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Abstract. We survey recent developments in the study of Hodge theoretic aspects of

Alexander-type invariants associated with smooth complex algebraic varieties.

1. Introduction

In this expository note, we survey recent developments in the study of Hodge the-
oretic aspects of Alexander-type invariants of complex algebraic manifolds. Our main
goal is to provide the reader with a down-to-earth introduction and multiple access
points to the circle of ideas discussed in detail in our paper [10].

Let U be a connected topological space of finite homotopy type, let

ξ : π1(U)� Z

be an epimorphism, and denote by U ξ the infinite cyclic cover of U corresponding to
ker ξ. Let k be Q or R, and denote by R = k[t±1] the ring of Laurent polynomials in vari-
able t with k-coefficients. The group Z of covering transformations of U ξ induces an R-
module structure on each group Hi(U

ξ; k), classically referred to as the i-th (homology)
k-Alexander module of the pair (U, ξ). Since ξ : π1(U) → Z is represented by a homotopy
class of continuous maps U → S1, whenever such a representative f : U → S1 for ξ is
fixed (that is, ξ = f∗), it is also customary to use the notation U f for the correspond-
ing infinite cyclic cover of U . Since U is homotopy equivalent to a finite CW-complex,
Hi(U

ξ; k) is a finitely generated R-module, for each integer i.
As a motivating example, let us consider the case of a fiber bundle f : U → S1 with

connected fiber F a finite CW-complex. Then ξ = f∗ : π1(U) → π1(S1) = Z is surjective,
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and the corresponding infinite cyclic cover U f is homeomorphic to F × R and hence
homotopy equivalent to F . The deck group action on Hi(U

f ; k) is isomorphic (up to
a choice of orientation on S1) to the monodromy action on Hi(F ; k), which gives the
latter vector spaces R-module structures. Therefore Hi(U

f ; k) ∼= Hi(F ; k) is a torsion
R-module for all i ≥ 0. This applies in particular to the case of the Milnor fibration
f : U → S1 associated to a reduced complex hypersurface singularity germ, with F the
corresponding Milnor fiber [19].

However, the Alexander modules Hi(U
ξ; k) are not torsion R-modules in general,

since U ξ may not be of finite type; e.g., if U = S1 ∨ S2 and ξ = idZ : π1(U) ∼= Z → Z,
then U ξ is a bouquet of S2’s, one for each integer, and hence H2(U ξ; k) ∼= R . One then
considers the torsion part

Ai(U
ξ; k) := TorsRHi(U

ξ; k)

of the R-module Hi(U
ξ; k). This is a k-vector space of finite dimension on which a

generating covering transformation (i.e., t-multiplication) acts as a linear automorphism.
Alexander invariants were first introduced in the classical knot theory, where it was

noted that, in order to study a knot K ⊂ S3, it is useful to consider the topology of
its complement U = S3 \K through the lens of the infinite cyclic cover induced by the
abelianization map ξ : π1(U)� H1(U ;Z) ∼= Z. Such invariants were quickly adopted in
singularity theory, for investigating the topology of Milnor fibers associated to complex
hypersurface singularity germs, see, e.g., [5].

By analogy with knot theory, Libgober, Dimca, Nemethi and others considered Alexan-
der modules for the study of the topology of complements of complex affine hypersur-
faces, see, e.g., [8], [9], [14], [16], [17]. In this context, it was shown that the Alexander
modules depend on the position of singularities of a hypersurface.

A more general setup was considered in [2], where Alexander modules were asso-
ciated with any complex quasi-projective manifold U endowed with an epimorphism
ξ : π1(U) � Z. It was shown in loc.cit. that all eigenvalues of the t-action on Ai(U

ξ; k)

are roots of unity, for any integer i, and upper bounds on the sizes of Jordan blocks of
the t-action on each Ai(U

ξ; k) were obtained.
In [10], we investigated a question of S. Papadima about the existence of mixed Hodge

structures on the torsion parts Ai(U ξ; k) of the Alexander modules of a complex alge-
braic manifold U endowed with an epimorphism ξ : π1(U) � Z. Note that the infinite
cyclic cover U ξ is not in general a complex algebraic variety, so Deligne’s classical mixed
Hodge theory does not apply. We answered Papadima’s question positively in the case
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when the epimorphism ξ is induced by an algebraic morphism f : U → C∗. More pre-
cisely, we proved the following result (see [10, Theorem 1.0.2]):

Theorem 1.1. Let U be a smooth connected complex algebraic variety, with an algebraic map
f : U → C∗. Assume that ξ = f∗ : π1(U)→ Z is an epimorphism, and denote by U f = {(x, z) ∈
U × C | f(x) = ez} the corresponding infinite cyclic cover. Then the torsion part Ai(U f ;Q) of
the Q[t±1]-module Hi(U

f ;Q) carries a canonical Q-mixed Hodge structure for any i ≥ 0.

In this algebraic context, partial results have been previously obtained in the following
special situations:

(1) When Hi(U
ξ;Q) is Q[t±1]-torsion for all i ≥ 0 and the t-action is unipotent, see

[12];
(2) When f : U = Cn \ {f = 0} → C∗ is induced by a reduced complex polynomial

f : Cn → C which is transversal at infinity (i.e., the hyperplane at infinity in CP n

is transversal in the stratified sense to the projectivization of {f = 0}), for ξ = f∗

and i < n; see [8, 16]. In this case it was shown in [17] that the Alexander
modules Hi(U

ξ;Q) are torsion Q[t±1]-modules for i < n, while Hn(U ξ;Q) is free
and Hi(U

ξ;Q) = 0 for i > n. Furthermore, the t-action on Hi(U
ξ;C) is semisimple

for i < n, and the corresponding eigenvalues are roots of unity of order d =

deg(f).
(3) When f : U = Cn \{f = 0} → C∗ is induced by a complex polynomial f : Cn → C

which has at most isolated singularities, including at infinity, in the sense that
both the projectivization of {f = 0} and its intersection with the hyperplane at
infinity have at most isolated singularities. In this case, and with ξ = f∗, there
is only one interesting Alexander module, Hn−1(U ξ;Q), which is torsion (see [14,
Theorem 4.3, Remark 4.4]), and a mixed Hodge structure on it was constructed
in [15]; see also [13] for the case of plane curves under some extra conditions.

