TOPOLOGY MATH 70800

HOMEWORK #3

- 1. Show that:
 - (1) S^n and S^m do not have the same homotopy type if $n \neq m$.
 - (2) S^n , for n > 1, is a simply-connected space which is not contractible.
- **2.** Calculate the homology of the 2-torus T^2 .
- **3.** Let A be a retract of X, i.e., there exists a map $r: X \to A$ whose restriction to A is the identity. Let $i: A \to X$ be the inclusion map. Show that $i_*: H_*(A) \to H_*(X)$ is a monomorphism and r_* is an epimorphism.
- **4.** A pair (X,A) with X a space and A a nonempty closed subspace that is a deformation retract of some neighborhood in X is called a **good pair**. Show that for a good pair (X,A), the quotient map $q:(X,A)\to (X/A,A/A)$ obtained by collapsing A to a point, induces isomorphisms $q_*:H_n(X,A)\to H_n(X/A,A/A)\cong \tilde{H}_n(X/A)$, for all n.
- **5.** For a wedge sum $\bigvee_{\alpha} X_{\alpha}$, the inclusions $i_{\alpha}: X_{\alpha} \hookrightarrow \bigvee_{\alpha} X_{\alpha}$ induce an isomorphism

$$\bigoplus_{\alpha} i_{\alpha*} : \bigoplus_{\alpha} \tilde{H}_n(X_{\alpha}) \to \tilde{H}_n(\bigvee_{\alpha} X_{\alpha}),$$

provided that the wedge sum is formed at basepoints $x_{\alpha} \in X_{\alpha}$ such that the pairs (X_{α}, x_{α}) are good.

- **6.** Show that $S^1 \times S^1$ and $S^1 \vee S^1 \vee S^2$ have isomorphic homology groups in all dimensions. Are these spaces homeomorphic?
- 7. Recall that an action of a group G on a space X is a homomorphism from G to the group Homeo(X) of homeomorphisms $X \to X$, and the action is free if the homeomorphism corresponding to each nontrivial element of G has no fixed points. Show that \mathbb{Z}_2 is the only nontrivial group that can act freely on S^n if n is even.

8.

- (1) Show that a map $f: S^n \to S^n$ with no fixed points has degree $(-1)^{n+1}$.
- (2) Show that the map $f: S^1 \to S^1$, $z \mapsto z^k$, has degree k.
- (3) Construct a map $f: S^n \to S^n$ of any given degree $k \in \mathbb{Z}$.

- **9.** Show that the quotient map $S^1 \times S^1 \to S^2$ collapsing the subspace $S^1 \vee S^1$ to a point is not nullhomotopic by showing that it induces an isomorphism on H_2 . On the other hand, show that any map $S^2 \to S^1 \times S^1$ is nullhomotopic.
- 10. For ΣX the suspension of X, show by a Meyer-Vietoris argument that there are isomorphisms $\tilde{H}_n(\Sigma X) \cong \tilde{H}_n(X)$ for all n.