TOPOLOGY MATH 70800

HOMEWORK #4

- **1.** Let $f: S^n \to S^n$ be a map of degree m. Let $X = S^n \cup_f D^{n+1}$ be a space obtained from S^n by attaching a (n+1)-cell via f. Compute the homology of X.
- **2.** Let G be a finitely generated abelian group, and fix $n \geq 1$. Construct a CW-complex X such that $H_n(X) \cong G$ and $\tilde{H}_i(X) = 0$ for all $i \neq n$. (Hint: Use the calculation of the previous exercise, together with know facts from Algebra about the structure of finitely generated abelian groups.) More generally, given finitely generated abelian groups G_1, G_2, \dots, G_k , construct a CW-complex X whose homology groups are $H_i(X) = G_i$, $i = 1, \dots, k$, and $\tilde{H}_i(X) = 0$ for all $i \notin \{1, 2, \dots, k\}$.
- **3.** Construct a map $f: X \to Y$ which induces trivial maps f_* in homology, but which is not nullhomotopic.
- **4.** Let $0 \le m < n$. Compute the homology of $\mathbb{RP}^n/\mathbb{RP}^m$.
- 5. Using our notation from the classification of compact surfaces, first describe the CW structure of T_n and respectively P_n , then use the cellular homology to calculate the homology of these spaces.

6. Homology of Lens Spaces.

Given m > 1 and integers l_1, \dots, l_n so that $(l_k, m) = 1$ for all k, define the Lens space $L = L_m(l_1, \dots, l_n)$ to be the orbit space S^{2n-1}/\mathbb{Z}_m of the unit sphere S^{2n-1} with the \mathbb{Z}_m -action generated by the rotation:

$$\rho(z_1,\cdots,z_n)=\left(e^{2\pi i l_1/m}z_1,\cdots,e^{2\pi i l_n/m}z_n\right),\,$$

rotating the j-th \mathbb{C} -factor of \mathbb{C}^n by an angle $2\pi i l_j/m$. (In particular, when m=2, ρ is the antipodal map, so $L=\mathbb{RP}^{2n-1}$.)

- (1) Show that one can construct a CW-structure on L with one cell e^k in each dimension $k \leq 2n 1$.
- (2) Compute the differentials d_k of the resulting cellular chain complex.
- (3) Compute the homology of L.