Moreover, we showed in [10] that, if U and f are as in case (2) above, the mixed
Hodge structure of Theorem 1.1 recovers the mixed Hodge structure obtained by differ-
ent means in both [8] and [16].

In this note, we indicate the main steps in the proof of Theorem 1.1, and describe
several geometric applications. For complete details, the interested reader may consult
our paper [10]. We also rely heavily on terminology and constructions from [20].
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Grant. L. Maxim is partially supported by the Simons Foundation Collaboration Grant
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2. Preliminaries

2.1. Setup. Notations. Definitions. Examples. Let k be either Q or R. Let R denote the
ring k[t±1] of Laurent polynomials in the variable t over the field k.

Let U be a smooth connected complex algebraic variety, and let f : U → C∗ be an
algebraic map inducing an epimorphism f∗ : π1(U) � Z on fundamental groups. Let
exp: C→ C∗ be the infinite cyclic cover, and let U f be the following fiber product:

(1)
U f ⊂ U × C C

U C∗.

f∞

π
y

exp

f

Hence U f is embedded in U × C as

U f = {(x, z) ∈ U × C | f(x) = ez},

and we let f∞ be the restriction to U f of the projection U × C → C. Since exp is
an infinite cyclic cover, π : U f → U is the infinite cyclic cover induced by ker f∗. The
group of covering transformations of U f is isomorphic to Z, and it induces an R-module
structure on each group Hi(U

f ; k), with 1 ∈ Z corresponding to t ∈ R = k[t±1]. We will
also say t acts on U f as the deck transformation (x, z) 7→ (x, z + 2πi).

Definition 2.1. The i-th homological Alexander module of U associated to the algebraic
map f : U → C∗ is the R-module

Hi(U
f ; k).

Since U has the homotopy type of a finite CW complex, the homology Alexander
modules H∗(U f ; k) of the pair (U, f) are finitely generated R-modules.

Example 2.2. Let f : Cn → C be a weighted homogeneous polynomial. Then f : U = Cn\
{f = 0} → C∗ is a locally trivial topological fibration (called the global Milnor fibration
of f ), whose fiber F has the homotopy type of a finite CW complex. Assume that F is
connected (e.g., the gcd of the exponents of the distinct irreducible factors of f is 1). As
already mentioned in the introduction, in this case we have that Hi(U

f ; k) ∼= Hi(F ; k) is
a torsion R-module for all i ≥ 0. Moreover, the t-action on Hi(U

f ; k) is semisimple for
all i ≥ 0.



5

Example 2.3. Let f : Cn → C be a complex polynomial with V := {f = 0}, and consider
the induced map f : U = Cn \ V → C∗. Assume f has an irreducible decomposition
f = fn1

1 · · · fnr
r with gcd(n1, . . . , nr) = 1. Then H1(U ;Z) ∼= Zr is generated by homology

classes of positively oriented meridians γi about the (regular parts of the) irreducible
components of (the underlying reduced hypersurface of) V . Moreover, f∗ : π1(U) → Z
is the epimorphism given by assigning the integer ni to each meridian γi, i = 1, . . . , r.

Assume moreover that V is “in general position at infinity”, that is, the hyperplane
at infinity in CP n is transversal (in the stratified sense) to the underlying reduced hy-
persurface of the projectivization of V . Then it was shown in [18] (see also [17, 8, 16] in
the case when f is reduced) that the Alexander modules Hi(U

f ;Q) are torsion Q[t±1]-
modules for i < n, while Hn(U f ;Q) is free and Hi(U

f ;Q) = 0 for i > n. Furthermore,
the t-action on Hi(U

ξ;C) is semisimple for i < n, and the corresponding eigenvalues are
roots of unity of order d = deg(f).

Example 2.4. Let A be an essential hyperplane arrangement in Cn, n ≥ 2, defined by the
zero set of a reduced polynomial f = fn1

1 · · · fnr
r : Cn → C with gcd(n1, . . . , nr) = 1. Let

U = Cn \ A be the corresponding arrangement complement, and U f the infinite cyclic
cover induced by f : U → C∗. By [11, Theorem 4], we have that Hj(U

f ;Q) is a torsion
R-module for all j < n, a free R-module for j = n, and 0 for j > n.

We next describe how the homology Alexander modules can be realized as homology
groups of a certain local system on U . Let kUf be the constant k-sheaf on U f , and define

L = π!kUf .

The action of t on U f as deck transformations induces an automorphism of L, making
L into a local system of rank 1 free R-modules. It can be easily seen that L can be
described by the monodromy representation

π1(U) −→ AutR(R)

γ 7→
(
1 7→ tf∗(γ)

)
and, moreover, there are natural isomorphisms of R-modules for all i:

Hi(U ;L) ∼= Hi(U
f ; k).

