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1. Motivation: Kähler package

For simplicity, in this section we work with C-coefficients, unless otherwise specified.

Theorem 1.1 (Kähler package). Assume X ⊂ CPN is a complex projective manifold, with
dimC(X) = n. Then H∗(X) := H∗(X;C) satisfies the following properties:

(a) Poincaré duality:
H i(X) ∼= H2n−i(X)∨

for all i ∈ Z. In particular, the Betti numbers of X in complementary degrees
coincide: bi(X) = b2n−i(X).

(b) Hodge structure: H i(X) has a pure Hodge structure of weight i. In fact,

H i(X) ∼= H i
DR(X) ∼=

⊕
p+q=i

Hp,q(X),

with Hq,p(X) = Hp,q(X). In particular, the odd Betti numbers of X are even.
(c) Lefschetz hyperplane section theorem (Weak Lefschetz): If H is a hyperplane in

CPN , the homomorphism

H i(X) −→ H i(X ∩H)
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induced by restriction is an isomorphism for i < n−1, and it is injective if i = n−1.1

In particular, generic hyperplane sections of X are connected if n ≥ 2.
(d) Hard Lefschetz theorem: If H is a generic hyperplane in CPN , there is an isomor-

phism

Hn−i(X)
^[H]i−→ Hn+i(X)

for all i ≥ 0, where [H] ∈ H2(X) is the Poincaré dual of [X ∩H] ∈ H2n−2(X). In
particular, the Betti numbers of X are unimodal: bi−2(X) ≤ bi(X) for all i ≤ n/2.

Here is a nice application of the above Kähler package to combinatorics:

Example 1.2. Let X = Gd(Cn) be the Grassmann variety of d-planes in Cn; this is a
complex projective manifold of complex dimension d(n − d). It is known that X has an
algebraic cell decomposition by complex affine spaces, so all of its cells appear in even real
dimensions. So the odd Betti numbers of X vanish, whereas the even Betti numbers are
computed as

b2i(X) = p(i, d, n− d),

where p(i, d, n − d) is the number of partitions of the integer i whose Young diagrams fit
inside a d× (n−d) box (i.e., partitions of i into ≤ d parts, with largest part ≤ n−d). The
above Kähler package implies that the sequence

p(0, d, n− d), p(1, d, n− d), · · · , p(d(n− d), d, n− d)

is symmetric and unimodal.

If X is singular, all statements of Theorem 1.1 fail in general!

Example 1.3. Let X = CP 2 ∪ CP 2 ⊂ CP 4 = {[x0 : x1 : · · · : x4]}, where the two copies
of CP 2 in X meet at a point P . So

X = {xixj = 0 | i ∈ {0, 1}, j ∈ {3, 4}},
with Sing(X) = {P = [0 : 0 : 1 : 0 : 0]}. The Mayer-Vietoris sequence yields:

H i(X) =



C i = 0

0 i = 1

C⊕ C i = 2

0 i = 3

C⊕ C i = 4.

Note that the 0-cycles [a] and [b] ∈ C0(X) cobound a 1-chain δ passing through the
singular point. In particular, [a] = [b] ∈ H0(X) ∼= H0(X)∨. If H is a generic hyperplane in
CP 4, then X ∩H = CP 1 t CP 1 (see Figure 1), which is not connected, so the Lefschetz
hyperplane section theorem fails in this example. Moreover,

H0(X) = C � C⊕ C = H4(X),

1The statement can be extended to singular varieties, provided that H is chosen to contain the singu-
larities of X.
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Figure 1. X

so Poincaré duality and the Hard Lefschetz theorem also fail for our singular space X.

Example 1.4. Let X be the variety

X = {x30 + x31 = x0x1x2} ⊂ CP 2.

