
EQUIVARIANT GENERA OF COMPLEX ALGEBRAIC VARIETIES

SYLVAIN E. CAPPELL, LAURENTIU MAXIM, AND JULIUS L. SHANESON

Abstract. For smooth manifolds, Atiyah and Meyer studied contributions of monodromy to usual
signatures. In this note we obtain Atiyah-Meyer type formulae for equivariant Hodge-theoretic

genera of complex algebraic varieties. Equivariant Hirzebruch genera χy(X; g) of a quasi-projective
variety X acted upon by a finite group of algebraic automorphisms are defined by combining the

group action with the information encoded by the Hodge filtration of the mixed Hodge structure in

cohomology. While for a projective algebraic manifold χy(X; g) can by computed by the Atiyah-
Singer holomorphic Lefschetz theorem, we derive a Atiyah-Meyer type formula for χy(X; g) in the

case when X is not necessarily smooth or compact, but just fibers equivariantly (in the complex

topology) over a compact algebraic manifold. These results apply to computing Hodge-theoretic
invariants of orbit spaces. We also obtain some results comparing equivariant Hodge-theoretic

genera of the range and domain of an equivariant algebraic map in terms of its singularities.

1. Introduction

In [CLMSa] (see also [CLMSb], [MS]), we investigated multiplicative properties of Hirzebruch-type
invariants (genera and characteristic classes) and obtained Hodge-theoretic formulae of Atiyah-Meyer
type for such invariants of complex algebraic varieties. Those results gave explicit computations
of Hirzebruch invariants of varieties in terms of monodromy contributions, and were motivated by
pioneering works by Atiyah [At] and Meyer [Me] in the case of signatures of manifolds; see also [BCS],
[B] for computations of (intersection homology) signatures in the singular context. This note is a
natural continuation of our above mentioned papers, and studies equivariant Hirzebruch genera of
complex algebraic varieties.

Equivariant genera of varieties are generally defined by combining the information encoded by the
filtrations of the mixed Hodge structure in cohomology with the action of a finite group preserving
these filtrations (e.g., an algebraic action). Such invariants had been successfully used in connection
with l-adic theory for the study of varieties over fields of positive characteristic (e.g., see [DL, I] and
the references therein), where the role of the action is played by a Frobenius endomorphism acting
on the l-adic cohomology. The definition of the equivariant Hirzebruch genus χy(X, g) considered in
this note only requires the use of the Hodge filtration in the (compactly supported) cohomology of a
complex algebraic variety X, together with the action of a finite group G of algebraic automorphisms
g of X.

One of the main motivations for studying Hirzebruch genera in the equivariant setting is the
information they provide when comparing invariants of an algebraic variety to those of its orbit
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space. For example, the equivariant Hirzebruch genera χy(X; g), g ∈ G \ {id}, of a quasi-projective
variety X measure the “difference” between the Hirzebruch polynomials χy(X) and, resp., χy(X/G);
see Proposition 3.4. (It is essential here to use the action of a finite group in order to ensure that the
quotient space is an algebraic variety.) A similar relationship was used by Hirzebruch [H69] in order
to compute the signature of certain ramified coverings of closed manifolds (see also [Gil, Ha]).

If X is a compact algebraic manifold, the Atiyah-Singer holomorphic Lefschetz theorem [AS, HZ]
can be employed to compute the equivariant Hirzebruch genus χy(X; g) in terms of characteristic
classes of the fixed point set Xg and of its normal bundle in X; see the equation (4) for the precise
formulation. One of our main results, Theorem 3.11, derives a formula for χy(X; g) in the case when
X is not necessarily smooth or compact, but just fibers equivariantly (in the topological sense) over
a compact algebraic manifold Y . The answer is then given in terms of characteristic classes of the
fixed point set Y g in the base, and also in terms of a K-theoretic Hirzebruch characteristic defined
by putting together the various geometric variations encoded by the projection map. Theorem 3.15
contains a similar result formulated in terms of equivariant intersection homology genera. By analogy
with the Atiyah-Meyer type formulae of [CLMSa], the results of Theorems 3.11 and 3.15 rely on
understanding the contribution of monodromy to the calculation of twisted equivariant Hirzebruch
genera, that is, invariants of the form χy(X,L; g) defined in terms of the Hodge filtration on the
cohomology with coefficients in a G-equivariant admissible variation of mixed Hodge structures. Our
result in this direction (see Theorem 3.10) uses the holomorphic Lefschetz theorem of Atiyah and
Singer, and provides a generalization to the equivariant setting of our Hodge-theoretic Atiyah-Meyer
type formulae for twisted Hirzebruch genera (cf. [CLMSa]). Various special cases and consequences
of these results are discussed at the end of this note. In particular, for trivial monodromy, our
results give an equivariant Hodge-theoretic analogue of the Chern-Hirzebruch-Serre formula for the
signature of fiber bundles [CHS], see formula (31). This can be used to compute χy(X; g) when
the (singular and compact) variety X is the domain of a proper equivariant morphism that can be
stratified with trivial monodromy along all of its strata (see Proposition 4.2). The trivial monodromy
assumption is a natural one to consider for obtaining stratified multiplicative formulae, e.g., see results
of [CS91, CMSb, CLMSa].