For our purposes, it is more convenient to work with the cohomological version of
the Alexander modules.
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Definition 2.5. The i-th cohomology Alexander module of U associated to the algebraic map
f is the R-module

H i(U ;L),

where L := L ⊗t7→t−1 R is the conjugate (and dual) local system of L.

In general, the cohomological Alexander modules are not isomorphic as R-modules
to the cohomology of the corresponding infinite cyclic cover U f . Indeed, H i(U ;L) is a
finitely generated R-module for all i, whereas, if Hi(U

f ; k) is not a finite dimensional
k-vector space, then H i(U f ; k) is not a finitely generated R-module. Alternatively, if
π : U f → U is the covering map, then H∗(U f ; k) and H∗(U ;L) can be computed as the
cohomology of U with coefficients in Rπ∗π

−1kU = π∗kUf and L = π!kUf respectively, so
they need not be isomorphic.

2.2. Universal coefficient theorem and duality. The two types of Alexander modules
defined in Section 2.1 are related by the Universal Coefficient Theorem, in the sense that
there is a natural short exact sequence of R-modules

0→ Ext1
R(Hi−1(U ;L), R)→ H i(U ;L)→ HomR(Hi(U ;L), R)→ 0.

The relation between the cohomology Alexander modules and the corresponding infi-
nite cyclic cover can be made more precise as follows.

Proposition 2.6. [10, Proposition 2.4.1] There is a natural R-module isomorphism

TorsRH
i(U ;L) ∼= (TorsRHi−1(U f ; k))∨k ,

where ∨k denotes the dual as a k-vector space. Moreover, this isomorphism is functorial for the
pair (U, f).

As a consequence of Proposition 2.6, we have the following result which applies, in
particular, to the situations considered in Examples 2.2, 2.3 and 2.4.

Corollary 2.7. Assume that Hi(U
f ; k) is a torsion R-module for some i ≥ 0. Then, there exists

a canonical isomorphism

TorsRH
i+1(U ;L) ∼= H i(U f ; k).

Moreover, if Hi+1(U f ; k) is also a torsion R-module, then, so is H i+1(U ;L). Hence, in that case,
H i+1(U ;L) and H i(U f ; k) are naturally isomorphic.
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3. Mixed Hodge structures on Alexander modules

In this section, we indicate the main steps in the proof of Theorem 1.1.

3.1. Construction. A standard procedure for obtaining a mixed Hodge structure is to
identify the correct mixed Hodge complex of sheaves (see, e.g., [20, Definition 3.13]),
whose hypercohomology groups will automatically carry the desired mixed Hodge
structures (see, e.g., [20, Theorem 3.18II]). This is roughly the approach we use in [10].

The proof of Theorem 1.1 makes use of a sequence of reductions, and it relies on the
construction of a suitable thickening of the Hodge-de Rham complex. We will describe
these reductions and the relevant constructions in the following subsections.

We begin by noting that, since the dual of a mixed Hodge structure is again a mixed
Hodge structure, the identification of Proposition 2.6 allows us to reduce the proof of
Theorem 1.1 to the construction of mixed Hodge structures on the torsion R-modules
TorsRH

i(U ;L).

3.1.1. Reduction to the case of unipotent t-action. Let k = C, let U be a smooth connected
complex algebraic variety, and let f : U → C∗ be an algebraic map with associated
local system L of R-modules as in Section 2.1. Since R is a PID, we have the primary
decomposition

Ai(U
f ;C) := TorsRHi(U ;L) ∼=

r⊕
j=1

R/
(
(t− λj)pj

)
with pj ≥ 1 for all j = 1, . . . , r. The set {λj ∈ C | j = 1, . . . , r} is uniquely determined
by Ai(U f ;C). The following result was essentially proved in [2, Proposition 1.4], but see
also [10, Proposition 2.6.1] for a slight generalization to the current setup.

Proposition 3.1. Every λj defined above is a root of unity.

In particular, using Proposition 2.6, one has the following.

Corollary 3.2. Let k = C. The eigenvalues of the action of t on TorsRH
∗(U ;L) are all roots of

unity.

Corollary 3.2 implies that we can choose N ∈ N such that tN − 1 acts nilpotently on
TorsRH

i(U ;L) for all i. Consider the following pull-back diagram:

UN = {(x, z) ∈ U × C∗ | f(x) = zN} C∗

U C∗
p

y

fN

z 7→zN

f
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where p is an N -sheeted cyclic cover, and note that all maps involved in this diagram
are algebraic and UN is a smooth algebraic variety. We can then define, as in Section 2.1,
(UN)fN , (fN)∞, πN and LN for the map fN : UN → C∗. We also define:

θN : U f −→ U fN
N

U × C 3 (x, z) 7−→ (x, ez/N , z/N) ∈ UN × C ⊂ U × C∗ × C,

which fits into the following commutative diagram:

(2)
U f U fN

N UN U

C C C∗ C∗.

f∞

∼
θN

π

(fN )∞

πN

y
fN

p

y
f

z 7→ z
N

exp

exp z 7→zN

The map θN allows us to identify U f with U fN
N in a canonical way, which we will do

from now on. In particular, we can also identify the constant sheaves k
U

fN
N

and kUf

canonically.
Let R(N) := k[tN , t−N ]. Since the deck group of the infinite cyclic cover πN is gen-

erated by tN , the corresponding Alexander modules Hi(U
fN
N ; k) are finitely generated

R(N)-modules. Since R is a rank N free R(N)-module, we can also consider L as a
local system of rank N free R(N)-modules on U . Moreover, θN induces the canonical
isomorphism p∗LN = L of local systems of R(N)-modules, which can be further used
to prove the following (cf. [10, Proposition 2.6.3]).

