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ABSTRACT. The Milnor-Hirzebruch class of a locally complete intersection X in an alge-
braic manifold M measures the difference between the (Poincaré dual of the) Hirzebruch
class of the virtual tangent bundle of X and, respectively, the Brasselet-Schiirmann-Yokura
(homology) Hirzebruch class of X. In this note, we calculate the Milnor-Hirzebruch class
of a globally defined algebraic hypersurface X in terms of the corresponding Hirzebruch
invariants of vanishing cycles and singular strata in a Whitney stratification of X. Our
approach is based on Schiirmann’s specialization property for the motivic Hirzebruch class
transformation of Brasselet-Schiirmann-Yokura. The present results also yield calculations
of Todd, Chern and L-type characteristic classes of hypersurfaces.
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1. INTRODUCTION

An old problem in geometry and topology is the computation of topological and ana-
lytical invariants of complex hypersurfaces, such as Betti numbers, Euler characteristic,
signature, Hodge numbers and Hodge polynomial, etc.; e.g., see [16, 25, 29, 30]. While the
non-singular case is easier to deal with, the singular setting requires a subtle analysis of
the relation between the local and global topological and/or analytical structure of singu-
larities. For example, the Euler characteristic of a smooth projective hypersurface depends
only on its degree and dimension. More generally, Hirzebruch [25] showed that the Hodge
polynomial of smooth hypersurfaces has a simple expression in terms of the degree and the
cohomology class of a hyperplane section. However, in the singular context the invariants
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of a hypersurface inherit additional contributions from the singular locus. For instance, the
Euler characteristic of a projective hypersurface with only isolated singularities differs (up
to a sign) from that of a smooth hypersurface by the sum of Milnor numbers associated
to the singular points. In [15], the authors studied the Hodge theory of one-parameter
degenerations of smooth compact hypersurfaces, where the aim was to compare the Hodge
polynomials of the general (smooth) fiber and respectively special (singular) fiber of such
a family of hypersurfaces. By using Hodge-theoretic aspects of the nearby and vanishing
cycles [17, 43] associated to the family, the authors obtained in [15] a formula expressing
the difference of the two polynomials in terms of invariants of singularities of the special
fiber (see also [18] for the corresponding treatment of Euler characteristics).

In this note we study the (homology) Hirzebruch classes [8] of singular hypersurfaces,
and derive characteristic class versions of the above-mentioned results from [15]. As these
parametrized families of classes include at special values versions (known in many special
cases to be the standard ones) of Todd-classes, Chern-classes and L-classes, the results
described in this paper yield new formulae for all of these. We obtain results both for inter-
section (co)homology based versions of such classes, as well as for standard (co)homology
based versions of them. These, of course, are equal for smooth varieties, but in general
differ. Formulae for such characteristic classes in the settings of stratified submersions were
obtained by some of the present authors in [12, 13]. Here by combining results and methods
of those papers with a recent result of the fourth author [50], we in particular obtain results
which are the counterpart for divisors and, more generally, for regular embeddings to the
above-mentioned submersion results. By using the good fit between the results of [13] with
that of [50], and where details paralleled those of our earlier papers just giving indications,
we are able to give succinct proofs. The present results on embeddings have independent
interest, e.g., because of their relation to knot-theoretic invariants and their generalizations
in the singular setting, see [10, 11, 31, 33]. Compare also with the recent survey [51] for a
quick introduction to the main results of this paper as well as for the development of these
results.

The study in this note can be done in the following general framework: Let X < M be
the inclusion of an algebraic hypersurface X in a complex algebraic manifold M (or more
generally the inclusion of a local complete intersection). Then the normal cone NxM is a
complex algebraic vector bundle NxM — X over X, called the normal bundle of X in M.
The virtual tangent bundle of X, that is,

(1.1) TX = [i*TM — NxM] € K°(X),

is independent of the embedding in M (e.g., see [21][Ex.4.2.6]), so it is a well-defined element
in the Grothendieck group of algebraic vector bundles on X. Of course

TwX =[TX] € K°(X),

in case X is a smooth algebraic submanifold. Let c¢/* denote a multiplicative characteristic
class theory of complex algebraic vector bundles, i.e., a natural transformation (with R a
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commutative ring with unit)
d*: (K'(X),®) = (H'(X)® R,U) ,

from the Grothendieck group K°(X) of complex algebraic vector bundles to a suitable co-
homology theory H*(X) with a cup-product U, e.g., H**(X;Z) or the operational Chow
cohomology of [21]. Then one can associate to X an intrinsic homology class (i.e., indepen-
dent of the embedding X < M) defined as:

(1.2) A (X) = (T X) N [X] € H(X)® R.

Here [X] € H.(X) is the fundamental class of X in a suitable homology theory H.(X)
(such as Borel-Moore homology HZM (X)) or Chow groups C'H,(X) with integer or rational
coefficients).

Assume, moreover, that there is a homology characteristic class theory cl,.(—) for complex
algebraic varieties, functorial for proper morphisms, obeying the normalization condition
that for X smooth ¢l,(X) is the Poincaré dual of cl*(TX) (justifying the notion cl,). If X
is smooth, then clearly we have that

V(X)) =" (TX)N[X] = cl(X) .

However, if X is singular, the difference between the homology classes ¢y (X) and cl,(X)
depends in general on the singularities of X. This motivates the following

Problem 1.1. Describe the difference clY™(X) — cl.(X) in terms of the geometry of the
singular locus of X.

This problem is usually studied in order to understand the complicated homology classes
cl,(X) in terms of the simpler virtual classes ¢/} (X) and these difference terms measuring
the complexity of singularities of X. The strata of the singular locus have a rich geometry,
beginning with generalizations of knots which describe their local link pairs. This “normal
data”, encoded in algebraic geometric terms via, e.g., the mixed Hodge structures on the
(cohomology of the) corresponding Milnor fibers, will play a fundamental role in our study
of characteristic classes of hypersurfaces.

There are a few instances in the literature where, for the appropriate choice of ¢/* and
cl,, this problem has been solved. The first example was for the Todd classes td*, and
td.(X) := td.(|Ox]), respectively, with

the Todd class transformation in the singular Riemann-Roch theorem of Baum-Fulton-
MacPherson [2] (for Borel-Moore homology) or Fulton [21] (for Chow groups). Here Go(X)
is the Grothendieck group of coherent sheaves, with [Ox]| the class of the structure sheaf.
By a famous result of Verdier [58, 21|, td, commutes with the corresponding Gysin homo-
morphisms for the regular embedding ¢ : X < M. This can be used to show that

td?"(X) = td* (T3 X) N [X] = td.(X)
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equals the Baum-Fulton-MacPherson Todd class td.(X) of X ([58, 21]).

A more interesting example stems from studying the L-classes of compact hypersurfaces.
More precisely, if ¢l* = L* is the Hirzebruch L-polynomial in the Pontrjagin classes [25], the
difference between the intrinsic homology class

LX) = L (T X) N [X]

and the Goresky-MacPherson L-class L.(X) ([23]) for X a compact complex hypersurface
was explicitly calculated in [10, 11] as follows: fix a Whitney stratification of X, and let V,
be the set of strata V with dimV < dimX; then if all V' € V), are assumed simply-connected,

(1.3) LX) = LX) = Y o(Ik(V)) - L.(V),

VeVo

where o(1k(V')) € Z is a certain signature invariant associated to the link pair of the stratum
V in (M, X). (This result is in fact of topological nature, and holds more generally for a
suitable compact stratified pseudomanifold X, which is PL-embedded in real codimension
two in a manifold M; see [10, 11] for details.) Here the Goresky-MacPherson L-class

L.(X) = L.(IICY))
is the L-class of the shifted (self-dual) intersection cohomology complex
ICY = ICx[—dim(X)]

of X. (For a functorial L-class transformation in the complex algebraic context compare
with [8].)

Lastly, if ¢l* = ¢* is the total Chern class in cohomology, the problem amounts to com-
paring the Fulton-Johnson class ¢f/(X) := ¢V (X) (e.g., see [21, 22]) with the homology

*

Chern class ¢,(X) of MacPherson [32]. Here ¢.(X) := c.(1x), with
¢t F(X) — H.(X)

the functorial Chern class transformation of MacPherson [32], defined on the group F'(X)
of complex algebraically constructible functions. The difference between these two classes is
measured by the so-called Milnor class, M, (X), which is studied in [1, 6, 7, 9, 35, 38, 47, 48,
61]. This is a homology class supported on the singular locus of X, and in the case of a global
hypersurface X it was computed in [38] (see also [48, 47, 61, 35]) as a weighted sum in the
Chern-MacPherson classes of closures of singular strata of X, the weights depending only on
the normal information to the strata. For example, if X has only isolated singularities, the
Milnor class equals (up to a sign) the sum of the Milnor numbers attached to the singular
points, which also explains the terminology:

(14) M.(X)= > (H(R:Q)

where F, is the local Milnor fiber of the isolated hypersurface singularity (X, z). More
generally, Verdier’s beautiful result [59] on the specialization of the MacPherson-Chern
class transformation ¢, was used in [38, 48, 47, 51, 35] for computing the (localized) Milnor
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class M, (X) of a global hypersurface X = {f = 0} in terms of the vanishing cycles of
f:M—C:

(1.5) M (X) = c.(®f(1nr)) € Hi(Xsing) ,

with the support of the constructible function ®;(1,/) being contained in the singular locus
Xsing of X.