The singular locus of X is Sing(X) = {P = [0 : 0 : 1]}. We have

P

δ

η

Figure 2. X

H1(X) = C = 〈η〉,

where η is a longitude in X (see Figure 2). Note that the meridian δ is a boundary in X. As
the first Betti number β1(X) is odd, there cannot exist a Hodge decomposition for H1(X).
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To restore the Kähler package (Theorem 1.1) in the singular setting, one has to replace
cohomology by (middle-perversity) intersection cohomology. Homologically, this is a theory
of “allowable chains”, controlling the defect of transversality of intersections of chains with
the singular strata. In the above examples, 1-chains are not allowed to pass through sin-
gularities. So the 1-chain δ connecting the 0-cycles [a] and [b] in Example 1.3 will not be
allowed, hence [a] 6= [b] in IH0(X). Similarly, in Example 1.4 the 1-chain η is not allowed,
but 2-chains are allowed to go through P , so [δ] = 0 in IH1(X) and IH1(X) = 0.

2. Chain definition of intersection homology

For simplicity, we include here the chain definition of intersection homology only for vari-
eties with isolated singularities. Everything works with coefficients in an arbitrary noetherian
ring A (e.g., Z or a field), but we keep using C for convenience.

Definition 2.1. Let X be an irreducible (or pure-dimensional) complex algebraic variety
with only isolated singularities, with dimC(X) = n. If ξ is a PL i-chain onX with support |ξ|
(in a sufficiently fine triangulation ofX compatible with the natural stratification Sing(X) ⊂
X), then:

ξ ∈ ICi(X) ⇐⇒

{
dim(|ξ| ∩ Sing(X)) < i− n
dim(|∂ξ| ∩ Sing(X)) < i− n− 1.

with boundary ∂ : ICi(X) → ICi−1(X) induced from ∂ of C•(X). Get a chain complex
(IC•(X), ∂) whose homology is the (middle-perversity) intersection homology IH∗(X) of
X.

Proposition 2.2. Let X be an n-dimensional irreducible (or pure-dimensional) complex
algebraic variety with only one isolated singular point P . Then,

IHi(X) =


Hi(X − {P}), i < n,

Image(Hn(X − {P})→ Hn(X)), i = n,

Hi(X), i > n.

Example 2.3. If X is the nodal cubic from Example 1.4, then X − {P} deformation
retracts to a 1-cycle which is a boundary in X. So:

IHi(X) =


C, i = 0,

0, i = 1,

C, i = 2.

Example 2.4 (Projective cone over a complex projective manifold). Let Y ⊂ CPN−1 be
a smooth complex projective variety of complex dimension n − 1. Let X ⊂ CPN be the
projective cone on Y , i.e., the union of all projective lines passing through a fixed point
x /∈ CPN−1 and a point on Y . Then X is a pure n-dimensional complex projective variety
with an isolated singularity at the cone point x. (Topologically, X is the Thom space of the
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line bundle L over Y corresponding to a hyperplane section or, equivalently, the restriction
to Y of the normal bundle of CPN−1 in CPN .) Proposition 2.2 yields:

IHi(X) =

{
Hi(Y ), i ≤ n,

Hi−2(Y ), i > n.

Since Y is smooth and projective, this calculation shows that the intersection homology
groups of X have a pure Hodge structure. It can also be shown that they satisfy the Hard
Lefschetz theorem.

Remark 2.5.
(1) For a projective variety X of complex pure dimension n and with arbitrary singularities,
we start with a Whitney (pseudomanifold) stratification of X and the associated filtration

X = Xn ⊇ Xn−1 ⊇ . . . ⊇ X0 ⊇ ∅,
where Xi denotes the (closed) union of strata of complex dimension ≤ i, and impose
conditions on how chains and their boundaries meet all singular strata:

ξ ∈ ICi(X) ⇐⇒ ∀k ≥ 1,

{
dim(|ξ| ∩Xn−k) < i− k
dim(|∂ξ| ∩Xn−k) < i− k − 1.