Lemma 3.3. In the above notations, θN induces the following canonical isomorphisms of R(N)-
modules:

TorsRH
i(U ;L) ∼= TorsR(N) H

i(UN ;LN)

for any integer i ≥ 0.

Remark 3.4. Notice that the only eigenvalue of the action of tN in TorsR(N) H
∗(UN ;LN)

is 1. So Lemma 3.3 allows us to reduce the problem of constructing a mixed Hodge
structure on TorsRH

∗(U ;L) to the case when the only eigenvalue is 1.

3.1.2. Isolating the torsion. As seen in Section 3.1.1, upon passing to a finite cover UN of U
(and replacing f by fN , L by LN and t by tN ), we may assume that t− 1 acts nilpotently
on TorsRH

i(U ;L), for any integer i ≥ 0. We will assume this is the case from now on.
In this section, we explain how TorsRH

i(U ;L) can be understood in terms of the
cohomology of certain k-local systems of finite rank on U .



9

Let s = t− 1. For m ∈ N, we set

Rm := R/smR

and let

Lm := L ⊗R Rm

be the corresponding rank one local system of Rm-modules. Since s acts nilpotenly on
TorsRH

∗(U ;L), there exists an integer m ≥ 0 such that sm annihilates TorsRH
i(U ;L),

for all i ≥ 0. With the above notations, it can be seen (cf. [10, Lemma 3.1.8, Corollary
3.1.9]) that the maps of sheaves

L� Lm
·sm
↪→ L2m

induce an exact sequence

0→ TorsRH
∗(U ;L)→ H∗(U ;Lm)

·sm→ H∗(U ;L2m).

Hence,

(3) TorsRH
∗(U ;L) ∼= ker

(
H∗(U ;Lm)

·sm→ H∗(U ;L2m)
)

Our next goal is to endow each H i(U ;Lm) with a canonical mixed Hodge structure
for all m ≥ 1, such that the map

H∗(U ;Lm)
·sm→ H∗(U ;L2m)(−m)

is a morphism of mixed Hodge structures (where (−m) denotes the −mth Tate twist).
This will be achieved by resolving Lm by a certain mixed Hodge complex. Note that a
mixed Hodge structure on H∗(U ;Lm) induces by (3) a canonical mixed Hodge structure
on TorsRH

∗(U ;L).

3.1.3. Thickening Deligne’s Hodge-de Rham mixed Hodge complex. Assume k = R, and let
as before s = t− 1. Let (X,D) be a good compactification of the smooth variety U , and
let j : U ↪→ X be the inclusion map. Let E•U be the real de Rham complex, and Ω•X(logD)

the log de Rham complex (see, e.g., [20, Section 4.1]). It is known by work of Deligne
that (j∗E•U ,Ω•X(logD)) form the real and, resp., complex part of the Hodge-de Rham mixed
Hodge complex

Hdg•(X logD),

whose hypercohomology endows H∗(U ;R) with a canonical mixed Hodge structure.
To resolve Lm := L ⊗R Rm by a mixed Hodge complex, we will perform a thickening

of the Hodge-de Rham mixed Hodge complex, a procedure already used in [2]. Recall
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that for any m ≥ 1, an m-thickening of a k-cdga (A, d,∧) in the direction η ∈ A1 ∩ ker d is
the cochain complex of Rm-modules denoted by

A(η,m) = (A⊗kRm, dη)

and described by:

(i) for p ∈ Z, the p-th graded component of A(η,m) is Ap⊗kRm.
(ii) for ω ∈ A and φ ∈ Rm, we set dη(ω ⊗ φ) = dω ⊗ φ+ (η ∧ ω)⊗ sφ.

If (A,∧, d) is a sheaf of cdgas on X and η ∈ Γ(X,A1) ∩ ker d is a closed global section,
then we define similarly the m-thickening of A in direction η, denoted by A(η,m).

In the above notations, we have the following result (see [10, Section 5.2]).

Lemma 3.5. Let k = R and let E•U be the real de Rham complex on U . Then a canonical
resolution of Lm as a sheaf of Rm-modules is given by the thickened complex E•U(=df

f
,m) with a

modified Rm-module structure, the action of s becoming multiplication by − log t
2π

(expressed as a
power series in s = t− 1). Here, = denotes the imaginary part.

We can similarly thicken the log de Rham complex Ω•X(logD) by the logarithmic
form 1

i
df
f

(which is cohomologous to =df
f

). Puting everything together, this leads to a
thickening

Hdg•(X logD)

(
1

i

df

f
,m

)
of the Hodge-de Rham complex, whose hypercohomology computes H∗(U ;Lm). More-
over, since by [10, Theorem 4.2.1] the thickened complex of a mixed Hodge complex of
sheaves is again a mixed Hodge complex of sheaves (assuming η ∈ W1 ∩ F 1), the thick-
ened Hodge-de Rham complex Hdg•(X logD)

(
1
i
df
f
,m
)

is an R-mixed Hodge complex
of sheaves on X (cf. [10, Theorem 5.4.3]). This then yields:

Corollary 3.6. For all i and m,

H i(U ;Lm) ∼= Hi

(
X, j∗E•U

(
=df
f
,m

))
has a canonical R-mixed Hodge structure.

While we omit here the discussion on filtrations (roughly speaking, these are made
of the filtrations on the Hodge-de Rham complex and powers of s), let us just say that
these are defined so that multiplication by s induces a mixed Hodge complex morphism
into the −1st Tate twist. In view of (3) and Lemma 3.5 this then yields:
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Corollary 3.7. Suppose that the action of t on TorsRH
∗(U ;L) is unipotent. The R-vector spaces

TorsRH
∗(U ;L) admit natural R-mixed Hodge structures for which multiplication by log t (seen

as a power series in s = t− 1) determines a morphism of mixed Hodge structures into the −1st
Tate twist.