A main goal of this note is to study the (unifying) case when cl* = T is the (total)
cohomology Hirzebruch class of the generalized Hirzebruch-Riemann-Roch theorem [25].
The aim is to show that the results stated above are part of a more general philosophy,
derived from comparing the intrinsic homology class (with polynomial coefficients)

(1.6) T, (X) == T;(Tu:X) N [X] € H(X) ® Q[y]

with the motivic Hirzebruch class T, (X) of [8]. This approach is motivated by the fact
that the L-class L*, the Todd class td* and the Chern class ¢*, respectively, are all suitable
specializations (for y = 1,0, -1, respectively) of the Hirzebruch class T} see [25]. Here
T,,(X) = T, (lidx]), with

Ty, : Ko(var/X) — H.(X) © Q[y]
the functorial Hirzebruch class transformation of Brasselet-Schiirmann-Yokura [8], defined
on the relative Grothendieck group Ky(var/X) of complex algebraic varieties over X.

In fact, in this paper we also use the description T, = MHT,_ o X g4, in terms of algebraic
mixed Hodge modules, with

(1.7) MHT,, : Ko(MHM(X)) — H.(X) ® Qly,y ']

the corresponding functorial Hirzebruch class transformation of Brasselet, Schiirmann and
Yokura [8, 13, 49] which is defined on the Grothendieck group Ko (MHM(X)) of algebraic
mixed Hodge modules on X. These characteristic class transformations are motivic and
resp. Hodge-theoretic refinements of the (rationalization of the) Chern class transformation
¢ ® Q of MacPherson, which by [49][Prop.5.21] all fit into a (functorial) commutative
diagram:

Ty*

Ko(var/X) —— H.(X)®Q[y]

] 1

Ko(MHM(X)) — H,(X) ® Qly,y"]

(1.8) mtl ly:_l

Ko(DY(X)) =29 H(X)®Q

Xstalk l ’ ’

F(X) 20 H(X)®Q.

Here D%(X) is the derived category of algebraically constructible sheaves on X (viewed as a
complex analytic space), with rat associating to a (complex of) mixed Hodge module(s) the
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underlying perverse (constructible) sheaf complex, and xgax is given by taking the Euler
characteristic of the stalks. Finally, x g4, is the natural group homomorphism given by (e.g.,
see [49][Cor.4.10]):

[f:Z - X]— [fQZ].

Then the homology Hirzebruch class T, (X) = MHT, ([Q¥]) is the value taken on
the (class of the) constant Hodge sheaf Q¥ by the natural transformation MHT, , since

xudg([1dx]) = [QF]. Note that
(19) T,.(X) = MHT (@) = c.(1x) ® @ = cs(X) © Q.

For X pure-dimensional, the use of mixed Hodge modules also allows us to consider the
Intersection Hirzebruch class (as in [13, 49]):

IT,,(X) == MHT, ([[CY']) € H.(X) ® Qly,y ']

corresponding to the shifted intersection cohomology Hodge module IC*¥ := IC¥[—dim(X)].
This is sometimes more natural, especially for the comparison with the L-class L.(X) of X.

Let us now assume that the complex algebraic variety X is a hypersurface, globally defined
as the zero-set X = {f = 0} (of codimension one) of an algebraic function f : M — C
on a complex algebraic variety M. Let i' : H.(M) — H,_1(X) be the homological Gysin
transformation (as defined in [59, 21]). The key ingredient used in this paper is the following
specialization property for the motivic Hirzebruch class transformation MHT,, :

Theorem 1.2. ([50]) MHT,, commutes with specialization, that is:
(1.10) MHT, (V' (=)) = ¢ MHT,, () : Ko(MHM(M)) — H.(X) ®Qly,y '] .

This is a generalization of Verdier’s result [59] on the specialization of the MacPherson
Chern class transformation, which was used in [38, 48, 47, 35] for computing the Milnor
class of X. The smoothness of M is not needed in the above theorem. One can use the
nearby- and vanishing cycle functors ¥, and ®; either on the motivic level of localized (at
the class L of the affine line) relative Grothendieck groups

M(var/—) := Ky(var/—)[L™]

(see [5, 24]), or on the Hodge-theoretic level of algebraic mixed Hodge modules ([41, 43]),
“lifting” the corresponding functors on the level of algebraically constructible sheaves ([18,
48]) and algebraically constructible functions ([48, 59]), so that the following diagram com-
mutes:
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m FHm
)

Ko(var/M) ——  M(var/M) N M (var/X)

X Hdg XHdg
\I//H,(I’/H
Ko(MHM(M)) -1 Ky(MHM(X))
(111) rat rat
Ko(DH(M)) 225 Ro(DE(X)
Xstalk Xstalk
F(M) It X)),

Here and in Theorem 1.2 we use the notation
(1.12) U= 0{1] and @ = @{[1]

for the shifted functors, with W}, & : MHM(M) — MHM(X) and W;[-1], ®f[-1] :
Pervg(M) — Pervg(X) preserving mixed Hodge modules and perverse sheaves, respec-
tively.

Remark 1.3. As already pointed out, the smoothness of M is not used for the commuta-
tivity of the above diagram. Moreover:

(1) The motivic nearby and vanishing cycles functors of [5, 24] take values in a refined
equivariant localized Grothendieck group M*#(var/X) of equivariant algebraic vari-
eties over X with a “good” action of the pro-finite group ji = lim u,, of roots of unity
(for the projective system pig., — pin : € — £%). By definition, this factorizes over a
“good” action of a finite quotient group ji — pu, of n-th roots of unity.

(2) In our applications above we don’t need to take this action into account. So we use
the composed horizontal transformations in the following commutative diagram (see
[24][Prop.3.17]):

m Fm

‘I’f #i’f N forget
My(var/M) ——  MH*var/X) ——  M(var/X)
(1.13) degl degl lmg

'H §'H
Ko(MHM(M)) —L220, fmen(MIM (X)) 224 Ko (MHM(X)) .
Here K" (MHM(X)) is the Grothendieck group of algebraic mixed Hodge modules
with a finite order automorphism, which in our case is induced from the semi-simple
part T of the monodromy automorphism acting on \IJ? , @? .

(3) Also note that for the commutativity of diagram (1.13) one has to use the shifted
functors W7 and ®'. Moreover, the Grothendieck group M*(var/X) used in [24]
is finer than the one used in [5]. But both definitions of the motivic nearby and
vanishing cycle functors are compatible ([24|[Rem.3.13]), and xpq, also factorizes
over M#(var/X) in the sense of [5] by the same argument as for [24][(3.16.2)].
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(4) In a future work, we will define a “spectral Hirzebruch class transformation”
MHT,, : KJ(MHM(X)) — | ) H.(X) ® Q[tn,t77],
n>1
which is a class version of the Hodge spectrum (e.g., see [24])
hsp : Ki*"(mHs) U Ztn t_f
n>1

These spectral invariants are refined versions (for ¢ = —y) of the Hirzebruch class
transformation MHT,_and the x,-genus, respectively. We will get in particular
a refined spectral Milnor-Hirzebruch class, needed for a suitable Thom-Sebastiani
result.

By the definition of W7 in [5, 24], one has that
VT (Ko(var/M)) C im (Ko(var/X) — M(var/X)) ,

so T,, o W' maps Ko(var/M) into H.(X) ® Q[y] C H.(X) ® Q[y,y~"]. One therefore gets
the following commutative diagram of specialization results:

Ty, oV=
Ko(var/M) '—Tf> H.(X) ®Qly]
XHng/ J/
MHT,, oW'H= o
(1.14) Ky(MHM(M)) ———— H.(X)2Qly,y']
Xstalko'fatJ{ j{y:_l
F(M) kit H.(X)®Q,

iy

with the last horizontal line corresponding to (the rationalized version of) Verdier’s special-
ization result ([59]).

