
∑

g∈C(G)

c((πg)∗1Mg/C(g)) =
∑

g∈C(G)

(πg)∗(c(1Mg/C(g))) =
∑

g∈C(G)

(πg)∗cSM(M g/C(g)).

�

Definition 8.10. The orbifold Euler number of the quotient variety X = M/G is defined
as

e(M, G) :=
∑

g∈C(G)

χ(M g/C(g)).

Batyrev proved the following theorem:

Theorem 8.11. With the notations from the beginning of this section:

χst(X) = e(M, G).

When X is proper, this result follows from Proposition 8.4 and Theorem 8.9.

Remark 8.12. The construction of stringy Chern classes, that makes the object of this
section, has been greatly generalized to stringy classes T st

y whose associated genus is the
stringy χy-genus, χst

y ([13]). The objects of this section are obtained by the substitution
y = −1. If X is smooth then T st

y (X) = T ∗
y ∩ [X], where T ∗

y is the modified Todd class that
appears in the generalized Riemann-Roch theorem.

9. Singular Elliptic genus ([3])

This is an attempt to understand the work of Borisov and Libgober on generalizations of
elliptic genera to singular varieties.

9.1. Elliptic genera of complex manifolds. In this section X is a compact (almost)
complex manifold of complex dimension d. Denote by TX its holomorphic tangent bundle.
Let {xl}l be the Chern roots of TX , i.e. the total Chern class of TX is formally factorized
as c(TX) =

∏
l(1 + xl). Then the elliptic genus of X, denoted by Ell(X; y, q), is the genus

corresponding to the power series

Q(x) = x
θ( x

2πi
− z, τ)

θ( x
2πi

, τ)
,
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where q = e2πiτ , y = e2πiz, for z ∈ C and τ ∈ H. Here H is the upper-half plane and θ is
the Jacobi theta function, which is defined as

θ(z, τ) = q
1
8 (2 sin πz)

∞∏
l=1

(1− ql)
∞∏
l=1

(1− qly)(1− qly−1).

In short,

(9.1) Ell(X; y, q) =

∫
X

∏
l

xl

θ( xl

2πi
− z, τ)

θ( xl

2πi
, τ)

.

Note that the defining series Q(x) is not normalized, i.e.

Q(0) =
1

2πi
· θ(−z, τ)

θ′(0, τ)
6= 1.

The normalized version of the elliptic genus is

Ell(X; y, q) =

∫
X

∏
l

xl

2πi
·
θ( xl

2πi
− z, τ)θ′(0, τ)

θ( xl

2πi
, τ)θ(−z, τ)

.

When q → 0, the elliptic genus is ’almost’ the Hirzebruch χy-genus. More precisely:

lim
q→0

Ell(X; y, q) = y−d/2χ−y(X),

where
χy(X) =

∑
p,q

(−1)qhp,q(X)yp.

It follows that
Ell(X; y = 1, q → 0) = χ−1(X) = χ(X)

is the topological Euler characteristic of the compact complex manifold X. And also

(−1)d/2Ell(X; y = −1, q → 0) = χ1(X) = σ(X)

is the signature of X.
As it can be seen from (9.1), elliptic genus is a combination of the Chern numbers of X.

However, it turns out that it cannot be expressed via the Hodge numbers of X. Since it
depends only on the Chern numbers, the elliptic genus is a cobordism invariant.

By making use of elliptic genera, Gritsenko ([10]) proved the following interesting result:

Proposition 9.1. Let M be an almost complex manifold of complex dimension d such that
c1(M) = 0 in H2(M ; R). Then

d · χ(M) ≡ 0 mod 24.

Moreover, if c1(M) = 0 in H2(M ; Z), the stronger result holds

χ(M) ≡ 0 mod 8 if d ≡ 2 mod 8.

9.2. Elliptic genera of log-terminal varieties. In this section, we follow [3] and de-
fine singular elliptic genera for projective Q-Gorenstein varieties with at worst log-terminal
singularities. Singular elliptic genera can be defined in a similar manner for Kawamata
log-terminal pairs, but in order to keep things simple, in this section we only present the
Q-Gorenstein log-terminal case (but see also Remark 9.3).
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9.2.1. Definition.

Definition 9.2. Let X be a projective Q-Gorenstein variety with log-terminal singularities.
Let h : Y → X be a log resolution of X, i.e. the exceptional divisor D =

∑
k Dk is a simple

normal crossing divisor. The discrepancies ak of the components Dk of D are determined
by the relative canonical divisor of h, i.e.

KY = h∗KX +
∑

k

akDk,

and the log-terminal condition translates into ak > −1 for all k. Let c(TY ) =
∏

l(1 + yl),
with {yl}l the Chern roots of TY . Let ek = c1(Dk). The singular elliptic genus of X is
defined as a function of two variables y = e2πiz and q = e2πiτ by the following formula:

(9.2)

ÊllY (X; y, q) =

∫
Y

(∏
l

yl

2πi
·
θ( yl

2πi
− z, τ)θ′(0, τ)

θ( yl

2πi
, τ)θ(−z, τ)

)
×

(∏
k

θ( ek

2πi
− (ak + 1)z, τ)θ(−z, τ)

θ( ek

2πi
− z, τ)θ(−(ak + 1)z, τ)

)
.