Remark 3.8. If the t-action on on TorsRH
∗(U ;L) is not unipotent, then t gets replaced

by tN which acts unipotently, and then log tN is a morphism of mixed Hodge structures
into the −1st Tate twist.

Finally, we have the following result (cf. [10, Theorem 5.4.10]) which, in view of
Proposition 2.6, completes the justification of Theorem 1.1:

Theorem 3.9 (Q-MHS). The mixed Hodge structure on TorsRH
∗(U ;L) defined above for k =

R comes from a (necessarily unique) mixed Hodge structure defined for k = Q.

3.2. Properties. Let U be a smooth connected complex algebraic variety, and let f : U →
C∗ be an algebraic map inducing an epimorphism π1(U) � Z, with corresponding in-
finite cyclic cover U f . There are several choices made in the construction of our mixed
Hodge structure on the torsion part A∗(U f ;Q) of the Alexander modules, e.g., a good
compactification (X,D) of U , a finite cover UN of U on which the monodromy is unipo-
tent, a positive integer m such that (t − 1)m annihilates TorsRH

∗(U ;L). In [10], we
showed that the mixed Hodge structure we constructed on A∗(U

f ;Q) is independent
of all these choices, see [10, Theorem 5.4.7] (independence of compactification), [10,
Theorem 5.4.8] (independence of UN ), [10, Corollary 5.4.4] (independence of nilpotence
index m). Furthermore, the mixed Hodge structure on A∗(U

f ;Q) behaves functorially
with respect to algebraic maps over C∗, see [10, Theorem 5.4.9].

In view of Proposition 2.6, it suffices to prove the above statements for the mixed
Hodge structure on TorsRH

∗(U ;L), in which case the assertions follow, roughly speak-
ing, by constructing appropriate morphisms of mixed Hodge complexes of sheaves and
taking hypercohomology.

4. Relation with other mixed Hodge structures and applications

In this section, we relate our mixed Hodge structures on the torsion parts of the
Alexander modules with other known mixed Hodge structures, and indicate several
geometric consequences.
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4.1. Hodge theory of the infinite cyclic covering map. Applications. The infinite cyclic
covering map U f → U induces a natural map of vector spaces Ai(U f ;Q)→ Hi(U ;Q). In
[10, Theorem 6.0.1], we prove the following result.

Theorem 4.1. In the setting of Theorem 1.1, the vector space homomorphism

Hi(π) : Ai(U
f ;Q)→ Hi(U ;Q)

induced by the covering π : U f → U is a morphism of mixed Hodge structures for all i ≥ 0,
where Hi(U ;Q) is equipped with (the dual of) Deligne’s mixed Hodge structure.

Using the faithful flatness of R over Q it suffices to work with k = R and prove
the result in cohomology. Once again, this amounts to constructing an appropriate
morphism of mixed Hodge complexes of sheaves which, upon taking hypercohomology,
gives a mixed Hodge structure morphism H i(π) : H i(U ;R) → TorsRH

i+1(U ;L). The
geometric meaning of the morphism H i(π) is achieved by carefully tracing arrows in
the derived category.

Remark 4.2. The notation H i(π) of the previous paragraph is justified by the fact that,
under the assumption that Hi(U

f ;R) is a torsion R-module, the above H i(π) coincides
with the map H i(U ;R) → H i(U f ;R) induced in cohomology by the covering map
π : U f → U (the dual of the map Hi(π) induced in homology); compare with Corol-
lary 2.7.

In the following subsection we indicate several applications of Theorem 4.1.

4.1.1. Bounding the weights. Size of Jordan blocks. Theorem 4.1 and our construction can
be used to obtain a bound on the weight filtrations of the mixed Hodge structures
on the torsion parts of the Alexander modules (see [10, Theorem 7.4.1]). This bound
coincides with the known bound for the homology of smooth algebraic varieties of the
same dimension as the generic fiber of f (cf. [4, Corollaire 3.2.15]). Specifically, we get
the following.

Theorem 4.3. Assume the setting of Theorem 1.1. Let i ≥ 0. If ` /∈ [i, 2i] ∩ [i, 2 dimC(U)− 2],
then

GrW−`Ai(U
f ;Q) = 0

where GrW−` denotes the −`th graded piece of the weight filtration.
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This theorem is proved by first using Lemma 3.3 to reduce to the case where t acts
unipotently on Ai(U

f ;Q) for all i. The main step in the proof amounts to constructing
the following exact sequence of mixed Hodge structures:

H i(U ;Q)
Hi(π)−−−→ TorsRH

i+1(U ;L)
· log(t)−−−→ TorsRH

i+1(U ;L)(−1)→ H i+1(U ;Q).

Given this exact sequence, the assertion of Theorem 4.3 follows by using the bounds for
the nonzero weights on the cohomology of the smooth variety U together with the finite
dimensionality of the mixed Hodge structures.

Other consequences of our construction and Theorem 4.1 are related to the t-action
on the torsion parts of the Alexander modules. For example, we apply it to determine
bounds on the size of the Jordan blocks of this t-action (see [10, Corollary 7.4.2]), which
nearly cut in half existing bounds, as in [2, Proposition 1.10]. Specifically, we prove:

Corollary 4.4. Every Jordan block of the action of t on Ai(U f ;C) has size at most

min{d(i+ 1)/2e, n− b(i+ 1)/2c}.

In particular, A1(U f ;C) is a semisimple R-module.