Assume from now on that X is a complex algebraic hypersurface in a smooth ambient
space M, i.e., X is a globally defined as the zero-set X = {f = 0} (of codimension one) of an
algebraic function f : M — C on a complex algebraic manifold M. (But see the discussion in
Remark 1.6 on generalizing this to local complete intersections, e.g., hypersurfaces without
a global equation.) Using Theorem 1.2, one gets as in the case of Milnor classes ([38, 48,
47, 35]) that the difference class

MTy*(X) = Ty:ir(X) - Ty*(X)

of X = {f = 0} is entirely determined by the vanishing cycles of f : M — C (see Theorem
3.2), i.e

(1.15) MT,,(X) = T, (®F ([idy])) = MHT, (@7 ([Q4])) -

This is an enriched version of the (localized) Milnor class formula (1.5), whose degree ap-
peared recently in the computation of Donaldson-Thomas invariants, e.g., see (3, 4, 20, 27].
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In particular, in [27][Sect.4] the authors express hope that the Donaldson-Thomas theory
could be lifted from constructible functions to mixed Hodge modules. We believe our ap-
proach is tailored to serve such a purpose. Similarly, motivic nearby and vanishing cycles
are used in [4].

Note that ®7([idy]) and @ ([Qf;]) in equation (1.15) are supported on the singular
locus Xgng of X. So by the functoriality of the transformations 7, and MHT, (for the
closed inclusion Xgpne < X), we can regard

(1.16) MT,, (X) =T, (27 (lidy])) = MHT, (95 ([Qu])) € H.(Xiing) ® Qly]

as a localized Milnor-Hirzebruch class. This is the key technical result of our paper. Many
applications of it, as well as reformulations in more concrete geometric terms depending on
suitable stratifications of the singular locus Xgne of X, are given in the next sections.

For example, if X has only isolated singularities, the two classes T,,""(X) and resp. T}, (X)

*

coincide except in degree zero, where their difference is measured (up to a sign) by the sum
of Hodge polynomials associated to the middle cohomology of the corresponding Milnor
fibers attached to the singular points. More precisely, we have in this case that:

(L17)  TYX) -T,,(X) = Y )"%([H(FzQD = Y x(H(F:Q)),

where £ is the Milnor fiber of the isolated hypersurface singularity germ (X,z), and n
is the complex dimension of X. The cohomology groups H*(F,; Q) carry canonical mixed
Hodge structures (even for non-isolated singularities) coming from the stalk formula

(1.18) H*(Fy; Q) = H*(®(Qu)o)

and the functorial calculus of algebraic mixed Hodge modules (see (3.27) in Section 3.3). By
taking the alternating sum of these cohomology groups in the Grothendieck group Ky(mHs)
of (rational) mixed Hodge structures, we get classes

[H*(F,;Q)] € Ko(mHs),
to which one can then apply the ring homomorphism (with F* the Hodge filtration)
Xy : Ko(mHs) — Z[y,y™'); x,([H]) := > dimGri(H @ C) - (—y)” .
P

The Hodge x,-polynomials of the Milnor fibers at singular points can in general be com-
puted from the better known Hodge spectrum of singularities (see Remark 3.7), and for
isolated singularities they are just Hodge-theoretic refinements of the Milnor numbers since

X1 ([ (Fay Q) = x([H*(Fe: Q)))

is the reduced Euler characteristic of the Milnor fiber F,. For this reason, we regard the
difference

(1.19) MT,, (X) = T,7"(X) = T,,(X) € H(X) ® Qly]
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as a Hodge-theoretic Milnor class, and call it the Milnor-Hirzebruch class of the hypersur-
face X. In fact, it is always the case that by substituting y = —1 into MT,,_(X) we obtain
the (rationalized) Milnor class M, (X) of X.

Let us now come back to the general case of a global hypersurface X = {f = 0} (of
codimension one) in an ambient manifold M, whose singular locus Xgye is (possibly) of
positive dimension. One of the main results of this note is the following reformulation of
(1.16), where as before, H,(X) denotes either the Borel-Moore homology in even degrees
HPEM(X), or the Chow group C'H,(X):

Theorem 1.4. Let V be a fized complex algebraic Whitney stratification of X, and denote
by Vo the collection of all singular strata (i.e., strata V € V with dim(V) < dimX ). For
each V€ Vy, let F, be the Milnor fiber of a point v € V.. Assume that all strata V€ Vy are
simply-connected. Then:

(1-2()) Ty:ir(X) - Ty*(X) = Z (Ty*(v) - Ty*(‘_/ \ V)) Xy([ﬁ*(Fvy@”) .

Vel

If, moreover, for each V € Vy, we deﬁne inductz’vely

IT (V) :=1IT, (V) = Y IT, (W) - x,([TH* (¢ Lwv)]) ,

W<V

where the summation is over all strata W C 'V \ V' and ¢°Lw,y denotes the open cone on
the link of W in V', then:

(1.21) Ty:ir(X) Z ITy(V) - xy( H*(FUaQ)])
Vevy

Remark 1.5. The assumptions in the first part of the above theorem can be weakened, in
the sense that instead of a Whitney stratification we only need a partition of the singular
locus Xging into disjoint locally closed complex algebraic submanifolds V', such that the
restrictions @ ¢(Qp)|v of the vanishing cycle complex to all pieces V' of this partition have
constant cohomology sheaves (e.g., these are locally constant sheaves on each V', and the
pieces V' are simply-connected). In particular, the above theorem can be used for computing
the Hirzebruch class of the Pfaffian hypersurface and, respectively, of the Hilbert scheme

(CHW .= {df, = 0} C M,

considered in [20][Sect.2.4 and Sect.3]. Indeed, the singular loci of the two hypersurfaces
under discussion have “adapted” partitions as above with only simply-connected strata (cf.
[20][Lem.2.4.1 and Cor.3.3.2]). Moreover, the mixed Hodge module corresponding to the
vanishing cycles of the defining function, and its Hodge-Deligne polynomial are calculated
in [20][Thm.2.5.1, Thm.2.5.2, Cor.3.3.2 and Thm.3.4.1]. So Theorem 1.4 above can be used
for obtaining class versions of these results from [20].

By the functoriality of T, and MHT,_, all homology characteristic classes of closures of
strata in Theorem 1.4 are regarded in the homology H,(X)® Qly,y '] of the ambient vari-
ety X. Moreover, the Intersection cohomology groups I H*(c¢®Ly,y) carry canonical mixed
Hodge structures coming from the stalk formula (3.21) in Section 3.3 and the functorial
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calculus of algebraic mixed Hodge modules. The requirement in Theorem 1.4 that all strata
in X are simply-connected is only used to assure that all monodromy considerations become
trivial to deal with. Moreover, as we explain later on, in some cases much interesting infor-
mation is readily available without any monodromy assumptions. For example, Theorem
1.4 specializes for y = —1 to a computation of the rationalized Milnor class M, (X) of X,
and the resulting formula holds without any monodromy assumptions (compare [35]).

Remark 1.6. The problem of understanding the class M7, (—) in terms of invariants of
the singularities can be formulated in more general contexts, e.g., in the complex analytic
setting, for complete intersections or even for regular embeddings of arbitrary codimensions.
And the specialization result of Theorem 1.2 can also be used in these cases. In fact, for

global complete intersections X = {f; = 0,..., fr = 0} one can iterate this specialization
result and get (compare [51])
(1.22) MHT,, (¥ o0 W (=) = i'MHT, (),

with Wy, 0---0W, related to the Milnor fibration of the ordered tuple (fi, ..., fr) : M — C*
in the sense of [36]. And for a general complete intersection or regular embedding (e.g., for
a hypersurface X without a global equation), one can apply the specialization result to
the so-called “deformation to the normal cone” (compare [48, 47| for the case of Milnor-
Chern classes). However, for simplicity, we restrict ourselves to the case of globally defined
hypersurfaces in complex algebraic manifolds.

A motivic approach to Milnor-Hirzebruch classes was recently and independently devel-
oped by Yokura [62].

2. BACKGROUND ON HIRZEBRUCH CLASSES OF SINGULAR VARIETIES

We assume the reader is familiar with some of the basics of Saito’s theory of algebraic
mixed Hodge modules and with the functorial calculus of their Grothendieck groups. For a
quick survey of these topics see [42], [13][Sect.3] or [34][Sect.2.2-2.3]. In fact, a first reading
of this paper can be done in the underlying context of complex algebraically constructible
sheaf complexes and the corresponding functorial calculus of their Grothendieck groups (e.g.,
see [18, 46]). We only recall here the construction and main properties of Hirzebruch classes
of (possibly singular) complex algebraic varieties, as developed by Brasselet, Schiirmann
and Yokura in [8]. For the motivic approach in terms of the relative Grothendieck group
of complex algebraic varieties (as indicated in the Introduction) we refer to [8], whereas for
the Hodge-theoretic approach used here we refer to the recent overview [49].