Remark 9.3. The very same formula can be used to define singular elliptic genera asso-
ciated to projective Kawamata log-terminal pairs (cf. [3], Def. 3.3). A Kawamata log-
terminal pair (X, T ) consists of a normal variety X together with a Q-Weil divisor T such
that KX + T is Q-Cartier. Then a log resolution of the pair (X, T ) is a proper birational
morphism h : Y → X from a non-singular variety Y , such that D := h−1(Xsing ∪ T ) is a
normal crossing divisor. The discrepancies ak of the components Dk of D are determined
by the formula

KY = h∗(KX + T ) +
∑

k

akDk,

and the requirement that the discrepancy of the proper transform of a component of T is
the negative of the coefficient of T at that component. The log-terminal condition requires
that ak > −1 for all k.

As expected, the definition does not depend on the choice of the desingularization Y of
X.

Theorem 9.4. The elliptic genus ÊllY (X; y, q) of a projective Q-Gorenstein log-terminal
variety X does not depend on the choice of the log resolution Y , so it defines an invariant

of X, simply denoted by Êll(X; y, q).

The proof uses the deep Weak Factorization Theorem. It suffices to show that

ÊllY (X; y, q) = ÊllỸ (X; y, q),

where Ỹ is obtained from Y by a blow-up along a nonsingular variety Z. It also can be
assumed that Z has normal crossings with the components Dk of the exceptional divisor of
the log resolution h. For details, see [3].

9.2.2. Main Properties.

Proposition 9.5. The elliptic genera of two different crepant resolutions of a Gorenstein
projective variety coincide.
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Proof. It suffices to show that the elliptic genus of a crepant resolution Y of a Gorenstein
variety X equals the singular elliptic genus of X. If the exceptional set of the crepant
resolution h : Y → X is the simple normal crossing divisor D =

∑
k Dk, then the second

term of the product in the definition of the singular elliptic genus of X is equal to 1, since
all discrepancies ak are equal to 0. Thus, we have the desired equality

Ell(Y ; y, q) = Êll(X; y, q).

If the exceptional divisor is not a simple normal crossing divisor, one can further blow-up
the crepant resolution Y , to get a proper birational morphism g : Z → Y such that the
exceptional divisor of g and that of f ◦ g are simple normal crossing divisors. Then the
singular elliptic genera of Y and X calculated via Z are given by the same formula since
the discrepancies involved coincide. Indeed, we have KZ|X = g∗KY |X + KZ|Y = KZ|Y .

�

In relation with the stringy E-function of Batyrev, we have the following:

Proposition 9.6.

lim
q→0

Êll(X; y, q) = (y−
1
2 − y

1
2 )dEst(X; y, 1) = (y−

1
2 − y

1
2 )dχst

−y(X).

As an addition to Batyrev’s result on the equality of Hodge numbers of birationally
equivalent Calabi-Yau manifolds, one can prove the following:

Proposition 9.7. The elliptic genera of two birational equivalent Calabi-Yau manifolds
coincide.

Proof. If X and Y are birationally equivalent there exists a non-singular complete algebraic
variety Z and birational morphisms hX : Z → X an hY : Z → Y . By further blowing-up, we
can assume that the exceptional divisors of hX and hY are simple normal crossing divisors.
Moreover, the Calabi-Yau condition on X and Y implies that the discrepancy divisors of
hX and hY coincide: KZ|X = KZ = KZ|Y . Therefore the elliptic genera of X and resp. Y
are calculated on Z using the same discrepancies, so they coincide.

�

9.3. McKay correspondence for elliptic genera ([4]). In this section we present the
definition of the orbifold elliptic genus of a global quotient variety, and state a very general
form of McKay correspondence.

Definition 9.8. Let X be a smooth algebraic variety, acted upon by a finite group G. For a
pair of commuting elements g, h ∈ G, let Xg,h be a connected component of the fixed point
set of both g and h. Let TX |Xg,h = ⊕Vλ be the decomposition of the restriction to Xg,h of
the tangent bundle into direct sum of bundles on which g (resp. h) acts by multiplication
by e2πiλ(g) (resp. e2πiλ(h)), for λ(g), λ(h) ∈ Q ∩ [0, 1). Denote by xλ the Chern roots of the
bundle Vλ. Then the orbifold elliptic genus of X/G is defined by the following formula:
(9.3)

Ellorb(X, G; z, τ) =
1

|G|
∑

gh=hg

 ∏
λ(g)=λ(h)=0

xλ

∏
λ

θ( xλ

2πi
+ λ(g)− τλ(h)− z)

θ( xλ

2πi
+ λ(g)− τλ(h))

e2πiλ(h)z[Xg,h].
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In order to formulate the McKay correspondence for elliptic genera, let X be a nonsingular
projective variety on which G acts effectively by biholomorphic transformations. Let µ :
X → X/G be the quotient map, D =

∑
i(νi − 1)Di be the ramification divisor, and let

∆X/G :=
∑

j

(
νj − 1

νj

)
µ(Dj).

Theorem 9.9.

Ellorb(X, G; z, τ) =

(
2πiθ(−z, τ)

θ′(0, τ)

)d

Êll(X/G, ∆X/G; y, q)

where Êll(X/G, ∆X/G; y, q) is the singular elliptic genus of the pair, as defined in Remark
9.3.

Remark 9.10. By the ramification formula, it follows that µ∗(KX/G+∆X/G) = µ∗(KX/G)+
D = KX . Moreover, (X/G, ∆X/G) is Kawamata log terminal ([1], Prop. 7.1).
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