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Abstract. This is a survey article, in which we explore how the presence of
singularities affects the geometry and topology of complex projective hyper-

surfaces.

1. Introduction

Let CPn+1 be the complex projective space with its complex topology, and
homogeneous coordinates [x0 : x1 : . . . : xn+1]. A homogeneous polynomial f ∈
C[x0, . . . , xn+1] defines a projective hypersurface

V (f) = {x ∈ CPn+1 | f(x) = 0}.

The singular locus of V (f) is the set

Sing(V (f)) = {x ∈ V (f) | ∂f
∂x1

(x) = · · · = ∂f

∂xn+1
(x) = 0}.

A point x ∈ V (f) is called singular if x ∈ Sing(V (f)). We will assume that
the hypersurface V (f) is reduced, i.e., f does not have multiple factors, so then
dimC Sing(V (f)) < dimC V (f) = n. A hypersurface with no singular points is
called smooth, and it is a manifold.

In this survey article, we investigate the topology of V = V (f), or, using
terminology from [D06], its shape, reflected here in the computation of various
topological invariants like the fundamental group, Euler characteristic, Betti num-
bers and integral (co)homology. As will become clear from the text, the shape of
V is intimately connected to the topology of its complement CPn+1 \ V , or, as it
is referred to in [D06], the view from the outside of V , and hence it is also related
to the topology of the Milnor fiber F = {f = 1} of f . The study of the topology
of complex hypersurface complements is an idea inspired by the classical knot and
link theory, and is closely related to the local picture of singularities, which is nicely
encoded in the form of the Milnor fibration [M68].

The main message of this article is that the topology of a projective hypersur-
face is heavily influenced by the dimension of its singular locus. For instance, the
case of smooth hypersurfaces is completely understood. However, in the singular
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context the invariants of a projective hypersurface inherit additional contributions
from the singularities.

Very useful general references for the topics discussed in this paper include
[D92, D04, M19, M20]. This note can be seen, in particular, as an addendum
to Dimca’s survey [D06], as it incorporates the more recent developments on the
subject, including results from [MPT22a, MPT22b, ST17a, ST17b] which were
obtained in the last few years. These recent results were derived by a careful analysis
(e.g., by employing the theory of constructible and perverse sheaves in [MPT22a])
of the vanishing (co)homology, which is a topological measure of the complexity of
hypersurface singularities. The aim of this survey is to present such results from
an elementary and unifying perspective, thus providing access points for a wider
audience. Finally, let us also mention here that similar techniques apply to the
study of Milnor fiber cohomology of complex hypersurface singularity germs (e.g.,
see [MPT22b]), as well as for proving cohomological connectivity results for the
discriminant of a small perturbation of certain K-finite map germs (see [LSZ21]).

The text of this survey is based on lectures given by the author at the CIMPA
Research School “Singularities and Applications” (São Carlos, Brazil, 2022). I
thank Mihai Tibăr, the main organizer of the school, for giving me the opportunity
to lecture at this event.

2. Preliminaries

In this section, we introduce several classical computational tools which are
useful for understanding the topology of projective hypersurfaces. In particular,
we describe the local topological structure around a hypersurface singularity, while
also recalling the notions of Milnor fibration, Milnor fiber, and monodromy.

2.1. Milnor fibration. The “local picture” of a complex hypersurface sin-
gularity is a higher-dimensional analogue of a knot/link in S3, and is classically
described by the following result of Milnor [M68] (see also [Le77]):

Theorem 2.1 (Milnor). If (X, 0) is a hypersurface singularity germ defined at
0 ∈ Cn+1 by a reduced analytic function germ g, then for Bϵ a small enough closed
ball around 0 ∈ Cn+1, with boundary Sϵ, X ∩Bϵ is homeomorphic to the cone over
the link K = X ∩ Sϵ. Moreover, K is (n − 2)-connected, and for all 0 < δ ≪ ϵ,
there is a topologically locally trivial fibration

(2.1) Bϵ ∩ g−1(D∗
δ )

g−→ D∗
δ

with D∗
δ denoting the open punctured disk of radius δ.

The fibration (2.1) is classically referred to as the Milnor (or Milnor-Lê) fi-
bration of the hypersurface singularity germ (X, 0), and its fiber F0 is called the
Milnor fiber of g at 0. Moreover, if s = dimC Sing(X, 0), then the Milnor fiber F0

is a (n − s − 1)-connected manifold. This latter fact was proved by Milnor in the
case of an isolated hypersurface singularity, while the general case is due to Kato-
Matsumoto [KM75]. There is an analogous fibration as above, obtained by using
an open ball of radius ϵ around 0 ∈ Cn+1, and the two fibrations are fiber homotopy
equivalent (see [D92, Lemma 3.1.3, Proposition 3.1.4]); since only the homotopy
type of the Milnor fiber is of interest for us, we will not distinguish between the
two fibrations.
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Milnor also showed that the Milnor fiber F0 has the homotopy type of a finite
CW complex of real dimension n. For example, in the case of an isolated hypersur-
face singularity, the Milnor fibre F0 has the homotopy type of a bouquet of µ(g)
n-spheres, where µ(g) is called the Milnor number of g at 0 and it can be computed
algebraically as

µ(g) = dimC C{x0, . . . , xn}/
(
∂g

∂x0
, . . . ,

∂g

∂xn

)
.

Here C{x0, . . . , xn} is the C-algebra of analytic function germs defined at 0 ∈ Cn+1.
In this isolated singularity case, the Milnor fiber can be regarded as a “smoothing”
of X in a neighborhood of the singular point (see Figure 1), and the n-spheres in
the bouquet decomposition of F0 are called the vanishing cycles of g at the singular
point 0.

g

0

F0

Bϵ

0 Dδ

Figure 1. Milnor fiber

The Milnor fibration (2.1) has an associated monodromy homeomorphism

h : F0 → F0

induced on the fiber of the Milnor fibration by circling the base of the fibration once
in the positive direction with respect to a choice of orientation (as induced by the
choice of the complex orientation). It is known [SGA] that the monodromy homeo-
morphism induces a quasi-unipotent operator (called algebraic monodromy) on the
(co)homology of the Milnor fiber, and in particular the corresponding eigenvalues
are roots of unity.

As a special case, assume that g : Cn+1 → C is a homogeneous polynomial.
Then there is a global (affine) Milnor fibration

(2.2) F = {g = 1} ↪→ Cn+1 \X(g) → C∗,
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where X(g) = {x ∈ Cn+1 | g(x) = 0}, and it is easy to see that F is homotopy
equivalent to the Milnor fiber F0 associated to the germ of g at the origin. The
monodromy homeomorphism h : F → F is in this case given by multiplication by
a primitive d-th root of unity, where d = deg(g), see, e.g., [D92, Example 3.1.19].
Such a homogeneous polynomial g is said to define an arrangement of hypersurfaces
in CPn (e.g., a hyperplane arrangement if the irreducible factors of g are linear),
and it is still an open problem to compute the Betti numbers of F in this case.

2.2. Preliminary results. Let V = V (f) ∈ CPn+1 be a hypersurface defined
by a reduced degree d homogeneous polynomial f ∈ C[x0, . . . , xn+1], and let

V̂ = {f = 0} ⊂ Cn+2

be the affine cone on V . As already mentioned in the previous section, there is a
global Milnor fibration

(2.3) F = {f = 1} ↪→ Cn+2 \ V̂ f−→ C∗,

with monodromy homeomorphism h : F → F of order d. Moreover, if we let s =
dimC Sing(V ), the results of Milnor and Kato-Matsumoto imply that the Milnor
fiber F is (n − s − 1)-connected (here, we set s = −1 if V is smooth). For future
reference, we note here the following useful fact.