For any complex algebraic variety X, let MHM(X) be the abelian category of Saito’s
algebraic mixed Hodge modules on X. For any p € Z, M. Saito [43] constructed a functor
of triangulated categories

(2.1) gry DR : D'MHM(X) — D, (X)

coh

commuting with proper push-down, with g?“;;7 DR(M) = 0 for almost all p and M fixed,

where D%, (X) is the bounded derived category of sheaves of Ox-modules with coherent

cohomology sheaves. If Q¥ € D’MHM(X) denotes the constant Hodge module on X, and
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if X is smooth and pure dimensional, then grf DR(QY) ~ QX [—p]. The transformations
g?"]]i7 DR induce functors on the level of Grothendieck groups. Therefore, if

Go(X) 2 Ko(Dgoy (X))

denotes the Grothendieck group of coherent sheaves on X, we get a group homomorphism
(the motivic Chern class transformation)

(2.2) MHC, : Ko(MHM(X)) — Go(X) @ Z[y,y™ "] ;
HZ )'[H (grr,DR(M))] - (—y)? .

We let td(14y), be the natural transforrnatlon (cf. [61, 8]):

(2.3) td(14y), : Go(X) ® Zly,y '] = Hd(X) @ Qly,y ", (1 +y) '] ;
k>0

where H,(X) is either the Borel-Moore homology in even degrees HZM (X)), or the Chow
group CH,(X), and tdy is the degree k component of the Todd class transformation ¢d, :
Go(X) — H.(X) ® Q of Baum-Fulton-MacPherson [2, 21|, which is linearly extended over

Zly,y~'.

Definition 2.1. The (motivic) Hirzebruch class transformation MHT,  is defined by the
composition (cf. [8, 49])

(2.4) MHT,, = td(14+y), o MHC, : Ko(MHM(X)) — H.(X)® Q[y,y ', (1+y)~'].
By a recent result of [49][Prop.5.21], MHT, takes values in
H.(X)®Qly,y™'] € H(X)®Qly,y™", (1 +y)7],
so that we consider it as a transformation
(2.5) MHT,, = td(14y), c MHC, : Ko(MHM(X)) — H.(X) ® Qly,y '] .
The (motivic) Hirzebruch class T, (X) of a complex algebraic variety X is then defined by
(2.6) T,.(X) == MHT, ([Qx])-

If X is an n-dimensional complex algebraic manifold and L is a local system on X underly-
ing an admissible variation of mized Hodge structures (with quasi-unipotent monodromy at
infinity), we define twisted characteristic classes by

(2.7) Ty*(X§£) = MHTy*([EH])a

where L7[n] is the smooth mized Hodge module on X with underlying perverse sheaf L[n].
Stmilarly, for X pure-dimensional, we let

(2.8) IT,,(X) == MHT, ([ICY])
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be the value of the transformation MHT, on the shifted intersection cohomology module
ICH .= IC¥[—dim(X)]. And if L is an admissible variation defined on a smooth Zariski
open and dense subset of X, we set

(2.9) IT,(X; L) == MAT, ([ICX' (L)]).

Remark 2.2. Over a point, the transformation MHT,  coincides with the y,-genus ring
homomorphism y, : Ko(mHs”) — Z[y,y '] defined on the Grothendieck group of (graded)
polarizable mixed Hodge structures by

(2.10) Xy ([H]) =) dimGri.(H © C) - (—y)”,

for F* the Hodge filtration of H € mHs”. Here we use the fact proved by Saito that there
is an equivalence of categories MHM (pt) ~ mHs".

By definition, the transformations MHC, and MHT,  commute with proper push-forward,
and the following normalization property holds (cf. [8]): If X is smooth and pure dimen-
sional, then

(211) T,.(X) = T3(TX) 1 [X],
where T(T'X) is the cohomology Hirzebruch class of X ([25]) defined via the power series
212 Q) = 20V oy < Qo]
that is,
dim(X)
(2.13) T3(TX)= [] Qule) e H(X)®Qly,
i=1

where {o;} are the Chern roots of the tangent bundle 77X. Note that for the values y = —1,
0, 1 of the parameter, the class T) reduces to the total Chern class ¢*, Todd class td*, and
L-polynomial L*, respectively.

Since the motivic Hirzebruch class transformation 7}, from [8] takes values in H,(X) ®
Qly], one is allowed to specialize the parameter y in T}, (X) to the values y = —1,0, 1, with

(2.14) T, (X)=c(X)®Q

the total (rational) Chern class of MacPherson [32] (as already explained in the Introduc-
tion). For a variety X with at most “Du Bois singularities” (e.g., toric varieties), we have

by [8] that
(2.15) Too(X) = td.(X) = td.([Ox]) ,

for td, the Baum-Fulton-MacPherson transformation [2, 21]. And it is still only conjectured
that if X is a compact algebraic variety, then IT;,(X) is the Goresky-MacPherson L-class
of X (cf. [8][Rem.5.4]):

ITy,(X) = L.(X).
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This is only known in some special cases, e.g., if X has a small resolution of singularities.
If X is projective, the degrees of these classes coincide by Saito’s Hodge index theorem for
intersection cohomology (see [41][Thm.5.3.2]), i.e., the following identification holds

(2.16) Ix1(X) = o(X),

for o(X) the Goresky-MacPherson signature of the projective variety X. Also note that
if X is a rational homology manifold then IC'H ~ Q. so that in this case we get that
IT, (X)=T,,(X). As a byproduct of results obtained in this paper, we are able to prove
the above conjecture for the case of a compact complex algebraic variety X with only isolated
singularities (or more generally, with a suitable singular locus, which is smooth with simply-
connected components), which is a rational homology manifold that can be realized as a
global hypersurface in a complex algebraic manifold; see Section 4.

3. MILNOR-HIRZEBRUCH CLASSES OF COMPLEX HYPERSURFACES

3.1. Milnor-Hirzebruch classes via specialization. Let, as before, X = {f = 0} be
an algebraic variety defined as the zero-set of codimension one of an algebraic function
f: M — C, for M a complex algebraic manifold of complex dimension n+1. Let i : X — M
be the inclusion map. Denote by L|x the trivial line bundle on X. Then the virtual tangent
bundle of X can be identified with

since Ny M ~ f*N3C ~ L|x.
Let
v @ - MHM(M) — MHM(X)
be the nearby and resp. vanishing cycle functors associated to f, which are defined on the
level of Saito’s algebraic mixed Hodge modules [41, 43]. These functors induce transforma-

tions on the corresponding Grothendieck groups and, by construction, the following identity
holds in Ko(MHM(X)) for any [M] € Ko(MHM(M)):
(3.2) Ui ([M]) = @ff ((M]) — " ([M]) .
Recall that, if

rat : MHM(X) — Pervg(X)
is the forgetful functor assigning to a mixed Hodge module the underlying perverse sheaf,
then rat o W =P o rat and similarly for ®}. Here PW; := W;[—1] is a shift of Deligne’s
nearby cycle functor [17], and similarly for 7®;. So the shifted transformations W/’ := W{[1]

and (ID’fH = (IDJIZI [1] correspond under rat to the usual nearby and vanishing cycle functors as
stated in the Introduction in the commutative diagram (1.11).

Let ¢ : H,(M) — H,_;(X) denote the Gysin map between the corresponding homology
theories (see [21, 59]). The following is an easy consequence of the specialization property
(1.10) of Schiirmann [50] for the Hirzebruch class transformation MHT,_ (cf. Thm.1.2):

Lemma 3.1.

(3.3) T, (X) = T} (T, X) 0 [X] = MHT,, (W} ([Q]).