Similar constructions apply to real pseudomanifolds, e.g., (open) cones on manifolds, etc.
(2) If X is a compact pseudomanifold of real dimension m, McCrory showed that

Hm−i(X) ∼= Hi(C
tr
∗ (X))

is the homology of the complex of transverse chains (which meet the singular strata in the
expected dimension). Since Hi(X) = Hi(C∗(X)) is the homology of all chains, the inter-
section homology IH∗(X) splits the difference, so the cap product map ∩[X] : Hm−i(X)→
Hi(X) factors through IHi(X).
(3) If X is not compact, we can also work with locally finite allowable chains IC lf

i (X), which
compute the Borel-Moore version of intersection homology, IHBM

∗ (X). This theory is good
for sheafification.
(4) A singular version of intersection homology was developed by King. An allowable singular
i-simplex on X is a singular i-simplex σ : ∆i −→ X satisfying

σ−1(Xn−k −Xn−k−1) ⊆ (i− k)-skeleton of ∆i

for all k ≥ 1 (again, k denotes here the complex codimension). A singular i-chain is
allowable if it is a (locally finite) combination of allowable singular i-simplices. In order to
form a subcomplex of allowable chains, need to ask that boundaries of allowable singular
chains are allowable.
(5) IH∗ is not a homotopy invariant (e.g., if L is a real manifold, then IH∗(̊cL) is the
same as H∗(L) in low degrees; recall that low dimensional chains cannot go through the
cone/singular point.)
(6) IH∗ is independent of the stratification and PL structure used to define it.
(7) IH∗ is a topological invariant.
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3. Sheafification. Deligne’s IC-complex

We work with coefficients in an arbitrary noetherian ring A (e.g., Z or a field).
Let X be an irreducible (or pure-dimensional) complex algebraic variety of dimension n.

Then X admits a Whitney (pseudomanifold) stratification which yields a filtration

X = Xn ⊇ Xn−1 ⊇ . . . ⊇ X0 ⊇ ∅.
Here Xi denotes the (closed) union of strata of complex dimension ≤ i. It is also known
that X admits a PL structure compatible with the stratification (i.e., each Xi is a union of
simplices). If U ⊆ X is an open subset, then U has an induced PL structure.

Definition 3.1. For every integer i, define a sheaf IC−i ∈ ShA(X) whose sections on each
open subset U of X are given by

IC−i(U) := IC lf
i (U),

i.e., the allowable locally finite i-chains on U (with A-coefficients). Differentials

d−i : IC−i → IC−i+1

are induced by the boundary maps ∂i : ICi → ICi−1. This defines a bounded complex of
sheaves of A-modules

IC•top ∈ Db(X)

in the derived category of X, called the intersection cohomology complex of X.

Lemma 3.2. IC−i are soft sheaves.

Proposition 3.3. We have:

IHBM
i (X) := Hi(IC

lf
• (X)) = H−i(IC lf

−•(X)) = H−iΓ(X, IC•top) = H−i(X; IC•top).

Similarly,
IHi(X) = H−ic (X; IC•top).

Remark 3.4. One can start with a local system L on X −Xn−1, get sheaves IC−i(L )
which are soft sheaves, and a complex IC•top(L ) with hypercohomologies IHBM

i (X; L ).

Theorem 3.5. IC•top(L ) is uniquely characterized in Db(X) by a set of axioms (derived
from local chain calculations), and can be constructed directly by Deligne’s recipe, consisting
of a sequence of derived pushforwards and truncations, starting with L [2n] on X −Xn−1.
(As such, it is constructible with respect to the fixed stratification of X.)

Remark 3.6. No PL structure is involved into Deligne’s construction of IC•top, so intersec-
tion homology groups are independent of the underlying PL structure. To get topological
independence, one needs to show that IC•top is independent of the stratification. For this,
one can rephrase the axioms in a way that depends only minimally on the stratification.
This reformulation contains support and cossuport axioms like perverse sheaves do.

In fact, one has:

Proposition 3.7. IC•X := IC•top[−n] is a (simple) perverse sheaf on X.
6



Remark 3.8. For people familiar with perverse sheaves, if j : Xreg ↪→ X is the inclusion
of the smooth locus and L is a local system on Xreg, then

IC•X(L ) ' j!∗(L [n]),

where j!∗ is the intermediate extension functor.