To prove the above corollary, one simply needs to observe that, by Remark 3.8, ap-
plying log(tN) decreases the weight by 2, and use Theorem 4.3. This implies that
(log(tN))m = 0, where m is the bound in the corollary. Finally one observes that this
implies that (tN − 1)m = 0.

Remark 4.5. If f : C2 → C is a polynomial function such that f−1(0) is reduced and
connected, let U = C2 \ f−1(0), and consider the induced map f : U → C∗. By [8,
Corollary 1.7], the action of t on H1(U f ;C) is semisimple. The last part of the above
corollary generalizes this result, not only to algebraic varieties U that are not affine
connected curve complements, but also to connected curve complements in which the
corresponding f is given by a non-reduced polynomial, or even a rational function.

4.1.2. Semisimplicity and its consequences. A very natural question is to understand under
which conditions the t-action on Ai(U

f ;Q) is a mixed Hodge structure morphism. We
prove the following result (see [10, Corollary 7.0.4 and Proposition 7.0.5]):

Theorem 4.6. Assume the setting of Theorem 1.1. Let i ≥ 0. The t-action on Ai(U
f ;Q) is a

mixed Hodge structure morphism if and only if it is semisimple.
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The ‘only if’ portion of the above theorem is a consequence of a simple fact about
mixed Hodge structures: if a mixed Hodge structure V is endowed with an endor-
mophism t such that log(tN) is a morphism V → V (−1) (Remark 3.8), then necessarily
tN = idV . For the forward direction, it suffices to use note that tN is unipotent for some
N (Proposition 3.1), so the hypothesis implies that tN = id. The Milnor long exact se-
quence then shows that Ai(U f ;Q) is a quotient of Hi(UN ;Q). It only remains to note
that t acts on the latter group by deck transformations on UN , an algebraic map, which
makes the induced map in homology a mixed Hodge structure morphism.

When the t-action is semisimple, we show that the mixed Hodge structure on the
torsion parts Ai(U f ;Q) of the Alexander modules can be constructed directly using a
finite cyclic cover, which, unlike an infinite cyclic cover, is always a complex algebraic
variety. This bypasses our rather abstract general construction of the mixed Hodge
structure. In [10], we present two different viewpoints. In the first, we utilize cap
product with the pullback of a generator of H1(C∗;Q). In the second, we utilize a
generic fiber of the algebraic map, which is always a complex algebraic variety. For the
following result see [10, Corollary 7.1.3 and Corollary 7.2.1].

Theorem 4.7. Assume the setting of Theorem 1.1. Let i ≥ 0 and assume that the t-action on
Ai(U ;Q) is semisimple. Let N be such that the action of tN on Ai(U f ;Q) is the identity, and let
UN = {(x, z) ∈ U × C∗ | f(x) = zN} denote the corresponding N -fold cyclic cover. Equip the
rational homology of UN with the (dual of) Deligne’s mixed Hodge structure.

(A) Let fN : UN → C∗ denote the algebraic map induced by projection onto the second com-
ponent, and let gen ∈ H1(C∗;Q) be a generator. Then Ai(U

f ;Q) is isomorphic as a
mixed Hodge structure to the image of the mixed Hodge structure morphism induced by
cap product with f ∗N(gen)

(−) _ f ∗N(gen) : Hi+1(UN ;Q)(−1)→ Hi(UN ;Q),

where (−1) denotes the −1th Tate twist of a mixed Hodge structure.
(B) Let F ↪→ U be the inclusion of any generic fiber of f and let F ↪→ UN be any lift of this

inclusion. Then Ai(U f ;Q) is isomorphic as a mixed Hodge structure to the image of the
mixed Hodge structure morphism

Hi(F ;Q)→ Hi(UN ;Q)

induced by the inclusion, where Hi(F ;Q) is equipped with (the dual of) Deligne’s mixed
Hodge structure.
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The first viewpoint granted by semisimplicity, in terms of cap products (Theorem
4.7A), is suggested by the thickened complexes that play the central role in our con-
struction.

As for the second viewpoint, note that the homologies of different choices of generic
fibers in the same degree may have different mixed Hodge structures, but any choice is
allowed in Theorem 4.7B. This shows that the mixed Hodge structures on the torsion
parts of the Alexander modules are common quotients of the homologies of all generic
fibers, when semisimplicity holds. In fact, under the assumptions of Theorem 4.7, the
inclusion F ↪→ U of a generic fiber of f : U → C∗ lifts to UN and U f via maps iN and
i∞, making the following diagram commutative, where the vertical arrows are covering
space maps.

U f

UN

F U

πN

π

p

i

iN

i∞

Note that, in homology, the composition iN = πN ◦ i∞ factors through A∗(U
f ;Q), hence

we get a diagram:

(4) Hj(F ;Q) Aj(U
f ;Q) Hj(UN ;Q).

Hj(i∞)

Hj(iN )

Hj(πN )

Moreover, it can be shown by topological arguments that Hj(i∞) is surjective (see [10,
Proposition 2.5.3]), and the semisimplicity assumption on the t-action yields that Hj(πN)

is injective (see [10, Corollary 7.0.2]). Since iN is an algebraic map, it follows that Hj(iN)

is a morphism of mixed Hodge structures, and the same is true for Hj(πN) by Theorem
4.1. Putting everything together, we get the following more general consequence of
Theorem 4.1 (see [10, Corollary 7.2.1]), from which Theorem 4.7B follows readily.

Corollary 4.8. Let N be such that the action of tN on Aj(U f ;Q) is unipotent. Suppose that the
t-action on Aj(U f ;Q) is semisimple. Then, we have the following commutative diagram, where
all the arrows are morphisms of mixed Hodge structures:

Hj(F ;Q) Aj(U
f ;Q) Hj(UN ;Q).