Yx
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Proof. Since M is smooth, it follows that Q& [n+1] is a mixed Hodge module, i.e., a complex
concentrated in degree 0. And since all our arguments are in Grothendieck groups, in order
to simplify the notations, we will work with the shifted object Q¥ € MHM(M)[—n — 1] C
D*MHM(M), whose class in Ko(MHM(M)) is identified with
@] = (=1)"*" - [Qi[n +1]] .
By applying the identity (1.10) to the class [Q4] € Ko(MHM(M)) we have that
MHT,, (¥7([Q}])) = ¢ MHT, ([Qy]) = i'T,. (M) = (T, (TM) N [M]),

where the last identity follows from the normalization property (2.11) of (motivic) Hirze-
bruch classes as M is smooth. Moreover, by the definition of the Gysin map, the last term
of the above identity becomes

F(THTM)) Ni'[M] = (T;(TM)) N [X],
which by the identification in (3.1) is simply equal to T,"" (X).
U

We can now prove the following key result on the characterization of the Milnor-Hirzebruch

class MT, (X):

Theorem 3.2. The Milnor-Hirzebruch class of a globally defined hypersurface X = f=1(0)
(of codimension one) in a complex algebraic manifold M is entirely determined by the van-
ishing cycles of f: M — C. More precisely,

(3.4) MTy*(X) = Ty:ir(X> - Ty*(X) = MHTy*((D/fHQQJ\Iﬂ))

Proof. By applying the identity (3.2) to the class [Q]\HA of the constant Hodge sheaf on M,
we obtain the following equality in Ko(MHM(X)):

(3.5) o7 ([Qu])] = o7 ([Qu]) + [Qx]-

The desired identity follows now from Lemma 3.1 after applying the natural transformation
MHT,, to equation (3.5) (shifted by [1]).
O

Since the complex ®4(Qy) is supported only on the singular locus Xgy,, of X (i.e., on
the set of points in X where the differential df vanishes), the result of Theorem 3.2 shows
that the difference T,Y"(X) —T,,, (X) can be expressed entirely only in terms of invariants of
the singularities of X. Namely, by the functoriality of the transformations 7, and MHT,
(for the closed inclusion X, — X), we can view

(3.6)  MT, (X) =T, (2} ([idy])) = MHT,, (2" ([Q}])) € He(Xsing) ® Qly]
as a localized Milnor-Hirzebruch class. Therefore, we have the following

Corollary 3.3. The classes T,""(X) and T, (X) coincide in dimensions greater than the
dimension of the singular locus of X, i.e.,

Ty;ir(X) =T,,(X) € Hi(X)®Q[y] for i>dim Xgng -
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Remark 3.4. The nearby and resp. vanishing cycle functors ¥{, ®{ : MHM(M) —
MHM(X) have a functor automorphism T of finite order, induced by the semisimple part of
the monodromy 7. We have the decomposition Wi = Wi, @ W}, such that T, = id on U},
and 1 is not an eigenvalue of T on \I/J{{#, and similar for (ID}J . By further decomposition into
generalized eigenspaces the action of T on the (complexification of the) mixed Hodge struc-
tures H/iz @Y M (j € Z), for i, : {x} — X the inclusion of a point, Saito [44] defined the
spectrum hsp(M, f, ) of a (complex of ) mized Hodge module(s) M € Ko(MHM(M)), which
is a generalization of Steenbrink’s Hodge spectrum for hypersurface singularities [53, 56, 60]
(see also [24] for motivic analogues of vanishing cycles and Hodge spectrum). In this note we
do not need to take into account these monodromy functors. However, the Hirzebruch-type
invariants associated to the local Milnor fibers which appear in our formulae can be, in fact,
computed from this well-studied Hodge spectrum information (see Remark 3.7 below).

Remark 3.5. (The degree of Milnor-Hirzebruch class)
If f: M — C is proper, the degree of the (zero-dimensional piece of the) Milnor-Hirzebruch
class is computed by

(3.7) deg (MT,,, (X)) = /[X] T, (X) = Ty, (X) = Xy (X0) = xy (X)),
with X; := f~1(¢) (for ¢t # 0 small enough) the generic fiber of f. In order to see this, first
note that by pushing-down under Rf, the specialization identity

MHT,, (W} ([Q4))) = ¢ MHT,  ([Q).

one obtains the equality between the Hodge polynomial associated to the limit mized Hodge
structure on the cohomology of the canonical fiber X, (e.g., see [39], §11), i.e.,

Xy(XOO) = Xy([H*(X; W}H@ﬁ)])

and respectively that of the nearby (smooth) fiber of f, x,(X;). Then (3.7) follows by
pushing-down under Rf, the identity of (3.2), and then applying the transformation MHT,
(which in this case reduces to the ring homomorphism y,); compare with [15][Sect.3.2].
Therefore, the formulae obtained in this note are indeed characteristic class generalizations
of the results from [15], as mentioned in the Introduction of the present paper.

3.2. Computational aspects. Examples. We now illustrate by simple examples how
one can explicitly compute the Milnor-Hirzebruch class MT,_ (X) in terms of invariants of
the singular locus.

Example 3.6. Isolated singularities.
If the hypersurface X has only isolated singularities, the corresponding vanishing cycles
complex ¢’fH Q1L is supported only at these singular points, and by Theorem 3.2 we obtain:

(3.8) MT, (X)= Y x@0f(Q0) = D (~1)"x(H"(F; Q).

where i, : {x} — X 1is the inclusion of a point, and F, is the Milnor fiber of the isolated
hypersurface singularity (X, x) (which in this case is (n — 1)-connected).
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Remark 3.7. (Hodge polynomials vs. Hodge spectrum)

Let us now point out the precise relationship between the Hodge spectrum and the less-
studied Hodge polynomial of the Milnor fiber of a hypersurface singularity. Here we follow
notations and sign conventions similar to those in [24]. Denote by mHs™" the abelian
category of mixed Hodge structures endowed with an automorphism of finite order, and by
K{"™(mHs) the corresponding Grothendieck ring. There is a natural linear map called the
Hodge spectrum,

hsp : K§*°"(mHs) — UZtI/” —m),
n>1
such that
(3.9) hsp([H]) = ) t° (Z dim<GrgHC,a)tp)
aeQn(o,1) pEL

for any mixed Hodge structure H with an automorphism 7T of finite order, where H¢ is the
complexification of H, Hc, is the eigenspace of T' with eigenvalue exp(2micr), and F* is the
Hodge filtration on Hc. It is now easy to see that the x,-polynomial of H is obtained from
hsp([H]) by substituting ¢ = 1 in t* for « € QN [0,1), and ¢t = —y in ¥ for p € Z. Lastly,
the Hodge spectrum of hypersurface singularities (where one applies the above construction
for the cohomology of the Milnor fiber endowed with the action of the semisimple part of
the monodromy) has been studied in many cases, e.g., for isolated weighted homogeneous
hypersurface singularities ([54]) or isolated hypersurface singularities with non-degenerate
Newton polyhedra ([53, 40]), but see also [28, 37]. (For the relation to the original definition
of Steenbrink of the Hodge spectrum see e.g. [28][Sect.8.10].) In all these cases, we can
therefore compute the y,-polynomials appearing in our formulae. (In fact, for isolated
hypersurface singularities the corresponding spectrum can also be calculated by computer
programs, e.g. see [52]).

Example 3.8. Smooth singular locus.

Let us now assume that X has a smooth singular locus Y3, which for simplicity is assumed
to be connected. Moreover, suppose that ¢Qna is a constructible complex with respect to
the stratification of X given by the strata ¥ and X \ 3 (e.g., this is the case if the filtration
¥ C X corresponds to a Whitney stratification of X ). If r = dim¢X < n, the Milnor fiber
F, at a point x € ¥ has the homotopy type of an (n — r)-dimensional CW complex, which
moreover is (n — r — 1)-connected. So the following identification holds in Ko(MHM(X)):

@7 ([Qurl) = (=) [£5],

for Ly, the admissible variation of mized Hodge structures (on X) with stalk at x € ¥ given
by H" " (F,; Q). Therefore, Theorem 3.2 yields that:

(3.10) MT, (X) = (=" T,,(%; Ly),

with T, (3; Lx) := MHT, ([C#]) the twisted characteristic class corresponding to the admis-
sible variation Lx, on X (cf. Def.2.1). Formulae describing the calculation of such classes
are obtained in the authors’ papers [14, 15, 34, 49]. In particular, if 7 (X) = 0, formula
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(3.10) reduces to:
(3.11) MT, (X) = (=1)"" x ([H" " (F; Q) - T, (%),

which is just a particular case of formula (1.21).
Note that, if N is a normal slice to 2 at z (i.e., N is a smooth analytic subvariety of M,
transversal to X at x), it follows that

(3.12) Xy (" (F; Q)]) = xy ([H" " (Fiv s Q))),

where Fy . is the Milnor fiber of the isolated singularity germ (X NN, x) defined (locally in
the analytic topology) by restricting f to a normal slice N at x. Indeed, by [19]/Cor.1.5],
the spectrum, thus the x,-polynomial, is preserved by restriction to a normal slice. (Here,
our sign conventions in the definition of the spectrum cancel out the sign issues appearing
in [19].) In particular, this “normal” information to the singular stratum is computable as
mentioned in Remark 3.7.