Example 3.9. If X is an irreducible smooth algebraic curve and j : U ↪→ X is the inclusion
of a Zariski open and dense subset, then for any local system L on U one has:

IC•X(L ) ' j!∗(L [1]) ' (j∗L )[1].

Definition 3.10. If A is a field (Q or C), define intersection cohomology groups by

IH i(X) := Hi−n(X; IC•X) = IHBM
2n−i(X), IH i

c(X) := Hi−n
c (X; IC•X) = IH2n−i(X).

Theorem 3.11 (Poincaré Duality for IH∗). If A is a field, and X is an irreducible (or
pure-dimensional) complex projective variety with dimC(X) = n, there is a non-degenerate
intersection pairing

IH i(X)⊗ IH2n−i(X) −→ A

induced from the quasi-isomorphism

DX(IC•X) ' IC•X

in Db
c(X).

All other statements of the Kähler package hold for the intersection cohomology groups
of a complex projective variety. E.g., Weak Lefschetz is a consequence of Artin vanishing
for perverse sheaves:

Theorem 3.12 (Lefschetz hyperplane section theorem for IH∗). Assume A is a field. Let
X ⊂ CPN be a pure n-dimensional closed algebraic subvariety with a Whitney stratification
X . Let H ⊂ CPN be a generic hyperplane (i.e., transversal to all strata of X ). Then the
natural homomorphism

IH i(X;Q) −→ IH i(X ∩H;Q)

is an isomorphism for 0 ≤ i ≤ n− 2 and a monomorphism for i = n− 1.

Proof. Let D = X ∩ H with inclusion maps i : D ↪→ X and j : U = X − D ↪→ X.
Consider the compactly supported hypercohomology long exact sequence associated to the
attaching triangle:

j!j
!IC•X −→ IC•X −→ i∗i

∗IC•X
[1]−−→

namely,

· · · −→ Hk
c (U ; j∗IC•X) −→ Hk(X; IC•X) −→ Hk(D; i∗IC•X) −→ · · ·

With the observation that j∗IC•X ' IC•U , this sequence becomes

(1) · · · −→ IHk+n
c (U) −→ IHk+n(X) −→ Hk(D; i∗IC•X) −→ · · ·
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Stratified Morse theory (Goresky-MacPherson) or Artin’s vanishing theorem for perverse
sheaves yields that

(2) IHk+n
c (U) = 0, ∀ k < 0.

Moreover, one can easily check (using the transversality assumption) that i∗IC•X [−1] satis-
fies the axioms characterizing IC•D, hence:

i∗IC•X ' IC•D[1].

So

(3) Hk(D; i∗IC•X) ∼= Hk(D; ICD[1]) =: IHk+n(D).

The assertion follows by combining (1), (2) and (3). �

Hodge structures and Hard Lefschetz for IH∗ are much more involved and follow from
work of Beinlinson-Bernstein-Deligne, Saito and/or de Cataldo-Migliorini. For example, the
following is a consequence of the Relative Hard Lefschetz Theorem for projective morphisms
(applied to the constant map X → point):

Theorem 3.13 (Hard Lefschetz theorem for intersection cohomology). Let X be a complex
projective variety of pure complex dimension n, with [H] ∈ H2(X;Q) the first Chern class
of an ample line bundle on X. Then there are isomorphisms

(4) ∪[H]i : IHn−i(X;Q)
∼=−→ IHn+i(X;Q)

for every integer i > 0, induced by the cup product by [H]i. In particular, the intersection
cohomology Betti numbers of X are unimodal, i.e., dim IH i−2(X;Q) ≤ dim IH i(X;Q)
for all i ≤ n/2.

4. Applications of IH∗ and of its Kähler package

From now on, assume Q-coefficients.