Lemma 2.2. The map F → CPn+1 \ V given by

(x0, . . . , xn+1) 7→ [x0 : . . . : xn+1]

is an unbranched d-fold cover.

As an immediate consequence, we get the following.

Corollary 2.3. Let V ⊂ CPn+1 be a degree d projective hypersurface with
s = dimC Sing(V ) ≤ n− 2. Then

π1(CPn+1 \ V ) ∼= Z/dZ
and

πi(CPn+1 \ V ) = 0 for i = 0 or 2 ≤ i ≤ n− s− 1.

Proof. Recall that the Milnor fiber F of f at the origin in Cn+2 is (n−s−1)-
connected. In particular, since s = dimSing(V ) ≤ n − 2, the Milnor fiber F is
simply-connected. Hence the d-fold covering F → CPn+1 \ V of Lemma 2.2 is the
universal covering map for CPn+1 \ V . The assertion follows. □

As it will be discussed in Lemma 4.1 below (see also [D92, Lemma 5.2.17]),
the inclusion map j : V ↪→ CPn+1 induces momomorphisms

(2.4) jk : Hk(CPn+1;C) ↣ Hk(V ;C) for all k with 0 ≤ k ≤ 2n.

In particular, the long exact sequence for the cohomology of (CPn+1, V ) breaks
into short exact sequences:

(2.5) 0 −→ Hk(CPn+1;C) −→ Hk(V ;C) −→ Hk+1(CPn+1, V ;C) → 0.

On the other hand, if we let U = CPn+1\V , Alexander duality yields isomorphisms:

(2.6) Hk+1(CPn+1, V ;C) ∼= H2n+1−k(U ;C).
Moreover, by Lemma 2.2, one has the identification U = F/⟨h⟩, and hence

(2.7) H∗(U ;C) ∼= H∗(F ;C)h∗ ,
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where the right-hand side denotes the fixed part under the homology monodromy
operator. Combining (2.5), (2.6) and (2.7), one gets the following interesting con-
sequence (see [D92, Corollary 5.2.22]).

Corollary 2.4. A hypersurface V = {f = 0} ⊂ CPn+1 has the same C-
cohomology as CPn if and only if the monodromy operator

h∗ : H̃∗(F ;C) −→ H̃∗(F ;C)

acting on the reduced C-homology of the corresponding Milnor fiber F = {f = 1},
has no eigenvalue equal to 1.

Example 2.5. Consider a degree d homogeneous polynomial g(x0, . . . , xn)
with associated Milnor fiber Fg such that the monodromy operator h∗ acting on

H̃∗(Fg;Q) is the identity. Then it can be concluded from Corollary 2.4 (e.g., by
using the Thom-Sebastiani theorem) that the hypersurface V = {g(x0, . . . , xn) +
xdn+1 = 0} ⊂ CPn+1 has the same C-(co)homology as CPn. For instance, the

hypersurface Vn = {x0x1 · · ·xn + xn+1
n+1 = 0} has the same C-cohomology as CPn.

However, as shown in [D92, Proposition 5.4.8], the Z-cohomology groups of Vn may
contain torsion.

Let us next consider S = S2n+3 the unit sphere in Cn+2 and let

KV = S ∩ V̂

be the link of f at the origin in Cn+2. Restricting the Hopf bundle

S1 ↪→ S2n+3 −→ CPn+1

to V , we get the Hopf bundle of the hypersurface V , namely

(2.8) S1 ↪→ KV −→ V.

Milnor’s Theorem 2.1 implies that KV is (n− 1)-connected. Then using the homo-
topy long exact sequence for the fibration (2.8), one gets immediately the following.

Proposition 2.6. The complex projective hypersurface V ⊂ CPn+1 is simply-
connected for n ≥ 2 and connected for n = 1.

We also mention here the following classical result, which holds regardless of
how singular the hypersurface is (e.g., see [D92, Theorem 5.2.6]).

Theorem 2.7 (Lefschetz). Let V ⊂ CPn+1 be a complex projective hypersur-
face. The inclusion j : V ↪→ CPn+1 induces cohomology isomorphisms

(2.9) j∗ : Hk(CPn+1;Z)
∼=−→ Hk(V ;Z) for all k < n,

and a monomorphism for k = n.

Proof. Let U = CPn+1 \V . The cohomology long exact sequence for the pair
(CPn+1, V ) and the Alexander duality isomorphism

Hk(CPn+1, V ;Z) ∼= H2n+2−k(U ;Z)

show that is suffices to prove that

(i) Hi(U ;Z) ∼= 0 for i > n+ 1,
(ii) Hn+1(U ;Z) is torsion free.
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These are both consequences of the fact that U is a complex affine variety of complex
dimension n + 1, and hence U has the homotopy type of a CW complex of real
dimension n+ 1 (see, e.g., [D92, Corollary 1.6.10]). □

Remark 2.8. In fact, it can be shown that the inclusion j : V ↪→ CPn+1 is an
n-homotopy equivalence.

As we will see in the next sections, the structure of cohomology groupsHi(V ;Z),
for i ≥ n, can be very different from that of the complex projective space.

3. Topology of smooth complex projective hypersurfaces

In this section, we overview known results about the topology of smooth com-
plex projective hypersurfaces. In particular, we describe the diffeomorphism type,
the Euler characteristic, as well as the Betti numbers and integral (co)homology of
such a hypersurface.

3.1. Diffeomorphism type. The following result states that the shape and
the view from the outside of a smooth projective hypersurface in CPn+1 are com-
pletely determined by its degree.

Theorem 3.1. Let f, g ∈ C[x0, . . . , xn+1] be two homogeneous polynomials of
the same degree d, such that the corresponding projective hypersurfaces V (f) and
V (g) are smooth. Then:

(i) The hypersurfaces V (f) and V (g) are diffeomorphic.
(ii) The complements U(f) and U(g) are diffeomorphic.

Sketch of proof. The assertion follows from the fact that, given any two
smooth degree d hypersurfaces in CPn+1, there exists a diffeomorphism CPn+1 →
CPn+1 isotopic to the identity that restricts to a diffeomorphism of the two hyper-
surfaces. (For another proof, based on Ehresmann’s fibration theorem, see [D92,
Corollary 1.3.4].) □

Remark 3.2. The assertion of Theorem 3.1 is not valid for real projective
hypersurfaces. For instance, a smooth real projective curve is a collection of circles,
but their exact numbers and relative position depend on the coefficients of the
defining polynomial. The interested reader may want to verify that the real curves
in RP 2 defined by f = x20 + x21 + x22 and g = x20 − x21 + x22 are not diffeomorphic.

3.2. Euler characteristic. Since the diffeomorphism type of a smooth hy-
persurface V ⊂ CPn+1 is determined by its degree (and dimension), the same is
true about any of its topological invariants. The following result gives a concrete
well-known formula for the topological Euler characteristic.

Proposition 3.3. Let V ⊂ CPn+1 be a degree d smooth complex projective
hypersurface. Then the Euler characteristic of V is given by the formula:

(3.1) χ(V ) = (n+ 2)− 1

d
{1 + (−1)n+1(d− 1)n+2}.