Before giving a very concrete example, we begin with the following considerations. Let
f: C"*1 — C be a polynomial function, and denote the coordinates of C**! by 2y, -+, 2p41.
Assume f depends only on the first n — k + 1 coordinates xq, -+ ,x,_gy1, and it has an
isolated singularity at 0 € C" %! when regarded as a polynomial function on C"~*+1,
If X := f71(0) € C""', then the singular locus 3 of X (or f) is the affine space CF
corresponding to the remaining coordinates x,_j4g, - ,Znr1 of C*™! and the filtration
Y C X induces a Whitney stratification of X. The transversal singularity in the normal
direction to ¥ at a point # € ¥ is exactly the isolated singularity at 0 € C*~*+! mentioned
above. Since X is smooth and simply-connected, we get by Example 3.8 the identity

MT, (X) = (=1)" "y, ([ (Fy; Q) - [CY] € Ho(X) @ Qlyl,

with Fj the Milnor fiber of f : C* %1 — C at 0.
Let us now assume that the above isolated singularity in C*~**! is a Brieskorn-Pham

singularity, i.e., defined by
n—k+1

f(xla "'7xn—k+1) = Z x;ﬂj
j=1

with w; > 2. Then by the Thom-Sebastiani theorem (e.g., see [24][Thm.5.18]) one has the
following computation of the Hodge spectrum:

n—k+1 w;—1
(3.13) bsp([A" (R @) = [T (I 7).

By Remark 3.7, this formula can be specialized to a calculation of the x,-polynomial of Fj.
In particular, by applying the above considerations to the polynomial f : C*** — C given
by
f(xh"' axn—‘rl) = (x1>2+"'(xn—k+l)2a k > 07
we obtain for X := f~1(0) that

MT,(X) = (=)= 1 [C] € H,(X) @ Qly,

where [—] denotes the rounding-up to the nearest integer.
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Example 3.9. The top degree of the Milnor-Hirzebruch class.

Let ¥ := Xgng be the singular locus of X, and denote by ¥yeg = X\ (Xsing)sing its reqular
part. Assume for simplicity that X is irreducible. Then, if r := dimcX, the long exact
sequence in Borel-Moore homology

- H*BM(Esing) — HEM(E) - HFM(Ereg) - Hf—]\f(zsinﬁ o
yields the isomorphism
(3.14) HPM(S) ~ HPM (0q).
And since X,y s smooth and connected, we get by Poincaré Duality that
HPM (Sheg) = H (Bheg) = Z,
and also
HPM(2) = HPM(S,0,) =0, for i > 2r.
Therefore, HEM (X)) ~ Z, and is generated by the fundamental class [%].

top

The top degree of the Milnor-Hirzebruch class lies in Hyop(X)QQly|, where Hyoy(X) denotes
as before either the top Borel-Homology group or the top Chow group. In fact, note that

there is a group isomorphism CH,(X) = HZM(X). So, we can write:
(3.15) MT, (X) =mx(y) - [X] + “lower terms” € Hyo,(X) @ Qly] ® - - -,

where mx(y) denotes the multiplicity of the Milnor-Hirzebruch class along (the regular part
of ) ¥. This multiplicity can be computed (locally, in the analytic topology) in a normal slice
N at a point x € X,eg. And just as in Example 3.8, it follows that

(3.16) ms(y) = (=1)"" xy ([H"" (Fne: Q)),
where Fi . is the Milnor fiber of the isolated singularity germ (X NN, x) defined (locally in
the analytic topology) by restricting f to a normal slice N at € Xyeq.

Remark 3.10. In general, for > an r-dimensional irreducible component of Xg,,, one has
canonical arrows (factorising the isomorphism (3.14) above)

H2BTM(Z) - H2B;~M(Xsing) - HgM(Ereg)a

so that the first arrow is injective. Therefore the arguments of Example 3.9 can be applied to
all irreducible components of the singular locus of X. Specializing further to y = —1, we get
that the corresponding “top-dimensional” multiplicity of the localized Milnor class along X
is given by the Euler characteristic y(H*(Fy.q;Q)) of the Milnor fiber in a transversal slice.
This fits with the corresponding result of [7], but it was not explicitly stated in [48, 47].

We conclude this section with a discussion on the following situation.

Example 3.11. One-dimensional singular locus.

Assume the singular locus Xgng of the hypersurface X is one-dimensional, and consider
a stratification of Xsng which is adapted to ®¢([Qu]), i.e., a stratification for which this
sheaf complex is constructible. Let S C Xgng be the union of the zero-dimensional strata.
Ifi: S — Xgng denotes the inclusion map, and j is the inclusion of the open complement
U of S in Xgng, then by using the distinguished triangle jij* — id — i.3" — applied to
H([Q}]) € D" MHM(Xing), one can reduce the calculation of MT, (X) to the following:
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(1) the calculation of x,([H*(Fy;Q)] at the isolated points x € S. These points are in
general non-isolated singularities of X, but the computation of their corresponding
Hodge spectrum (and therefore of their x,-polynomials) can be reduced to the calcu-
lation of the spectrum (resp. x,-polynomials) of isolated hypersurface singularities
defined by deformations f + g~, for g a generic linear form. This is the content
of Steenbrink’s conjecture [56], proved in the general case by Saito [44] (cf. also
[24][Thm.6.10]).

(2) classes of the form MHT, (7#£) = ©&y MHT, (7iL|y), with summation over the
one-dimensional strata V. (for j : V. — V the corresponding open inclusion into
the closure V. C Xsing), and L the admissible variation of mized Hodge structures
(ID}H (QI)|u (up to a shift), with quasi-unipotent monodromy at infinity. Taking the

normalization p : Z — V, we can factorize j as V 57 BV with j’" open and p
finite. Thus we obtain:

MHT,, (iiLlv) = MHT, (pjiLlv) = p.MHT,, (5 L]v) -

Finally, the classes MHT, (jiL|v) € H.(Z) ® Qly,y~ '] can be concretely calculated
on the Riemann surface Z in terms of the twisted logarithmic de Rham complex
associated to a Deligne extension (with residues in the half-open interval (0,1]) of
L|y across the points of Z\V (as we shall explain in the next section).

3.3. Computation of Milnor-Hirzebruch classes by Grothendieck calculus. In more
general situations, the calculation of the Milnor-Hirzebruch class of X requires a better
understanding of a delicate monodromy problem. First note that we can describe the
Grothendieck group Ko(MHM(X)) of mixed Hodge modules on X as:

(3.17) Ko(MEM(X)) = Ko(MH(X)?),

where MH(X )P denotes the abelian category of pure polarizable Hodge modules [41]. And by
the decomposition by strict support of pure Hodge modules, it follows that Ko(MH(X)P) is
generated by elements of the form [IC¥ (L)], for S an irreducible closed algebraic subvariety
of X and L a polarizable variation of Hodge structures (with quasi-unipotent monodromy
at infinity) defined on a smooth Zariski open and dense subset of S. Thus the image of the
natural transformation MHT,_ is generated by twisted characteristic classes

IT, (S;£) == MHT, ([IC5" (L)),

with ICH (L) := ICH(L)[—dimc(S)], and S and £ as above. Moreover, since by Theo-
rem 3.2, the Milnor-Hirzebruch class is supported only on the singular locus X, of X, the
class MT, (X) is calculated only by classes of the form IT, (S; L) with S an irreducible
closed subvariety contained in Xg,e, and with £ as above. The calculation of such twisted
characteristic classes is in general very difficult. Results in this direction, usually referred
to as “Atiyah-Meyer type formulae”, are described in some special cases in [14, 15, 34, 49].

Another set of generators for the Grothendieck group Ko(MHM(X)) can be obtained by
using resolutions of singularities. More precisely, the group Ko(MHM(X)) is generated by
elements of the form [p.(j.L')] (or [p«(71L")]), with p : Z — X a proper algebraic map from
a smooth algebraic manifold Z, j : U = Z \ D — Z the open inclusion of the complement
of a normal crossing divisor D with smooth irreducible components, and £ an admissible
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variation of mixed Hodge structures on U (with quasi-unipotent monodromy at infinity).
By the functoriality of MHT, _, it suffices to understand the characteristic classes of the form
MHT,, (j.L) (or MHT, (j:.£")), with j and £’ as above. Such classes can be computed in
terms of the twisted logarithmic de Rham complex associated to the Deligne extension of
L' to (Z,D). For generators of the form [p.(j.L")], the corresponding classes are calcu-
lated in [14, 15, 34, 49]. Similar arguments apply to the calculation of classes associated to
generators [p.(ji£")], but using a different Deligne extension, with residues in the half-open
interval (0, 1] (compare [43][Sect.3.10-3.11]).

