HOMEWORK #2

1. Show that the map $p: S^1 \to S^1$, $p(z) = z^n$ is a covering. (Here we represent S^1 as the set of complex numbers z of absolute value 1.)

2. Let $p: E \to B$ be a covering map, with E path connected. Show that if B is simply-connected, then p is a homeomorphism.

3. Let $p: E \to B$ be a covering, with E path connected. For $b \in B$, let $e \in p^{-1}(b)$. Show that the induced map $p_*: \pi_1(E, e) \to \pi_1(B, b)$ is injective.

4.

- (1) Classify all coverings of the Möbius strip up to equivalence.
- (2) Show that every covering of the Möbius strip is homeomorphic to either \mathbb{R}^2 , $S^1 \times \mathbb{R}$ or the Möbius strip itself.

5. Let \mathbb{Z}_6 act on $S^3 = \{(z, w) \in \mathbb{C}^2, |z|^2 + |w|^2 = 1\}$ via $(z, w) \mapsto (\epsilon z, \epsilon w)$, where ϵ is a sixth root of unity.

- (1) What is the fundamental group of the quotient S^3/\mathbb{Z}_6 ?
- (2) Describe all coverings of the quotient S^3/\mathbb{Z}_6 .