Proof. Since the diffeomorphism type of a smooth complex projective hyper-
surface is determined only by its degree and dimension, one can assume without
any loss of generality that V is defined by the degree d homogeneous polynomial
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f =
∑n+1
i=0 x

d
i . The affine cone V̂ = {f = 0} ⊂ Cn+2 on V has an isolated singular-

ity at the cone point 0 ∈ Cn+2. The Milnor fiber F = {f = 1} of the global Milnor
fibration

Cn+2 \ V̂ f−→ C∗

is homotopy equivalent to a bouquet of µ (n + 1)-dimensional spheres, where µ =
(d− 1)n+2 is the Milnor number of f at the origin. Hence

(3.2) χ(F ) = 1 + (−1)n+1(d− 1)n+2.

Moreover, since F → CPn+1 \V is a d-fold cover (Lemma 2.2), the multiplicativity
of the Euler characteristic yields

(3.3) χ(F ) = d · χ(CPn+1 \ V ) = d ·
(
χ(CPn+1)− χ(V )

)
.

The desired expression for χ(V ) follows from (3.2) and (3.3). □

Example 3.4. Assume n = 1, so V is smooth complex projective curve, i.e., a
Riemann surface. Topologically, such V is obtained from S2 by attaching a number
of “handles”. This number is called the genus g(V ) of V , and χ(V ) = 2 − 2g(V ).
Together with (3.1), this yields the celebrated genus-degree formula:

g(V ) =
(d− 1)(d− 2)

2
.

It then follows that for d = 1 and d = 2 the curve V is topologically the sphere
S2 = CP 1, and for d = 3 we get an elliptic curve which is diffeomorphic to the
torus S1 × S1. Moreover, it is easy to see that for a genus g smooth projective
curve V , one has

H0(V ;Z) = Z, H1(V ;Z) = Z2g, H2(V ;Z) = Z.

Example 3.5. Let V ⊂ CPn+1 be a degree d smooth complex projective
hypersurface with χ(V ) = n + 1. Then V is CPn (i.e., d = 1) if n is even, and V
is either CPn or a quadric (d = 2) if n is odd.

3.3. Integral (co)homology. Betti numbers. Let V = {f = 0} ⊂ CPn+1

be a reduced complex projective hypersurface of degree d. If the hypersurface
V ⊂ CPn+1 is moreover smooth, then one gets by Theorem 2.7 and Poincaré duality
that Hk(V ;Z) ∼= Hk(CPn;Z) for all k ̸= n. The Universal Coefficient Theorem
also yields in this case that Hn(V ;Z) is free abelian, and its rank bn(V ) can be
easily computed from formula (3.1) for the Euler characteristic of V . Hence, one
has the following result.

Theorem 3.6. Let V ⊂ CPn+1 be a smooth hypersurface of degree d. Then
the integral (co)homology of V is torsion free, and the corresponding Betti numbers
are given as follows:

(1) bi(V ) = 0 for i ̸= n odd or i /∈ [0, 2n].
(2) bi(V ) = 1 for i ̸= n even and i ∈ [0, 2n].

(3) bn(V ) = (d−1)n+2+(−1)n+1

d + 3(−1)n+1
2 .

Example 3.7. The Betti numbers of a smooth quartic surface in CP 3 are
1, 0, 22, 0, 1.
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4. Kato’s theorem

Assume that V (f) ⊂ CPn+1 is a reduced degree d hypersurface. Let f =
f1 · · · fr be a square-free (irreducible) decomposition of f . Let Vi = {fi = 0},
i = 1, . . . , r, be the irreducible components of V . Let di = deg(fi), hence d =

∑
i di.

Using Alexander-Lefschetz duality, one gets that

(4.1) H2n(V ;Z) ∼= H2n(V1;Z)⊕ · · · ⊕H2n(Vr;Z) = Zr.

In fact, H2n(V ;Z) ∼= H2n(V,Sing(V );Z) ∼= H0(V \ Sing(V );Z) ∼= Zr, since V \
Sing(V ) has exactly r path-connected components, one for each irreducible compo-
nent of V .

Moreover, the inclusion j : V ↪→ CPn+1 induces in degree 2n-cohomology the
morphism

(4.2) j2n : H2n(CPn+1;Z) → H2n(V ;Z) , a 7→ (d1a, . . . , dra).

This can be seen from the fact that a generic line in CPn+1 intersects the hyper-
surface Vi in exactly di points (i = 1, . . . , r). This fact already suffices to show that
the even Betti numbers of V are positive. In fact, as already mentioned, one has
the following.

Lemma 4.1. The inclusion map j : V ↪→ CPn+1 induces momomorphisms

jk : Hk(CPn+1;C) ↣ Hk(V ;C)

for all k with 0 ≤ k ≤ 2n.

Proof. Let α ∈ H2(CPn+1;Z) be the generator of the cohomology ring
H∗(CPn+1;Z), and let αV := j2(α) ∈ H2(V ;Z). The assertion in the lemma
is equivalent to showing that αkV ̸= 0 in H2k(V ;C) for all 0 ≤ k ≤ n. For this it
suffices to show that αnV ̸= 0 in H2n(V ;C), which is a consequence of (4.2). Indeed,
if ⟨−,−⟩ denotes the Kronecker pairing, then

⟨αnV , [Vi]⟩ = ⟨αn, j∗[Vi]⟩ = di,

for each i = 1, . . . , r. So αnV ∈ H2n(V ;Z) corresponds to (d1, . . . , dr) ∈ Zr, which
remains nonzero in H2n(V ;C) = H2n(V ;Z)⊗ C. □

Definition 4.2. The group

Hk
0 (V ;C) := Coker jk ∼= Hk+1(CPn+1, V ;C)

is called the k-th primitive cohomology of V .

The following result for Z-coefficients complements Lefschetz’s Theorem 2.7.
It was originally obtained by Kato [K75] in the more general setting of complete
intersections. The proof given below can be found in [D92, Theorem 5.2.11] and is
based on Kato-Matsumoto’s result [KM75] on the connectivity of the Milnor fiber.
An alternative inductive proof was given in [MPT22a], see Section 6.

Theorem 4.3 (Kato). Let V ⊂ CPn+1 be a reduced degree d complex projective
hypersurface with s = dimC Sing(V ) the complex dimension of its singular locus.
(By convention, we set s = −1 if V is smooth.) Then

(4.3) Hk(V ;Z) ∼= Hk(CPn+1;Z) for all n+ s+ 2 ≤ k ≤ 2n.
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Moreover, if j : V ↪→ CPn+1 denotes the inclusion, the induced cohomology homo-
morphisms

(4.4) jk : Hk(CPn+1;Z) −→ Hk(V ;Z), n+ s+ 2 ≤ k ≤ 2n,

are given by multiplication by d if k is even.

Proof. The assertion is valid only if n ≥ s+2, so in particular we can assume
that V is irreducible and hence H2n(V ;Z) ∼= Z. Moreover, the fact that j2n is
multiplication by d = deg(V ) is true regardless of the dimension of singular locus,
see (4.2). If n = s + 2 there is nothing else to prove, so we may assume (without
any loss of generality) that n ≥ s+ 3.

Let S := S2n+3 be a small enough sphere at the origin in Cn+2, and let KV :=

S ∩ V̂ be the link at the origin of the affine cone V̂ = {f = 0} ⊂ Cn+2 on V . The
fiber F of the Milnor fibration (this is fiber homotopy equivalent to the fibration
(2.3))

F ↪→ S \KV
f−→ S1

of the singularity of V̂ at 0 ∈ Cn+2 is (n − s − 1)-connected (since the dimension

of the singularity of V̂ at 0 is (s+ 1)-dimensional). It then follows from the Wang
sequence of the Milnor fibration, i.e.,

· · · −→ Hk+1(S \KV ;Z) −→ Hk(F ;Z)
h∗−id−→ Hk(F ;Z) −→ Hk(S \KV ;Z) −→ · · ·

that Hk(S \KV ;Z) = 0 for 2 ≤ k ≤ n− s− 1. By Alexander duality, for k in the
same range we get

H2n+2−k(KV ;Z) ∼= H2n+3−k(S,KV ;Z) ∼= 0.