4.1. Decomposition theorem.

Theorem 4.1 (BBD). Let f : X → Y be a proper map of irreducible complex algebraic
varieties, and let Y be the set of connected components of strata of Y in a stratification
of f . There is a (non-canonical) isomorphism in Db

c(Y ):

(5) Rf∗IC
•
X '

⊕
i∈Z

⊕
S∈Y

IC•
S
(Li,S)[−i]

where the local systems Li,S on S are semi-simple.
In particular, for every j ∈ Z there is a splitting:

(6) IHj(X;Q) ∼=
⊕
i∈Z

⊕
S∈Y

IHj−dimCX+dimC S−i(S; Li,S).

Example 4.2. If F is a compact variety, the decomposition theorem for the projection
f : X = Y × F → Y yields the Künneth formula for intersection cohomology groups.
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Example 4.3. Let f : X → Y be a resolution of singularities of a singular surface Y .
Assume that Y has a single singular point y ∈ Y with fiber f−1(y) = E a finite union of
curves on X. As X is nonsingular, IC•X = QX [2], and we have an isomorphism

Rf∗QX [2] ' IC•Y ⊕ T,

where T is a skyscraper sheaf at y with stalk T = H2(E;Q). (In this case, the map f is
semi-small, so Rf∗QX [2] is a (semi-simple) perverse sheaf.) In particular, IH∗(Y ;Q) is a
direct summand of H∗(X;Q).

More generally, as an application of the decomposition theorem one has the following:

Theorem 4.4. Let f : X → Y be a proper surjective map of complex irreducible algebraic
varieties. Denote by d = dimCX − dimC Y the relative dimension of f . Then IC•Y [d] is a
direct summand of Rf∗IC•X . In particular, IHj(Y ;Q) is a direct summand of IHj(X;Q)
for every integer j.

Corollary 4.5. The intersection cohomology IHj(Y ;Q) of an irreducible complex algebraic
variety is a direct summand of the cohomology Hj(X;Q) of a resolution of singularities.

4.2. Topology of Hilbert schemes of points on a smooth complex surface. Let X
be a smooth complex projective surface, and denote by HilbnX the Hilbert scheme of n points
on X (i.e., the moduli space of zero-dimensional subschemes of X of length n). HilbnX is
smooth, irreducible, of complex dimension 2n, and comes equipped with the Hilbert-Chow
morphism to the n-th symmetric product SnX := Xn/Sn of X:

πn : HilbnX −→ SnX , Z 7→
∑
x∈Z

length(Zx) · [x]

A nice application of the decomposition theorem for the (semi-small resolution) map πn
yields the following result of Göttsche-Sörgel:

Theorem 4.6. For every i ≥ 0 one has:

(7) H i(HilbnX ;Q) ∼=
⊕
ν∈P (n)

H i+2`(ν)−2n(SνX;Q).

Here, for a partition ν of n, ki denotes the number of times i appears in ν, `(ν) :=
∑n

i=1 ki
is the length of the partition, and SνX :=

∏n
i=1 S

kiX.

As a consequence, one gets the following Euler characteristic identity (initially proved by
Göttsche by using the Weil conjectures):

(8)
∑
n≥0

χ(HilbnX) · tn =

(
∞∏
k=1

1

1− tk

)χ(X)

.
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4.3. Stanley’s proof of McMullen’s conjecture. Stanley used intersection cohomology
and its Kähler package to prove McMullen’s conjecture, giving an if and only if condition
for the existence of a simplicial polytope with a given number fi of i-dimensional faces.

Stanley’s idea can be roughly summarized as follows: to a simplicial polytope P one
associates a projective (toric) variety XP so that McMullen’s combinatorial conditions for
P are translated into properties of the Betti numbers of XP (via the h-vector). The latter
properties would then follow if one knew that Poincaré duality and the Hard Lefschetz
theorem hold for the rational cohomology of XP . The trick is to notice that, while XP is in
general singular, its singularities are rather mild (finite quotient singularities), making XP

into a rational homology manifold. Hence H∗(XP ;Q) ∼= IH∗(XP ;Q), and the assertions
follow from the Poincaré duality and the Hard Lefschetz theorem for intersection cohomology.