We now turn to the proof of Theorem 1.4 from the Introduction, where for simplicity
we assume that the monodromy contributions along all strata in a stratification of X are
trivial, e.g., all strata are simply-connected. This assumption allows us to identify the
coefficients in the above generating sets of Ko(MHM(X)), and to obtain precise formulae
for the Milnor-Hirzebruch class as a direct application of the specialization property (1.10)
combined with standard calculus in Grothendieck groups. As already mentioned in Remark
1.5, the first part of this theorem holds in the following more general situation:

Theorem 3.12. Let X = {f = 0} be a complez algebraic variety defined as the zero-set (of
codimension one) of an algebraic function f: M — C, for M a complex algebraic manifold.
Let Vy be a partition of the singular locus Xgng into disjoint locally closed complex algebraic
submanifolds V', such that the restrictions ®;(Qur)|v of the vanishing cycle complex to all
pieces V' of this partition have constant cohomology sheaves (e.qg., these are locally constant
sheaves on each V', and the pieces V' are simply-connected). For each V € Vy, let F, be the
Milnor fiber of a point v € V. Then:

(3'18> Tyzir(X) - Ty*<X) - Z (Ty*(v) - Ty*(v \ V)) Xy([ﬁ*(Fvv@)]) :
Vevo

Proof. By equation (3.4), the left hand side of (3.18) equals MHT, (®/7[Q}}]). Next note
that

(3.19) [@5F(Q)] = @v [P (Qar)|v)] € Ko(MHM (Xing)),

where the summation is over all strata V € Vy, with j : V — V the corresponding open
inclusion into the closure V C Xging. For a proof of this formula we can assume that V) is
a Whitney stratification (otherwise we take such a refinement). Then the claim in (3.19)
follows by induction over the number of strata, using the distinguished triangle j,5* — id —
i.i* — applied to ®([Qy]) € D’'MHM(Xyp,), with i the inclusion of a closed stratum
(and j this time denoting the inclusion of the open complement). Since the restrictions
®¢(Qpr)|v of the vanishing cycle complex to all pieces V' of this partition have constant
cohomology sheaves, we get

MHT,, ([1(®} (Q@y)lv)]) = MHT,, ([7Qv]) ®MHT,, ([(27"(Qy))l.])
= (1.(V) = T,,(VAV)) - xo ([H" (Fi; Q))) -
The first equality in the previous formula follows from “rigidity” and multiplicativity for

exterior products with points. More precisely, it follows by “rigidity” (e.g., see [13][p.435])
that a “good” variation of mixed Hodge structures (i.e., admissible with quasi-unipotent
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monodromy at infinity) on a connected complex algebraic manifold V' is a constant variation
provided the underlying local system is already constant. Applying this fact to a “good”
variation £y with constant underlying local system on a connected stratum V' € V), we get
that Ly ~ k*L,, where v € V is a point in the stratum, and k : V' — v is the constant map.
Therefore, if j : V — V denotes the open inclusion into the closure of the stratum, we have
that

Ly ~= k"L, ~ QU KL, .

Then the claim follows from the multiplicativity of MHT, (—) with respect to exterior
products with points (see [49][Sect.5]):

Ko(MHM(X)) x Ko(MHM(pt)) — Ko(MHM(X x {pt})) ~ Ko(MHM(X)),
together with the identity
(@F(Q3)]] = [H(@F Qi) = [H*(F; Q)] € Ko(MHM(pt)) .
O

Next we turn to the proof of the second part of Theorem 1.4 from the Introduction. We
begin by recalling some useful results from [13]. Let X be a pure-dimensional complex
algebraic variety endowed with a complex algebraic Whitney stratification ) so that the
intersection cohomology complexes

ICy = ICy[—dim(W)]

are V-constructible for all strata W € V. Let us fix for each W € V a point w € W with
inclusion i, : {w} < X. Then

(320)  alICH) = [ IO = [QF] € Ko(MHM(w)) = Ko(MHM(pt)),
and i3, [ICH] # (0] € Ko(MHM(pt)) only if W C V. Moreover, in this case we have that for
any j € Z,
(3.21) H (32, ICY) ~ TH (¢ L),
for ¢® Ly the open cone on the link Ly of W in V. So
5,10 = [TH* (¢ Ly )] € Ko(MHM(pt)),

with the mixed Hodge structures on the right hand side defined by the isomorphism (3.21).
For future reference, let us set:

Ixy(®Lwv) = xy(LH"(¢" Ly )])-
One of the main results of [13] can now be stated as follows:

Theorem 3.13. ([13]/Theorem 3.2])
Let Vy be the set of all singular strata of X, i.e., strata V €V so that dim(V) < dim(X).
For each V €V, define inductively

(3.22) [CH(V) = (10 = N7 ICH(W) - i3, [IC{) € Ko(MHM(X)),

W<V
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where the summation is over all strata W C V \ V. Assume that [M] € Ko(MHM(X))
is an element of the Ko(MHM(pt))-submodule ([ICE]) of Ko(MHM(X)) generated by the
elements [ICE], V € V. Then we have the following equality in Ko(MHM(X)):

(323) M]= > [CHTiM]+) ICHW)- | 5 [M] - > Ml -alred |

Semg(Xreg) VeYy Semg(Xreg)

where mo(Xyeg) stands for the set of connected components of the regular (top dimensional)
stratum in X.

Before indicating how Theorem 3.13 can be employed for proving our result, let us re-
mark that one instance when the technical hypothesis [M] € ([IC{']) is satisfied for a fixed
M € DPMHM(X), is when all strata V' € V are simply-connected and the rational complex
rat(M) is V-constructible. For this fact, we refer to [13][Ex.3.3] where more general situa-
tions are also considered. Also note that Theorem 3.13 above is stated in a slightly more
general form than the corresponding result of [13], where only the case of an irreducible
variety X was needed. However, the proof is identical to that of Theorem 3.2 of [13], so we
omit it here.

Remark 3.14. Note that if under the hypotheses of Theorem 3.13, we assume moreover
that M € DPMHM(X) is in fact supported only on the collection of singular strata Vy, then
equation (3.23) reduces to

(3.24) M= S ICHWV) - i M.

We can now prove the second part of our Theorem 1.4, which we recall here for the
convenience of the reader.

Theorem 3.15. Let X = {f = 0} be a complex algebraic variety defined as the zero-set (of
codimension one) of an algebraic function f: M — C, for M a complez algebraic manifold.

Fiz a Whitney stratification V on X, and denote by Vy the collection of all singular strata
(i.e., strata V €V with dim(V') < dim( )). For each V €V, define inductively

IT (V) :=IT, (V) = Y ITy(W) - Ix,(c¢°Lwy),
W<V
where the summation is over all strata W C V\V and c® Ly denotes the open cone on the
link of W in V. (_As the notation suggests, the class ITy(V) depends only on the complex
algebraic variety V' with its induced algebraic Whitney stratification.) Then, if all strata
V e Vy are assumed to be sz’mply—connected the followz'ng holds:
(3.25) MT, (X) = T,7"(X) — = > IT,( y([H*(F; Q)]),
Veyy
for F, the Milnor fiber of a point v e V.

Proof. By using the equation (3.4), it suffices to show that:

(3.26) MHT,, (@F([Q]) = > IT,(V) - x, ([H*(F.; Q)))
VeV
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Next note that the sheaf complex ®;(Qj,) is supported only on singular strata of X and,
moreover, if v € V' € ), then the following identity holds in Ko(MHM(pt)):

(3.27) @7 ([QF]) = [ (@F Q)] = [H*(F: Q)
where F, is the Milnor fiber of f at v.
By using the fact that the transformation MHT, commutes with the exterior product
Ko(MHM(X)) x Ko(MHM(pt)) — Ko(MHM(X x {pt})) ~ Ko(MHM(X))

(see [49][Sect.5]), it is easy to see that for each V' € V), the characteristic class ﬁy(V)

is just MHT, (ICH(V)). Then (3.26) follows by applying MHT, to the identity (3.24),
together with the identification in (3.27), and the fact that MHT, commutes with the
exterior product.

O

Remark 3.16. By using [M] = [Q¥] in the identity (3.23), and after applying the trans-
formation MHT,_, we obtain the following relationship between the classes T, (X) and
IT, (X), respectively:

(3.28) T, (X) = IT, (X) = Y IT,(V) - (1 = x, ([T H* (¢’ Ly.x)])),

for Ly x the link of the stratum V in X. Here we use the fact that for a pure-dimensional
algebraic variety X,
IC_;?I = EBSEWQ(Xreg)[C,/gH7

thus by taking stalk cohomologies we get
TH*(c”Ly,x)] = @semy(Xep) LH (" Ly,5)] € Ko(MHM(pt)).

3.4. Intersection Milnor-Hirzebruch classes. By analogy with the Milnor-Hirzebruch
class, we can define intersection Milnor-Hirzebruch classes for a (pure-dimensional) complex
hypersurface as the difference

(3.29) MIT, (X) = T,/"(X) - IT, (X) € H.(X)®Qly] € H.(X)® Qly.y'].

Here the last inclusion follows from [49][Example 5.2]. In fact, this class is more natural to
consider if one wants to compare the specialization at y = 1 of MIT, (X)) with the differ-
ence term LY"(X) — L,(X) of the corresponding L-classes, since L,(X) is defined with the
help of the shifted (self-dual) intersection cohomology complex IC% := ICx[—dim(X)] of X.

