TOPOLOGY MATH 70800

HOMEWORK #6

- **1.** Show that if M^n is connected, non-compact manifold, then $H_i(M; \mathbb{Z}) = 0$ for $i \geq n$.
- 2. Show that the Euler characteristic of a closed manifold of odd dimension is zero.
- **3.** True or False: Any orientable manifold is a 2-fold covering of a non-orientable manifold.
- **4.** Show that the Euler characteristic of a closed, oriented, (4n + 2)-dimensional manifold is even.
- 5. Let M be a closed oriented manifold with fundamental class [M]. Consider the following *cup product pairing* between cohomology groups of complementary dimensions (after moding out by the corresponding torsion subgroups):

$$(,): H^i(M;\mathbb{Z})/\mathrm{Tor} \otimes H^{n-i}(M;\mathbb{Z})/\mathrm{Tor} \to \mathbb{Z}$$

given by $(\alpha, \beta) = \langle \alpha \cup \beta, [M] \rangle$. Here $\langle , \rangle : H^n(X; \mathbb{Z}) \otimes H_n(X; \mathbb{Z}) \to \mathbb{Z}$ is the Kronecker pairing defined in Homework #5.

- (1) Show that the cup product pairing is nonsingular in the following sense: for each choice of a \mathbb{Z} -basis $\{\beta_1, \dots, \beta_r\}$ of $H^{n-i}(M; \mathbb{Z})/\text{Tor}$, there exists a \mathbb{Z} -basis $\{\alpha_1, \dots, \alpha_r\}$ of $H^i(M; \mathbb{Z})/\text{Tor}$ such that $(\alpha_i, \beta_j) = \delta_{ij}$. (Hint: Use the Universal Coefficient Theorem and Poincaré Duality.)
- (2) As an application, re-prove the following facts about the ring structures on the cohomology of projective spaces:
 - (a) $H^*(\mathbb{RP}^n; \mathbb{Z}_2) \cong \mathbb{Z}_2[x]/(x^{n+1}), \quad |x| = 1,$
 - (b) $H^*(\mathbb{CP}^n; \mathbb{Z}) \cong \mathbb{Z}[y]/(y^{n+1}), \quad |y| = 2,$
 - (c) $H^*(\mathbb{HP}^n; \mathbb{Z}) \cong \mathbb{Z}[w]/(w^{n+1}), \quad |w| = 4.$

6.

- (1) Show that if M is a closed connected orientable n-manifold, then for each element $\alpha \in H^k(M; \mathbb{Z})$ of infinite order which is not a proper multiple of another element, there exists an element $\beta \in H^{n-k}(M; \mathbb{Z})$ such that $\alpha \cup \beta$ is a generator of $H^n(M; \mathbb{Z}) \cong \mathbb{Z}$. With field coefficients, the same conclusion holds for any $\alpha \neq 0$.
- (2) Is $S^2 \times S^4$ homotopy equivalent to \mathbb{CP}^3 ? Explain.

7. Let M be a closed, oriented 4n-dimensional manifold, with fundamental class [M]. The middle *intersection pairing*

$$(\ ,\): H^{2n}(M;\mathbb{Z})/\mathrm{Tor}\otimes H^{2n}(M;\mathbb{Z})/\mathrm{Tor}\to \mathbb{Z}$$

given by $(\alpha, \beta) = \langle \alpha \cup \beta, [M] \rangle$ is symmetric and nondegenerate. Let $\{\alpha_1, \dots, \alpha_r\}$ be a \mathbb{Z} -basis of $H^{2n}(M; \mathbb{Z})/\text{Tor}$, and let $A = (a_{ij})$ for $a_{ij} := (\alpha_i, \alpha_j) \in \mathbb{Z}$. Then A is a symmetric matrix with $\det(A) = \pm 1$, so it is diagonalizable over \mathbb{R} . Define the signature of M to be

- $\sigma(M) := \text{(the number of positive eigenvalues)} \text{(the number of negative eigenvalues)}$
 - (1) Compute $\sigma(\mathbb{CP}^n)$, $\sigma(S^2 \times S^2)$.
 - (2) Show that the signature $\sigma(M)$ is congruent mod 2 to the Euler characteristic $\chi(M)$.
- **8.** If M is a compact, closed, oriented manifold of dimension n, show that the torsion subgroups of $H^i(M)$ and $H^{n-i+1}(M)$ are isomorphic.
- **9.** Let M be a closed, connected, n-dimensional manifold. Show that:

Tor
$$(H_{n-1}(M; \mathbb{Z})) = \begin{cases} 0, & \text{if M is orientable} \\ \mathbb{Z}_2, & \text{if M is non-orientable} \end{cases}$$

- 10. Show that if a connected manifold M is the boundary of a compact manifold, then the Euler characteristic of M is even.
- **11.** Show that \mathbb{RP}^{2n} , \mathbb{CP}^{2n} , \mathbb{HP}^{2n} cannot be boundaries.
- 12. Show that if M^{4n} is a connected manifold which is the boundary of a compact oriented (4n+1)-dimensional manifold V, then the signature of M is zero.
- 13. Show that $\mathbb{CP}^2 \# \mathbb{CP}^2$ cannot be the boundary of an orientable 5-manifold.