Equivalently,

(4.5) Hk(KV ;Z) = 0 for n+ s+ 3 ≤ k ≤ 2n.

The cohomology Gysin sequences for the diagram of fibrations

S // CPn+1

KV

OO

// V

OO

yield commutative diagrams (with Z-coefficients):
(4.6)

H2ℓ+1(S) −−−−→ H2ℓ(CPn+1)
ψ−−−−→∼=

H2ℓ+2(CPn+1) −−−−→ H2ℓ+2(S)y j2ℓ
y j2ℓ+2

y y
H2ℓ+1(KV ) −−−−→ H2ℓ(V )

ψV−−−−→∼=
H2ℓ+2(V ) −−−−→ H2ℓ+2(KV )

Here, ψ is the cup product with the cohomology generator α ∈ H2(CPn+1;Z), and
similarly, ψV is the cup product with αV := j2(α). For n + s + 2 ≤ 2ℓ ≤ 2n − 2,
it follows from (4.5) that both ψ and ψV are isomorphisms. Once we show that
H2n−1(V ;Z) = 0, the assertion about jk follows by decreasing induction on ℓ, using
the fact mentioned at the beginning of the proof that j2n is given by multiplication
by d. To show H2n−1(V ;Z) = 0, use the above Gysin sequence to get

0 = H2n(KV ;Z) −→ H2n−1(V ;Z) ψV−→ H2n+1(V ;Z) = 0,
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thus completing the proof. □

As an application one gets the following (e.g., see [D92, Corollary 5.2.12]).

Corollary 4.4. Let V ⊂ CPn+1 be a projective hypersurface which has the
same Z-cohomology algebra as CPn. If n ≥ 2, then V is isomorphic as a variety
to CPn.

Proof. As before, let j : V ↪→ CPn+1 be the inclusion map. By our assump-
tions, the following hold:

(i) H2n(V ;Z) ∼= H2n(CPn;Z) ∼= Z, so V is irreducible (by (4.2)).
(ii) H2(V ;Z) is generated by αV = j2(α), for α ∈ H2(CPn+1;Z) a generator

(by Theorem 2.7).
(iii) αnV generates H2n(V ;Z) ∼= Z.

On the other hand, by (4.2) we have that

αnV = d · g,
where d is the degree of V and g is some generator of H2n(V ;Z) ∼= Z. Hence d = 1,
i.e., V is a linear subspace of CPn+1. □

Example 4.5. Consider the cuspidal curve C = x2y − z3 = 0 in CP 2. The
projection of C from the singular point [0 : 1 : 0] onto CP 1 is a homeomorphism, so
C and CP 1 have the same cohomology algebra, but of course C is not isomorphic
as a variety to CP 1. Hence the assumption n ≥ 2 in the above corollary is essential.

Remark 4.6. As shown in [BD94], there exist singular complex projective
hypersurfaces V ⊂ CPn+1 with isolated singularities, which have the same Z-
homology as CPn. Moreover, for n odd, any such Z-homology CPn hypersurface is
a topological manifold (equivalently, the links of all singular points are Z-homology
(2n− 1)-spheres).

As we will see later on, the structure of cohomology groups Hi(V ;Z), for i =
n, . . . , n+s+1, can be very different from that of the projective space. Furthermore,
as already observed by Zariski in 1930s, the Betti numbers of V (f) depend on the
position of singularities.

Example 4.7. Let

V6 = {f(x, y, z) + w6 = 0} ⊂ CP 3

be a sextic surface, so that f defines an irreducible sextic curve C6 ⊂ CP 2 with only
six cusp singular points. If the six cusps of C6 are situated on a conic in CP 2, e.g.,
f(x, y, z) = (x2+y2)3+(y3+z3)2, then b3(V6) = 2. Otherwise, b3(V6) = 0. In fact,
if F = {f = 1} is the Milnor fiber of f , then it can be shown that b3(V6) = b1(F ),
the latter being computed, e.g., in [E82, Section 3] or [D92, Theorem 6.4.9]. This
phenomenon is explained by the fact that, while the two types of sextic curves are
homeomorphic, they cannot be deformed one into the other.

Remark 4.8. The surface V6 in Example 4.7 is a 6-fold cover on CP 2, branched
along the sextic curve C6. It is isomorphic, as an algebraic variety, to the projective
closure F of the affine Milnor fiber F = {f = 1} of f . So the first Betti number
b1(F ) of F (hence also b2(F ), by formula (5.11) below) is determined by a certain
Betti number of the projective surface F in CP 3. More generally, a similar rela-
tionship can be established, to reduce the calculation of the Betti numbers of the
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Milnor fiber F = {f = 1} of a degree d homogeneous polynomial f : Cn+2 → C
to understanding the primitive cohomology groups H∗

0 (F ;C) of the projective clo-
sure F ⊂ CPn+2 of F (or, equivalently, the d-fold cover of CPn+1 branched along
V = {f = 0}); e.g., see [DL12, Theorem 1.1] for such a result. This fact provides
additional motivation for computing Betti numbers of projective hypersurfaces.

5. Vanishing cycles and applications

In this section, we indicate an approach to the study of the topology of singular
projective hypersurfaces, based on Deligne’s theory of nearby and vanishing cycle
functors (e.g., see [D04, M19, M20] for down-to-earth introductions to this topic,
as well as applications). Due to the technical nature of some of the proofs, we will
only explain here the main ideas, and send the interested reader to the original
references for complete details.

5.1. Nearby and vanishing cycles. Specialization. Let f : X → D ⊂ C
be a proper holomorphic map defined on a complex analytic variety X, where D is
a small disc at the origin. Let Xt = f−1(t) be the fiber over t ∈ D. For x ∈ X0, let
Bϵ,x be a ball of small enough radius ϵ in X, centered at x. (If X is singular, such a
ball is defined by using an embedding of the germ (X,x) in a complex affine space.)
Then for |t| non-zero and sufficiently small, Fx = Bϵ,x ∩Xt is a (local) Milnor fiber
of f at x.

This local Milnor information at points in X0 = f−1(0) has been sheafified by
Grothendieck and Deligne, who defined nearby and vanishing cycle complexes of
sheaves ψfAX , resp., φfAX (where A is a ring of coefficients, e.g., Z or a field, and
AX is the constant sheaf with stalk A on X). More precisely, the stalks at x ∈ X0

of the cohomology sheaves of these complexes are computed as:

H k(ψfAX)x ∼= Hk(Fx;A) and H k(φfAX)x ∼= H̃k(Fx;Z).

If, moreover, X is smooth, then since the Milnor fiber at a smooth point of X0 is
contractible, the vanishing cycle complex is supported only on Sing(X0).

Since f is proper, the (hyper)cohomology groups of these complexes fit into the
following specialization sequence:
(5.1)
· · · −→ Hk(X0;A) −→ Hk(Xt;A) −→ Hk(X0;φfAX) −→ Hk+1(X0;A) −→ · · ·

for t ∈ D∗. So, just like in the local case, the vanishing cycle complex measures
the change in topology under the specialization map sp : Xt → X0. Moreover, if A
is a field, using the fact that the fibers of f are compact, the corresponding Euler
characteristics are well defined and one gets

(5.2) χ(Xt) = χ(X0) + χ(X0, φfAX),

with

χ(X0, φfAX) := χ (H∗(X0;φfAX)) .