A direct interpretation for this class can be given by noting that IC¥ is a direct sum-
mand of Gr,) W (Qf[n + 1]) € MH(X), where W is the weight filtration on ¥} (compare

[42][p.152-153]). In fact, Q¥ [n+ 1] € MH(M) is a pure Hodge module of weight n+ 1 (with
strict support M), so that by the inductive definition of pure Hodge modules ([41, 43])
Gry U (Qfi[n + 1]) € MH(X)

is a pure Hodge module of weight n. So it is a finite direct sum of pure Hodge modules of
weight n with strict support in irreducible subvarieties of X. But

U7 (Qurln + 1)lxee, ~ QX 0]
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therefore IC{ has to be the direct summand of Gr)/ ¥{(Q}}[n + 1]) coming from the pure
direct summands with strict support the irreducible components of X. Then

(=1)"-MHT,, <[G7‘ZV‘I’?(QAH4[” +1) e ICY] + ) [Gri Vi (Qfn + 1])])
k#n
= MIT, (X) € H(X)®Qly] € H.(X)®Qly,y™'].

Formula (3.30) holds independently of any monodromy assumptions. It also follows that
the right-hand side of (3.30) is an invariant of the singularities of X, since the restrictions of
U ([Qf}]) and [IC¥'] over the regular part X,y of X coincide, so that Gr)/ W (Qf[n+ 1])©
1C{ and Gr) W (Qfy[n+1]) for k # n are supported on Xge. Therefore we get from (3.30)
as before (by the functoriality of MHT, for the closed inclusion Xg,, — X) a localized
version

(3.30)

(—1)"- MHT,, ([Grff U (Qin + 1) 0 ICY] + > [Gr O F(Qf In + 1])])
k#n
=: MIT, (X) € H.(Xsng) ® Qly] .
In particular, the classes T,""(X) and IT,, (X) coincide in degrees higher than the di-
mension of the singular locus. However, in general it is difficult to explicitly understand

(3.31), except for simple situations. For example, if X has only isolated singularities, the
stalk calculation yields just as in Example 3.6 that:

(3.32) MIT, (X)= > ((H(FsQ)) = xy(TH (¢ Ly x)]) -

zeXsing

(3.31)

And all special situations described earlier by examples have a counterpart in this case. We
leave the details and precise formulations as an exercise for the interested reader.

More generally, under the hypotheses of Theorem 1.4 and if X is also reduced, (1.21) and
(3.28) yield the following class formulae (which should be compared to the L-class formula
(1.3) from the Introduction):

MIT, (X) = Ty:ir(X) —IT,,(X)
= ) (T, (V) = T,,(V\V) - Ot ([H*(F; Q))) = X ([TH (¢° Lvx)]),

and, respectively,

MIT, (X) =Y ITy(V) - (O ([H(F;Q)]) = x, (T H* (" Ly.x)]) -
Veyy

4. GEOMETRIC CONSEQUENCES AND CONCLUDING REMARKS

As already pointed out in the Introduction, for the value y = —1 of the parameter, the
Milnor-Hirzebruch class MT,_(X) reduces to the rationalized Milnor class of X, which mea-
sures the difference between the Fulton-Johnson class [22] and Chern-MacPherson class [32].
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Let us now consider the case when y = 0. If the hypersurface X has only Du Bois
singularities (e.g., rational singularities, cf. [45]), then by (2.15) we have that MTj,(X) = 0,
ie.,

MHT,. (7' ([Qy])) =0 € H(X)®Q.

In view of our main result, this vanishing (which is in fact a class version of Steenbrink’s
cohomological insignificance of X [55]) imposes interesting geometric identities on the cor-
responding Todd-type invariants of the singular locus. For example, we obtain the following

Corollary 4.1. If the hypersurface X has only isolated Du Bois singularities, then
(4.1) dimcGr.H"(F,;C) =0
for all v € Xging.

It should be pointed out that in this setting, by a result of Ishii [26] one gets that (4.1) is in
fact equivalent to x € X, being an isolated Du Bois hypersurface singularity. Also note
that in the arbitrary singularity case, the Milnor-Todd class MTy,(X) carries interesting
non-trivial information about the singularities of the hypersurface X.

Finally, if y = 1, our main formula (1.21) should be compared to the Cappell-Shaneson
topological result of equation (1.3). While it can be shown (compare with [33]) that the
normal contribution o(lk(V')) in (1.3) for a singular stratum V' € Vj is in fact the signature
o(F,) (v € V) of the Milnor fiber (as a manifold with boundary) of the singularity in a
transversal slice to V, the precise relation between o(F,) and x;([H*(F,;Q)]) is in general
very difficult to understand. However, in some cases it is possible to obtain a “local Hodge
index theorem” (compare with equation (2.16) for the global projective case):

Proposition 4.2. Assume the complex hypersurface X = f~1(0) is a rational homology
manifold with only isolated singularities. Then for any x € Xgng, we have:

(4'2) U(Fw) = Xl([Hn(F:caQ)])

Proof. If X is of even complex dimension n, the result follows form the following formula of
Steenbrink (see [57][Thm.11]):

(4.3) o(F)= Y (-1 (hp’q+22(—1)"hp+i’q+i> ,

ptg=n 121

with hP? = dimGr%GrﬁqH”(Fx; C) the corresponding Hodge numbers of the mixed Hodge
structure on H"(F,;Q). Indeed, since X is a rational homology manifold, we get by

[57][p.293] that:
0= dijifLiiQ’gH _ pptiati _ pp—ia—i

Moreover, the symmetry hP? = h?P of the Hodge numbers under conjugation yields:

Z (=1)PhP? =0

p+q=odd
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Altogether, we get
(4.4) o(Fy) =Y (—1)h"" = x1([H"(F; Q))) .

In case X is of odd complex dimension n, both terms of the claimed equality (4.2) vanish

identically. Indeed, o(F,) = 0 by definition, whereas the vanishing of x;([H"(F,;Q)])
follows from a duality argument, as in the proof of the classical Hodge index theorem
(2.16). More precisely, one has a duality involution D acting on Ko(MHM(—)) and, resp.,
Ko(var/—)[L7' in a compatible way (e.g., see [49][(47),(48)]), with D the usual duality
involution on Ko(MHM(pt)) = Ko(mHs?). In particular,
Xy(P(=)) = x1y(=) and  x1(D(=)) = xa(-)
on Ko(mHs?). Moreover,
DT ([idy]) = L7 - W ([ida])

(cf. [5][Thm.6.1]), and

Do V(1) ~ VoD
on DPMHM(M) (cf. [43][Prop.2.6]). Similarly,

DQY ~ Q¥ [2n](n)
as X is a rational homology manifold, so Q¥ ~ IC{. Altogether, we get
D[@f (Qi))] = [2F (Qi7)(n)] € Ko(MHM(X)).
Lastly, the isolated singularity x € X, is an isolated point in the support of @? (QIL) and
Do{(Qjf), respectively, thus
i;DO (Qyy) ~ i, DO (Qly) ~ Diz @ (Qf),
with i, : {x} — X the inclusion map. We now get the desired vanishing x1([H"(F,; Q)]) = 0
from the following sequence of identities:

X1 (5[ (Qa)]) = x1 (D[4 (Qi)]) = xa (D[ (Q)]) = (—1)"xa (i3 [2F (Qap)]) -
O

We can therefore prove in the setting of Proposition 4.2 the following conjectural inter-
pretation of L-classes from [8]:

Theorem 4.3. Let X be a compact complex algebraic variety with only isolated singularities,
which moreover is a rational homology manifold and can be realized as a global hypersurface
(of codimension one) in a complex algebraic manifold. Then

(4.5) Lu(X) = 1T, (X)]y=1-

Proof. Assume the complex dimension n of X is even. Then, by combining (4.2), (1.3) and
(3.8) we get that

(4.6) LX) = LX) = Y xa((H"(FsQ)) - [2] = Th¥"(X) = IT1.(X) .

CEEXSing
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For n odd, formula (4.6) is trivially true, as follows by the vanishing of the local signature
and, resp., Hodge contributions at each of the singular points (cf. Prop.4.2).

Next note that since L*(—) = T (—)[y=1 (cf. [25]), we obtain an equality of the corre-
sponding virtual classes, i.e.,

(4.7) LX) = 1" (X).

*

The result follows now from the identities (4.6) and (4.7).
UJ

Remark 4.4. The conjectured equality L.(X) = IT},(X) also holds in the case of a com-
pact hypersurface X, which is a rational homology manifold with X,, smooth, so that
Xging C X is a Whitney stratification with all components of X, simply-connected. In-
deed, this follows from the arguments used in the above proof, applied to the Milnor fiber
of a transversal slice to the singular locus, combined with the identities (1.3) and (3.11).
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