Hj(i∞)

Hj(iN )

Hj(πN )
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Making use of Theorem 4.6, we also have the following (see [10, Corollary 7.2.3]).

Corollary 4.9. The t-action on Aj(U
f ;Q) is semisimple if and only if for any generic fiber

F ⊂ U f , the induced map in homology Hj(i∞) : Hj(F ;Q) → Aj(U
f ;Q) is a mixed Hodge

structure morphism.

Example 4.10 (Global Milnor fiber). Let f ∈ C[x1, . . . , xn] be a weighted homogeneous
polynomial, and let U = Cn \ {f = 0}. As already mentioned in Example 2.2, we have a
global Milnor fibration f : U → C∗. Assume that f : U → C∗ induces an epimorphism on
fundamental groups, i.e., the greatest common divisor of the exponents of the distinct
irreducible factors of f is 1. Let F be a fiber of f : U → C∗, and let as before i∞ : F ↪→ U f

be a lift of the inclusion i : F ↪→ U . Since f : U → C∗ is a fibration, we have that i∞ is
a homotopy equivalence, so it induces isomorphisms Hj(F ;Q) → Hj(U

f ;Q) for all j,
which are compatible with the t-action (see [10, Lemma 2.5.2]). Since the t-action on F

comes from an algebraic map F → F of finite order, it follows that the t-action on Hj(F )

is semisimple. Applying Corollary 4.8, we see that the Alexander modules recover in
this case the Deligne mixed Hodge structure on the global Milnor fiber. Specifically, the
map

Hj(F ;Q)→ Hj(U
f ;Q)

induced by i∞ is a mixed Hodge structure morphism, where Hj(U
f ;Q) is endowed with

the (dual) Deligne mixed Hodge structure.

Remark 4.11. Recall from Example 2.3 that if f : Cn → C is a reduced complex polyno-
mial so that V = {f = 0} is in general position at infinity, then the Alexander modules
Hi(U

f ;Q) of U = Cn \ V and f : U → C∗ are torsion Q[t±1]-modules for i < n, while
Hn(U f ;Q) is free and Hi(U

f ;Q) = 0 for i > n. Moreover, the t-action on Hi(U
ξ;C) is

semisimple for i < n, and the corresponding eigenvalues are roots of unity of order
d = deg(f). A mixed Hodge structure on Hi(U

ξ;Q), for i < n, has been constructed by
Dimca-Libgober [8] and Liu [16]. Corollary 4.8 can be used directly to show that our
mixed Hodge structure on A∗(U

f ;Q) coincides in this case with those constructed by
Dimca-Libgober and Liu, see [10, Corollary 7.3.6].

Theorem 4.7, when it applies, reinforces the significance of semisimplicity. Our results
from [10] show that, in fact, semisimplicity is not a rare occurrence (we have already
encountered such instances in Examples 2.2 and 2.3). For instance, when f is proper,
we have the following (see [10, Corollary 8.0.2]):
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Theorem 4.12. Let U be a smooth complex algebraic variety, and let f : U → C∗ be a proper
algebraic map. Then the torsion part Ai(U f ;Q) of the homology Alexander module Hi(U

f ;Q)

is a semisimple R-module, for all i ≥ 0.

If the map f : U → C∗ of Theorem 4.12 is a projective submersion, then f is a fibration,
and let F be its fiber. The semisimplicity of Ai(U f ;Q) ∼= Hi(U

f ;Q) ∼= Hi(F ;Q) is in this
case a direct consequence of Deligne’s decomposition theorem [3, 4]. In the general case,
Theorem 4.12 is proved by using the decomposition theorem of Beı̆linson–Bernstein–
Deligne [1].

In view of Corollary 4.8, a nice application of the semisimplicity statement of Theorem
4.12 is the following purity result (see [10, Corollary 8.0.6]).

Theorem 4.13. If f : U → C∗ is a proper algebraic map, then Ai(U
f ;Q) carries a pure Hodge

structure of weight −i.

Remark 4.14. In fact, we do not know of any example where semisimplicity does not
hold. This lack of examples is mainly due to the fact that higher Alexander modules are
harder to compute than the first (which, as seen in Corollary 4.4, is always semisismple,
and can be computed from a presentation of the fundamental group).

4.2. Relation with the limit mixed Hodge structure. The mixed Hodge structure on the
torsion part A∗(U f ;Q) of the Alexander modules of the pair (U, f) can be regarded as a
global version of the limit mixed Hodge structure on the generic fiber of f , in the following
sense. Let f : U → C∗ be an algebraic map inducing an epimorphism on fundamental
groups, and let U f denote as before the corresponding infinite cyclic cover of U . Let D∗

be a sufficiently small punctured disk centered at 0 in C, such that f : f−1(D∗) → D∗ is
a fibration, and let T ∗ = f−1(D∗). The infinite cyclic cover (T ∗)f is homotopy equivalent
to F , where F denotes any fiber of the form f−1(c), for c ∈ D∗. In fact, (T ∗)f can be
regarded as the canonical fiber of f : f−1(D∗) → D∗. If f is proper, Hi((T

∗)f ;Q) is also
endowed with a limit mixed Hodge structure, which can be compared with the one we
constructed on Ai(U

f ;Q) via the following result:

Theorem 4.15. In the setup of Theorem 1.1, assume moreover that f : U → C∗ is proper. Then,
in the above notations, the inclusion (T ∗)f ⊂ U f induces for all i ≥ 0 an epimorphism of
Q-mixed Hodge structures

Hi((T
∗)f ;Q)� Ai(U

f ;Q),(5)
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where Hi((T
∗)f ;Q) is endowed with its limit mixed Hodge structure. If, moreover, f is a

fibration, then the two mixed Hodge structures are isomorphic.