Assume next that the fibers of f are complex algebraic varieties, like in the
situations considered below. Then χ(X0, φfAX) can be computed in terms of a
stratification of X0, by using the additivity and multiplicativity properties of the
Euler characteristic. For instance, if X is smooth and S is a stratification of X0

such that φfAX is S -constructible (i.e., the restrictions of its cohomology sheaves
to strata in S are local systems), one gets:
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Lemma 5.1.

(5.3) χ(X0, φfAX) =
∑
S∈S

χ(S) · µS ,

where

µS := χ (H ∗(φfAX)xS
) = χ

(
H̃∗(FxS

;A)
)

is the Euler characteristic of the reduced cohomology of the Milnor fiber FxS
of f

at some point xS ∈ S.

Example 5.2 (Isolated singularities). In the above notations, assume moreover
that X is smooth and the zero-fiber X0 has only isolated singularities.

Assume dimCX = n + 1. Then, for x ∈ Sing(X0), the corresponding Milnor
fiber Fx ≃

∨
µx
Sn is, up to homotopy, a bouquet of n-spheres, and the stalk

calculation for vanishing cycles yields:

Hk(X0;φfAX) =

{
0, k ̸= n,⊕

x∈Sing(X0)
H̃n(Fx;A), k = n.

Then the long exact sequence (5.1) becomes the following specialization sequence:

0 −→ Hn(X0;A) −→ Hn(Xt;A) −→
⊕

x∈Sing(X0)

H̃n(Fx;A)

−→ Hn+1(X0;A) −→ Hn+1(Xt;A) −→ 0,

for t ∈ D∗, together with isomorphisms

Hk(X0;A) ∼= Hk(Xt;A) , for k ̸= n, n+ 1.

Taking Euler characteristics, one gets for t ∈ D∗ the identity:

(5.4) χ(X0) = χ(Xt) + (−1)n+1
∑

x∈Sing(X0)

µx.

5.2. Vanishing cycles for a family of complex projective hypersur-
faces and applications. Let V = {f = 0} ⊂ CPn+1 be a reduced complex
projective hypersurface of degree d. Fix a Whitney stratification S of V , i.e., a
partition of V into connected locally closed smooth subvarieties (called “strata”),
along each of which V is equisingular. Consider a one-parameter smoothing of
degree d, namely

Vt := {ft = f − tg = 0} ⊂ CPn+1 (t ∈ C),

for g a general polynomial of degree d. Note that, for t ̸= 0 small enough, Vt is
smooth and tranversal to the stratification S . Let

B = {f = g = 0}
be the base locus of the pencil. Consider the incidence variety

VD := {(x, t) ∈ CPn+1 ×D | x ∈ Vt},
with D a small disc centered at 0 ∈ C so that Vt is smooth for all t ∈ D∗ := D\{0}.
Denote by

π : VD −→ D

the proper projection map, and note that V = V0 = π−1(0) and Vt = π−1(t) for all
t ∈ D∗. In what follows we will write V for V0 and use Vt for a “smoothing” of V .
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By definition, the incidence variety VD is a complete intersection of pure com-
plex dimension n+1. It is nonsingular if V = V0 has only isolated singularities, but
otherwise it has singularities where the base locus B of the pencil {ft}t∈D intersects
the singular locus Σ := Sing(V ) of V .

In what follows we give applications of the vanishing cycle complex φπAVD
asso-

ciated to the projection π to computing Euler characteristics of arbitrary projective
hypersurfaces, as well as to studying the Z-(co)homology of such hypersurfaces in
the range not covered by the Lefschetz and Kato theorems.

5.2.1. Euler characteristic of an arbitrary complex projective hypersurface. Con-
sider the specialization sequence (5.1) for π, namely:
(5.5)

· · · −→ Hk(V ;A)
spk−→ Hk(Vt;A)

cank

−→ Hk(V ;φπAVD
) −→ Hk+1(V ;A)

spk+1

−→ · · ·

Here, the maps spk are the specialization homomorphisms in cohomology (i.e.,
induced by the specialization map Vt → V ), while the maps cank are called
“canonical” homomorphisms. The latter are induced from the “canonical mor-
phism can : ψπAVD

→ φπAVD
defined on the level of constructible complexes of

sheaves of A-modules.
Recall that the stalk of the cohomology sheaves of φπAVD

at a point x ∈ V are
computed by:

H j(φπAVD
)x ∼= H̃j(Bx ∩ Vt;A),

where Bx denotes the intersection of VD with a sufficiently small ball in some chosen
affine chart Cn+1 ×D of the ambient space CPn+1 ×D (hence Bx is contractible).
Here Bx ∩Vt = Fπ,x is the Milnor fiber of π at x. Let us now consider the function

h := f/g : CPn+1 \W → C
where W := {g = 0}, and note that h−1(0) = V \ B with B = V ∩W the base
locus of the pencil. If x ∈ V \ B, then in a neighborhood of x one can describe Vt
(t ∈ D∗) as

{x | ft(x) = 0} = {x | h(x) = t},
that is, as the Milnor fiber of h at x. Note also that h defines V in a neighborhood
of x /∈ B. Since the Milnor fiber of a complex hypersurface singularity germ does
not depend on the choice of a local equation, we can therefore use h or a local
representative of f when considering Milnor fibers of π at points in V \B. We will
therefore use the notation Fx for the Milnor fiber of the hypersurface singularity
germ (V, x).

It is a well known fact that the projection π has no vanishing cycles along
the base locus B, e.g., see [MSS13, Proposition 4.1]. Iin fact, by integrating a
controlled vector field, it can be shown that the Milnor fiber of π at a point in B is
contractible, see [PP01, Proposition 5.1]. In view of the above discussion, we get
from (5.2) that:

χ(Vt) = χ(V ) + χ(V \B,φhAVD
).(5.6)

Therefore, Lemma 5.1 yields the following result of Parusinśki-Pragacz [PP95,
Proposition 7]. The proof sketched above follows the lines of [M19, Theorem
10.4.4].

Theorem 5.3 (Parusinśki-Pragacz). Let V = {f = 0} ⊂ CPn+1 be a reduced
complex projective hypersurface of degree d, and fix a Whitney stratification S of



14 LAURENŢIU G. MAXIM

V . Let W = {g = 0} ⊂ CPn+1 be a smooth degree d projective hypersurface which
is transversal to S . Then

(5.7) χ(V ) = χ(W )−
∑
S∈S

χ(S \W ) · µS ,

where

µS := χ
(
H̃∗(FxS

;A)
)

is the Euler characteristic of the reduced cohomology of the Milnor fiber FxS
of V

at some point xS ∈ S.

As a special case, one gets by (5.7) and Proposition 3.3 the following.

Proposition 5.4 (Isolated singularities). If the degree d hypersurface V ⊂
CPn+1 has only isolated singularities, the Euler characteristic of V is computed by
the formula:

(5.8) χ(V ) = (n+ 2)− 1

d
{1 + (−1)n+1(d− 1)n+2}+ (−1)n+1

∑
x∈Sing(V )

µx,

where µx is the Milnor number at x ∈ Sing(V ).

Example 5.5. If V is a projective curve (i.e., n = 1), then the Betti numbers of
V are: b0(V ) = 1, b2(V ) = r, with r denoting the number of irreducible components
of V (e.g., see (4.1)), and one computes b1(V ) by using (5.8) as:

(5.9) b1(V ) = r + 1 + d2 − 3d−
∑

x∈Sing(V )

µx.