The correct way to generalize this discussion to the rational non-simplicial context is to
replace H∗(XP ;Q) with the intersection cohomology groups IH∗(XP ;Q) and work with
the corresponding intersection cohomology Betti numbers. For non-rational polytopes, a
toric description does not exist, but one can use combinatorial intersection cohomology and
the associated Kähler package.

4.4. Huh-Wang’s proof of Dowling-Wilson’s conjecture. Let E = {v1, · · · , vn} be a
spanning subset of a d-dimensional complex vector space V , and let wi(E) be the number
of i-dimensional subspaces spanned by subsets of E.

Conjecture 4.7 (Dowling-Wilson top-heavy conjecture). For all i < d/2 one has:

(9) wi(E) ≤ wd−i(E).

Remark 4.8. If d = 3, de Bruijn–Erdös showed that w1(E) ≤ w2(E). More generally,
Motzkin showed that w1(E) ≤ wd−1(E).

Conjecture 4.9 (Rota’s unimodal conjecture). There is some j so that

(10) w0(E) ≤ · · · ≤ wj−1(E) ≤ wj(E) ≥ wj+1(E) ≥ · · · ≥ wd(E).

Huh-Wang used the Kähler package on intersection cohomology to prove the Dowling-
Wilson top-heavy conjecture, and of the unimodality of the “lower half” of the sequence
{wi(E)}:

Theorem 4.10 (Huh-Wang). For all i < d/2, the following properties hold:
(a) (top heavy) wi(E) ≤ wd−i(E).
(b) (unimodality) wi(E) ≤ wi+1(E).

Proof. The proof rests on the following two key steps:
(1) There exists a complex d-dimensional projective variety Y such that for every 0 ≤

i ≤ d one has:
H2i+1(Y ;Q) = 0 and dimQH

2i(Y ;Q) = wi(E).

(2) There exists a resolution of singularities π : X → Y of Y such that the induced
cohomology map

π∗ : H∗(Y ;Q) −→ H∗(X;Q)
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is injective in each degree.
To define the variety Y of Step (1), use E = {v1, · · · , vn} to construct a map iE : V ∨ →

Cn by regarding each vi ∈ E as a linear map on the dual vector space V ∨. Precomposing
iE with the open inclusion Cn ↪→ (CP 1)n yields a map

f : V ∨ → (CP 1)n.

Set
Y := Im (f) ⊂ (CP 1)n.

Ardila-Boocher showed that the variety Y has an algebraic cell decomposition, the number
of Ci’s appearing in the decomposition of Y being exactly wi(E). Having defined Y ,
the resolution X is a sequence of blow-ups (a wonderful model) associated to a certain
canonical stratification of Y . The cohomology rings of both Y and X are well-understood
combinatorially and Step (2) can be checked directly.

Assuming (1) and (2), note that π∗ factorizes through intersection cohomology, i.e.,

π∗ : H∗(Y ;Q)
α→ IH∗(Y ;Q)

β
↪→ H∗(X;Q),

where the fact that β is injective follows from Corollary 4.5. Since π∗ is injective by Step (2),
we get that α : H∗(Y ;Q) → IH∗(Y ;Q) is injective. For i < d/2, consider the following
commutative diagram:

H2i(Y ;Q)

`[H]d−2i

��

� � α
// IH2i(Y ;Q)

`[H]d−2i∼=
��

H2d−2i(Y ;Q) �
� α

// IH2d−2i(Y ;Q)

where the right-hand vertical arrow is the Hard Lefschetz isomorphism for the intersection
cohomology groups of Y . Since the maps labelled by α are injective, it follows that

H2i(Y ;Q)
`[H]d−2i

−−−−−→ H2d−2i(Y ;Q)

is also injective. Hence

wi(E) = dimQH
2i(Y ;Q) ≤ dimQH

2d−2i(Y ;Q) = wd−i(E)

for every i < d/2.
Part (b) follows similarly, by using the unimodality of the intersection cohomology Betti

numbers. �
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