The mixed Hodge structure morphism of Theorem 4.15 is realized, upon taking hy-
percohomology and Q-duals, by a suitable morphism of mixed Hodge complexes of
sheaves. In more detail, let (X,D) be a good compactification of U by a simple nor-
mal crossing divisor D = X \ U such that f : U → C∗ extends to an algebraic map
f̄ : X → CP 1. By replacing f : U → C∗ with a finite cyclic cover fN : UN → C∗ if nec-
essary, we may assume that E := f̄−1(0) is reduced and X \ U = f̄−1({0,∞}). Let
i : E ↪→ X be the inclusion. By restricting f̄ above a sufficiently small punctured disk
D∗ centered at 0 ∈ C, one can define the nearby cycle functor ψf̄ of Deligne, and there
is a vector space isomorphism

H∗(E;ψf̄Q) ∼= H∗(F ;Q),

where F is any fiber of f over D∗. A clockwise loop in D∗ determines a monodromy
homeomorphism from F to itself and so equips H∗(E;ψf̄Q) with the structure of a
torsion module over Q[t±1]. The limit mixed Hodge structure on H∗(F ;Q) is realized
by a mixed Hodge complex ψ

Hdg
f̄

of sheaves on E, assigned to ψf̄Q; see [20, Theorem
11.22], and also [10, Theorem 2.11.1]. The mixed Hodge structure morphism (5) is then
induced by a morphism of mixed Hodge complexes from the thickened Hodge-de Rham
complex (shifted by [1] and with an appropriate twisting of the R-module structure) and
i∗ψ

Hdg
f̄

. For complete details and a geometric interpretation of this morphism of mixed
Hodge complexes, see [10, Section 9].

5. Examples. Hyperplane arrangements

Let n ≥ 2. Let f1, . . . , fd be degree 1 polynomials in C[x1, . . . , xn] defining d distinct
hyperplanes and let f = f1 · . . . ·fd. The zeros of f define a hyperplane arrangement A of
d hyperplanes in Cn. Let U ⊂ Cn be the corresponding arrangement complement, with
induced map f : U → C∗. For the purpose of studying Alexander invariants of the pair
(U, f), it suffices to assume that A is essential, that is, the intersection of some subset
of hyperplanes of A is a point (see, e.g., [10, Remark 10.1.2]). As already indicated in
Example 2.4, if A is essential then Hj(U

f ;Q) is a torsion R-module for all j < n, a free
R-module for j = n, and 0 for j > n. In particular, by Theorem 1.1, we can endow
Hj(U

f ;Q) and Hj(U f ;Q) with canonical mixed Hodge structures, for 0 ≤ j ≤ n− 1.
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By Corollary 4.4, the t-action on H1(U f ;Q) is semisimple. If N is chosen such that
tN = 1 on H1(U f ;Q), let

H1(U f ;Q)1 := ker
(
H1(U f ;Q)

·(t−1)−−−→ H1(U f ;Q)
)

H1(U f ;Q) 6=1 := ker

(
H1(U f ;Q)

·(tN−1+...+t+1)−−−−−−−−−→ H1(U f ;Q)

)
.

Then we have an isomorphism of mixed Hodge structures

H1(U f ;Q) ∼= H1(U f ;Q)1 ⊕H1(U f ;Q)6=1,

and, moreover, the following result holds (see [10, Theorem 10.1.5]):

Theorem 5.1. Let A be an essential arrangement of d hyperplanes in Cn defined by the zeros of
a reduced polynomial f of degree d, for n ≥ 2. Then,

(i) H1(U f ;Q)1 is a pure Hodge structure of type (1, 1), and has dimension d− 1.
(ii) H1(U f ;Q) 6=1 is a pure Hodge structure of weight 1.

To prove the above result, one first notices that, by a Lefschetz type argument, we
can assume that A is an essential line arrangent in C2. By the cohomological version of
Theorem 4.1, the map

H1(π) : H1(U ;Q)→ H1(U f ;Q)

is a mixed Hodge structure morphism, and Milnor’s long exact sequence for π : U f → U

yields that Image(H1(π)) = H1(U f ;Q)1. Part (i) of Theorem 5.1 is then a consequence of
the classical fact that H1(U ;Q) is a pure Hodge structure of type (1, 1), see [21]. For part
(ii), we use the cohomological version of Corollary 4.8, which yields a monomorphism
of mixed Hodge structures

H1(U f ;Q) ↪→ H1(F ;Q),

where F is the generic fiber of f : U → C∗. The assertion follows by a careful analysis of
the dimensions of the weight filtration on H1(F ;Q) (the only possible weights being 1

and 2). In fact, by [6, Theorem 2.1] (and the discussion following it), the generic fiber of
f is connected, and one can show by direct computation that dim GrW2 H

1(F ;Q) = d− 1

(see [10, Lemma 10.1.8]).

Remark 5.2. If A is a central hyperplane arrangement (f is a homogeneous polynomial),
then f determines a global Milnor fibration with fiber F , so Hj(U f ;Q) ∼= Hj(F ;Q) is
an isomorphism of mixed Hodge structures for all j (see Example 4.10). Moreover, in
this case the t-action is semisimple. Theorem 5.1 provides a generalization (for j = 1) of
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a similar result for central arrangements (see, e.g., [7, Theorem 7.7] and the references
therein).
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