Note also that the homology of such a projective curve is torsion free.

Example 5.6. The projective curve V = {xyz = 0} ⊂ CP 2 has three irre-
ducible components and three singularities of type A1 (each having a corresponding
Milnor number equal to 1). Therefore, by the previous example and formula (5.9),
the Betti numbers of V are given by: b0(V ) = 1, b1(V ) = 1, b2(V ) = 3.

Example 5.7 (Rational homology manifolds). If V ⊂ CPn+1 is a Q-homology
manifold, then the Lefschetz isomorphism and Poincaré duality over Q yield that
bi(V ) = bi(CPn) for all i ̸= n, while bn(V ) is computed from formula (5.7) for
χ(V ). As a concrete example, we leave it to the interested reader to check that
the threefold V = {y2z + x3 + tx2 + v3 = 0} ⊂ CP 4 = {[x : y : z : t : v]} is a
Q-homology manifold. Moreover, as it will be explained in Example 5.19, one has
that χ(V ) = 4, so in particular V has the same Betti numbers as CP 3. Note that
the latter conclusion can also be deduced from Example 2.5.

The above results can be assembled to derive the following nice consequence,
initially proved by Esnault in [E82, Theorem 6.A]:

Corollary 5.8. If V = {f = 0} ⊂ CP 2 is a degree d plane curve with
F = {f = 1} the Milnor fiber of f , then:

(5.10) χ(F ) = 1 + (d− 1)3 − d
∑

x∈Sing(V )

µx.

In particular,

(5.11) b2(F ) = (d− 1)3 − d
∑

x∈Sing(V )

µx + b1(F ).
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Proof. First, setting n = 1 in (5.8) yields that

χ(V ) = 3− 1

d
{1 + (d− 1)3}+

∑
x∈Sing(V )

µx.

By Lemma 2.2, together with the multiplicativity of the Euler characteristic under
finite unbranched covers and the additivity of the Euler characteristic, one gets

χ(F ) = d · χ(CP 2 \ V ) = d · (3− χ(V )).

When combined with the above formula for χ(V ), this then yields (5.10). Formula
(5.11) is just a rewriting of (5.10) using the fact that F has the homotopy type of
a 2-dimensional finite CW complex. □

5.2.2. Vanishing (co)homology of projective hypersurfaces. For a singular de-
gree d reduced projective hypersurface V , consider a one-parameter smoothing Vt
together with the incidence variety VD and projection map π : VD → D, as in the
previous section. We note that since the incidence variety VD = π−1(D) deforma-
tion retracts to V = π−1(0), it follows readily that

Hk(V ;φπAVD
) ∼= Hk+1(VD, Vt;A).

In [MPT22a], these groups were termed the vanishing cohomology groups of V ,
and they are denoted by

Hk
φ(V ) := Hk(V ;φπAVD

).

These are invariants of V , i.e., they do not depend on the choice of a particular
smoothing of degree d. By definition, the vanishing cohomology groups measure
the difference between the topology of a given projective hypersurface V and that
of a smooth projective hypersurface of the same degree.

The vanishing cohomology groups Hk
φ(V ) are global counterparts for the co-

homology of the Milnor fiber, as well as cohomological analogues of the vanishing
homology groups

H⋎
k (V ) := Hk(VD, Vt;Z)

introduced, e.g., in [T07, Chapter 9], and studied by Siersma and Tibăr in [ST17a]
for hypersurfaces with 1-dimensional singular loci.

Properties of vanishing cycles together with vanishing results of Artin type can
be used to prove the following concentration result for the vanishing cohomology,
which generalizes the situation of Example 5.2 as well as results of Siersma-Tibăr
for 1-dimensional singularities.

Theorem 5.9. [MPT22a, Theorem 1.2] Let V ⊂ CPn+1 be a degree d reduced
projective hypersurface with s = dimC Sing(V ). Then

(5.12) Hk
φ(V ) ∼= 0 for all integers k /∈ [n, n+ s].

Moreover, Hn
φ(V ) is a free abelian group.

By the Universal Coefficient Theorem, we get the concentration degrees of
the vanishing homology groups H⋎

k (V ) of a projective hypersurface in terms of the
dimension of its singular locus (proved by Siersma-Tibăr [ST17a] for 1-dimensional
singularities):
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Corollary 5.10. With the above notations and assumptions, we have that

(5.13) H⋎
k (V ) ∼= 0 for all integers k /∈ [n+ 1, n+ s+ 1].

Moreover, H⋎
n+s+1(V ) is free.

5.2.3. Integral (co)homology of singular projective hypersurfaces and Betti num-
bers estimates (in the range not covered by the Lefschetz and Kato theorems). An
immediate consequence of Theorem 5.9 and of the specialization sequence (5.5) is
the following result on the integral cohomology of a complex projective hypersur-
face.

Corollary 5.11. Let V ⊂ CPn+1 be a degree d reduced projective hypersurface
with a singular locus of complex dimension s. Then:

(i) Hk(V ;Z) ∼= Hk(Vt;Z) ∼= Hk(CPn;Z) for all integers k /∈ [n, n+ s+ 1].
(ii) Hn(V ;Z) ∼= Ker (cann) is free.
(iii) Hn+s+1(V ;Z) ∼= Hn+s+1(CPn;Z)⊕ Coker (cann+s).
(iv) Hk(V ;Z) ∼= Ker (cank)⊕Coker (cank−1) for all integers k ∈ [n+1, n+s],

s ≥ 1.

In particular,

bn(V ) ≤ bn(Vt) =
(d− 1)n+2 + (−1)n+1

d
+

3(−1)n + 1

2
,

and

bk(V ) ≤ rk Hk−1
φ (V ) + bk(CPn) for all integers k ∈ [n+ 1, n+ s+ 1], s ≥ 0.

Remark 5.12. One can easily formulate the homological counterpart of the
above corollary, which in particular yields thatHn+s+1(V ;Z) is free. Note also that,
since Hk(Vt;Z) is free for all k, Ker (cank) is also free. So the torsion in Hk(V ;Z)
for k ∈ [n + 1, n + s + 1] may only come from the summand Coker (cank−1). For
instance, in the notations of Example 2.5, the group H3(V2;Z) contains 3-torsion
(see [D92, Proposition 5.4.8] for details). See also [D92, Proposition 5.4.13] for
more examples where torsion is present in these cohomology groups.

Example 5.13. Consider the cone on the projective curve of Example 5.6, i.e.,
the surface V = {xyz = 0} given by the same equation, but in CP 3. Together with
(2.9), this gives:

H0(V ;Z) ∼= Z, H1(V ;Z) ∼= 0, H2(V ;Z) ∼= Z, H3(V ;Z) ∼= Z, H4(V ;Z) ∼= Z3.

By Theorem 5.9, the only non-trivial vanishing cohomology groups of V are H2
φ(V ),

which is free, andH3
φ(V ). A direct computation on the specialization sequence (5.5)

yields:

H2
φ(V ) ∼= Z7, H3

φ(V ) ∼= Z2.

In general, it is quite demanding to get a good understanding of the Ker
and Coker of the various canonical morphisms cank. However, the ranks of the
(possibly non-trivial) vanishing (co)homology groups Hn+k

φ (V ), k = 0, . . . , s, can
be estimated in terms of the local topology of singular strata and of their generic
transversal types by making use of homological algebra techniques. In this regard,
one obtains the following result (which is not contained in [MPT22a], but whose
proof follows the lines of Theorem 1.7 in loc. cit.).
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Theorem 5.14. Let V ⊂ CPn+1 be a reduced projective hypersurface with
a singular locus of complex dimension s, and a fixed Whitney stratification. For
any integer k ∈ {0, . . . , s}, the vanishing cohomology group Hn+k

φ (V ) is completely

determined by the singular strata of V of dimension ≥ k−1. Moreover, Hn+k
φ (V ) is

the quotient of an abelian group depending only on the singular strata of dimension
≥ k. In particular, an upper bound for rk Hn+k

φ (V ) can be given only in terms
of the singular strata of V of dimension ≥ k and their corresponding transversal
Milnor fibers.

In view of Corollary 5.11, the above theorem yields corresponding statements
and estimates for the Betti numbers of V in the range not covered by the Lefschetz
and Kato theorems. Such estimates can be made precise for hypersurfaces with low-
dimensional singular loci. Concretely, as special cases of Corollary 5.11, one recasts
Siersma-Tibăr’s result [ST17a] for s ≤ 1, and in particular Dimca’s computation
[D86] for s = 0 (see also [M76]). Concerning the estimation of rank of the highest
interesting (co)homology group, Theorem 5.14 specializes to the following result.

Theorem 5.15. [MPT22a, Theorem 1.7] Let V ⊂ CPn+1 be a reduced projec-
tive hypersurface with a singular locus of complex dimension s. For each stratum
Si ⊆ Sing(V ) of top dimension s in a Whitney stratification of V , let F⋔

i denote
its transversal Milnor fiber with corresponding Milnor number µ⋔

i . Then:

(5.14) bn+s+1(V ) ≤ 1 +
∑
i

µ⋔
i ,

and the inequality is strict for n+ s even.

In fact, the inequality in (5.14) is deduced from

(5.15) bn+s+1(V ) ≤ 1 + rk Hn+s
φ (V )

(cf. Corollary 5.11), together with

(5.16) rk Hn+s
φ (V ) ≤

∑
i

µ⋔
i ,

which is a refined version of Theorem 5.14 in the case k = s. Moreover, the
inequality (5.15) is strict for n+ s even. Note also that if s = 0, i.e., if V has only
isolated singularities, then µ⋔

i is just the usual Milnor number of such a singularity
of V .

Example 5.16 (Singular quadrics). Let n and q be integers satisfying 4 ≤ q ≤
n+ 1, and let

fq(x0, . . . xn+1) =
∑

0≤i,j≤n+1

qijxixj

be a quadric of rank q := rk(Q) with Q = (qij). The singular locus Σ of the quadric
hypersurface Vq = {fq = 0} ⊂ CPn+1 is a linear space of complex dimension
s = n+1− q satisfying 0 ≤ s ≤ n− 3. The generic transversal type for Σ = CP s is
an A1-singularity, so µ

⋔ = 1. A direct calculation (see [MPT22a, Section 4.1] for
details) shows that if the rank q is even (i.e., n+s+1 is even), then bn+s+1(Vq) = 2,
and hence the upper bound in (5.14) is sharp.

Note that if the projective hypersurface V ⊂ CPn+1 has singularities in codi-
mension 1, i.e., s = n− 1, then using (4.1) we get bn+s+1(V ) = b2n(V ) = r, where
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r denotes the number of irreducible components of V . In particular, Theorem 5.15
yields the following:

Corollary 5.17. If the reduced projective hypersurface V ⊂ CPn+1 has singu-
larities in codimension 1, then the number r of irreducible components of V satisfies
the inequality:

(5.17) r ≤ 1 +
∑
i

µ⋔
i .

Let us next recall from Example 5.7 that if the projective hypersurface V ⊂
CPn+1 is a Q-homology manifold, then the Lefschetz Theorem 2.7 and Poincaré
duality yield that bi(V ) = bi(CPn) for all i ̸= n. Moreover, bn(V ) can be deduced
by computing the Euler characteristic of V , as in Theorem 5.3. Here we remark that
the computation of Betti numbers of a projective hypersurface which is a rational
homology manifold can be deduced without appealing to Poincaré duality by using
the vanishing cohomology instead, as the next result shows.

Proposition 5.18. [MPT22a, Proposition 1.10] If the projective hypersurface
V ⊂ CPn+1 is a Q-homology manifold, then Hk

φ(V ) ⊗ Q ∼= 0 for all k ̸= n. In
particular, in this case one gets: bi(V ) = bi(Vt) = bi(CPn) for all i ̸= n, and
bn(V ) = bn(Vt) + rkHn

φ(V ).

We mention in passing that V ⊂ CPn+1 is a Q-homology manifold if, and only
if, the links of all singular strata of V are Q-homology spheres. This in turn is
equivalent to the fact that the local monodromy operators of the corresponding
Milnor fibrations do not have the eigenvalue 1. This fact is applied repeatedly in
the following example.

Example 5.19. Let V = {f = 0} ⊂ CP 4 be the 3-fold in homogeneous coor-
dinates [x : y : z : t : v], defined by

f = y2z + x3 + tx2 + v3.

The singular locus of V is the projective line Σ = {[0 : 0 : z : t : 0] | z, t ∈ C}.
By (2.9), we get: b0(V ) = 1, b1(V ) = 0, b2(V ) = 1. Since V is irreducible, (4.1)
yields: b6(V ) = 1. We are therefore interested to understand the Betti numbers
b3(V ), b4(V ) and b5(V ). While the details of the calculation are already contained
in [MPT22a, Section 4.2], we include them here in order to familiarize the reader
with the use of the above mentioned results.

The hypersurface V has a Whitney stratification with strata:

S3 := V \ Σ, S1 := Σ \ [0 : 0 : 0 : 1 : 0], S0 := [0 : 0 : 0 : 1 : 0].

The transversal singularity for the top singular stratum S1 is the Brieskorn type
singularity y2 + x3 + v3 = 0 at the origin of C3 (in a normal slice to S1), with
corresponding transversal Milnor number µ⋔

1 = 4. Hence we get by Theorem 5.15
that b5(V ) ≤ 5, while Corollary 5.11 gives b3(V ) ≤ 10. As shown below, the actual
values of b3(V ) and b5(V ) are zero.

As mentioned in Example 5.7, it can in fact be shown that the hypersurface V
is a Q-homology manifold. Hence, by Poincaré duality over the rationals, we get
thet b5(V ) = b1(V ) = 0 and b4(V ) = b2(V ) = 1. To determine b3(V ), it suffices to
compute the Euler characteristic of V , since χ(V ) = 4− b3(V ).
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Let us denote by Y ⊂ CP 4 a smooth 3-fold which intersects the Whitney
stratification of V transversally. Then (3.1) yields that χ(Y ) = −6 and we have by
Theorem 5.3 that

(5.18) χ(V ) = χ(Y )− χ(S1 \ Y ) · µ⋔
1 − χ(S0) · (χ(F0)− 1),

where F0 denotes the Milnor fiber of V at the singular point S0. By inspection
it can be shown that F0 ≃ S3 ∨ S3. So, using the fact that the general 3-fold Y
intersects S1 at 3 points, we get from (5.18) that χ(V ) = 4. Hence b3(V ) = 0.
Moreover, since H3(V ;Z) is free, this in fact shows that H3(V ;Z) ∼= 0.

6. Addendum to the Lefschetz hyperplane section theorem

In this section, we mention the following supplement to the Lefschetz hyper-
plane section theorem for hypersurfaces, which can be used to give a new (inductive)
proof of Kato’s Theorem 4.3 (without using the connectivity of the Milnor fiber).

Theorem 6.1. [MPT22a, Theorem 5.1] Let V ⊂ CPn+1 be a reduced complex
projective hypersurface with s = dimC Sing(V ) the complex dimension of its singular
locus. (By convention, we set s = −1 if V is smooth.) Let H ⊂ CPn+1 be a
generic hyperplane (i.e., transversal to a Whitney stratification of V ), and denote
by VH := V ∩H the corresponding hyperplane section of V . Then

(6.1) Hk(V, VH ;Z) = 0 for k < n and n+ s+ 1 < k < 2n.

Moreover, H2n(V, VH ;Z) ∼= Zr, where r is the number of irreducible components of
V , and Hn(V, VH ;Z) is (torsion-)free.

Sketch of Proof. The long exact sequence for the cohomology of the pair
(V, VH) together with (4.1) yield that:

H2n(V, VH ;Z) ∼= H2n(V ;Z) ∼= Zr,

and there are isomorphisms:

Hk(V, VH ;Z) ∼= Hk
c (V

a;Z),

where V a := V \ VH . Therefore, the vanishing in (6.1) for k < n is a consequence
of the Artin vanishing theorem for the n-dimensional affine hypersurface V a (e.g.,
see [S03, Corollary 6.0.4]). Note that vanishing in this range is equivalent to the
classical Lefschetz hyperplane section theorem.

Since V is reduced, we have that s < n. If n = s+1 then n+s+1 = 2n and there
is nothing else to prove in (6.1). So assume that n > s+1. For n+ s+1 < k < 2n,
we have the following sequence of isomorphisms:

Hk(V, VH ;Z) ∼= Hk(V ∪H,H;Z)
∼= H2n+2−k(CPn+1 \H,CPn+1 \ (V ∪H);Z)
∼= H2n+1−k(CPn+1 \ (V ∪H);Z),

(6.2)

where the first isomorphism is by excision, the second follows by Poincaré-Alexander-
Lefschetz duality, and the third is by the cohomology long exact sequence of a pair.
Set

M = CPn+1 \ (V ∪H),

and let L = CPn−s be a generic linear subspace (i.e., transversal to both V and
H). Then L ∩ V is a nonsingular hypersurface in L, transversal to the hyperplane
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at infinity L∩H in L. Therefore, M ∩L = L \ (V ∪H)∩L has the homotopy type
of a wedge

M ∩ L ≃ S1 ∨ Sn−s ∨ . . . ∨ Sn−s.
Hence, by the Lefschetz hyperplane section theorem (applied s+ 1 times), we get:

Hi(M ;Z) ∼= Hi(M ∩ L;Z) ∼= 0

for all integers i in the range 1 < i < n − s. Substituting i = 2n + 1 − k in (6.2),
we get that Hk(V, VH ;Z) ∼= 0 for n+ s+ 1 < k < 2n. □

As an application of Theorem 6.1, we sketch an inductive proof of Kato’s The-
orem 4.3, see [MPT22a, Theorem 5.3].

Proof of Kato’s Theorem. The proof is by induction on the dimension s
of the singular locus of V . (Again, without any loss of generality, we may assume
n ≥ s + 3). If V is smooth (i.e., s = −1), the assertions are well-knows for any
n ≥ 1.

Choose a generic hyperplane H ⊂ CPn+1 and let VH = V ∩ H. It follows
from Theorem 6.1 and the cohomology long exact sequence of the pair (V, VH)
that H2n−1(V ;Z) ∼= 0. It therefore remains to prove (4.3) and the corresponding
assertion about jk for k in the range for n + s + 2 ≤ k ≤ 2n − 2. Consider the
commuting square

VH
δ−−−−→ H = CPn

γ

y y
V −−−−→

j
CPn+1

and the induced commutative diagram in cohomology:

(6.3)

Hk(CPn+1;Z) jk−−−−→ Hk(V ;Z)

∼=
y yγk

Hk(CPn;Z) −−−−→
δk

Hk(VH ;Z)

By Theorem 6.1 and the cohomology long exact sequence of the pair (V, VH) we
get that γk is an isomorphism in the range n+ s+2 ≤ k ≤ 2n− 2. Moreover, since
VH ⊂ CPn is a degree d reduced projective hypersurface with a (s−1)-dimensional
singular locus, the induction hypothesis yields that Hk(VH ;Z) ∼= Hk(CPn;Z) for
n+ s ≤ k ≤ 2n− 2 and that, in the same range and for k even, the homomorphism
δk is given by multiplication by d. The commutativity of the above diagram (6.3)
then yields (4.3) for n+ s+2 ≤ k ≤ 2n− 2, and the corresponding assertion about
the induced homomorphism jk for k even in the same range. □

7. Concluding remarks. Further directions

At this end, let us mention the following interesting result concerning the shape
of projective hypersurfaces, proved by Dimca and Papadima.

Theorem 7.1. [DP03] Let V = V (f) ⊂ CPn+1 be a complex projective hy-
persurface. Let H be a hyperplane in CPn+1 that is transversal (in the stratified
sense) to V . Then the affine hypersurface V a = V \H is homotopy equivalent to a
bouquet of n-spheres.
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The number of n-spheres in the bouquet decomposition of V a depends only on
V (and not on the defining polynomial f), and it is called the polar degree of f . It
was originally introduced as the topological degree of the gradient (Gauss) map

grad : CPn+1 \ Sing(V ) → CPn+1,

and conjectured (by Dolgachev) to be a topological invariant of V . See [ST21] for
a survey on recent developments and relevant references concerning polar degrees.

In view of the above theorem, one may expect to be able to draw useful infor-
mation about the topology of the hypersurface V inductively, from the generic slice
V ∩ H and its complement V a. However, as indicated by the results surveyed in
this note, “gluing” the topology of these two spaces is in general a difficult problem.

The view from the outside of a complex projective hypersurface V ⊂ CPn+1 can
also be studied via Alexander-type invariants of the complement CPn+1 \ (V ∪H),
where H is a generic hyperplane in CPn+1. This approach, which is inspired by
the classical knot and link theory, has generated a lot of interesting mathematics,
starting with work of Libgober and continuing with works of (among others) Dimca,
Nemethi, Papadima, Suciu, Liu, the author, etc.; see, e.g., [L82, L94, D92, DN04,
L11, M06, L16, MW18] for more details about this beautiful topic.
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[E82] Esnault, H., Fibre de Milnor d’un cône sur une courbe plane singulière, Invent. Math.

68 (1982), no. 3, 477–496.
[SGA] Grothendieck, A., Groupes de monodromie en géométrie algébrique. I. Sḿinaire de

Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I), Lecture Notes in Math.,
Vol. 288, Springer-Verlag, Berlin-New York, 1972.

[K75] Kato, M., Topology of k-regular spaces and algebraic sets, in “Manifolds – Tokyo 1973”
(Proc. Internat. Conf. on Manifolds and Related Topics in Topology), pp. 153–159.

Univ. Tokyo Press, Tokyo, 1975.
[KM75] Kato, M., Matsumoto, Y., On the connectivity of the Milnor fiber of a holomorphic

function at a critical point, in: “Manifolds – Tokyo 1973” (Proc. Internat. Conf., Tokyo,
1973), 131–136, Univ. Tokyo Press, Tokyo, 1975.
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[ST17b] Siersma, D., Tibăr, M., Milnor fibre homology via deformation, in “Singularities and

computer algebra”, 305–322, Springer, Cham, 2017.
[ST21] , Polar degree of hypersurfaces with 1-dimensional singularities, Topology Appl.

313 (2022), Paper No. 107992, 11 pp.
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