Acknowledgement. We are grateful to Jörg Schürmann for reading a first draft of this work and
making valuable comments and suggestions.

2. The Atiyah-Singer holomorphic Lefschetz theorem and Hodge-theoretic
Atiyah-Meyer formulae

The purpose of this section is two-fold: first, in §2.1 we recall the Atiyah-Singer holomorphic
Lefschetz theorem (cf. [AS, HZ]), a result that plays a fundamental role in this note; secondly, in
§2.2 we give a brief account on our Hodge-theoretic Atiyah-Meyer formulae in the complex algebraic
setting (cf. [CLMSa, CLMSb]).

2.1. The Atiyah-Singer holomorphic Lefschetz theorem. Let X be a compact complex man-
ifold. Then any U(q)-bundle Ξ on X has Chern classes ci(Ξ) ∈ H2i(X; Z), i = 0, .., q, and the total
Chern class is defined as the sum c(Ξ) =

∑q
i=0 ci(Ξ). The Chern character of Ξ is then given by

ch(Ξ) =
∑q
i=1 e

αi ∈ Heven(X; Q), where the Chern roots {αi}qi=1 of Ξ are formally defined by the
equation

∑q
i=0 ci(Ξ)xi =

∏q
i=1(1+αix). A parametrized version of this definition is the twisted Chern

character ch(1+y)(Ξ) :=
∑q
i=1 e

(1+y)αi ∈ Heven(X; Q)[y].
In what follows we say that a (total) characteristic class Φ of Ξ is defined by a power series

f(α) ∈ Q[[α]] if we have the following relation: Φ(Ξ) =
∏q
i=1 f(αi), where as before {αi}qi=1 denote
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the Chern roots of Ξ. In order to set the notations for the rest of the paper, let us now introduce the
following characteristic classes of a U(q)-bundle Ξ on the complex manifold X ([HZ]):

(1) The L-class L(Ξ), given by the power series f(α) = α
tanhα .

(2) The Todd class td(Ξ), given by f(α) = α
1−e−α .

(3) The Hirzebruch class Ty(Ξ), given by fy(α) = α(1+y)
1−e−α(1+y) − αy ∈ Q[y][[α]]. Note that for

various values of the parameter y we obtain T0(Ξ) = td(Ξ), T1(Ξ) = L(Ξ) and T−1(Ξ) = c(Ξ).
(4) The class T̃y(Ξ), given by f̃y(α) = α(1+ye−α)

1−e−α ∈ Q[y][[α]]. We also have that T̃ ∗0 (Ξ) = td(Ξ).

(5) The class Lθ(Ξ), given by f(α) = eiθe2α+1
eiθe2α−1

, where θ is a real number not divisible by 2π. In
particular, we have that Lπ(Ξ) = cq(Ξ) · L(Ξ)−1. (This makes sense since L(Ξ) has leading
coefficient 1 and is therefore invertible.)

(6) The class Uθ(Ξ), given by f(α) = (1 − e−α−iθ)−1, where θ is a real number not divisible by
2π.

(7) The class T θy (Ξ), given by f(α) = 1+ye−iθ−α(1+y)

1−e−iθ−α(1+y) , with y and θ as before. Thus, T θ1 (Ξ) =
Lθ(Ξ), T θ−1(Ξ) = 1 and T θ0 (Ξ) = Uθ(Ξ).

(8) The class T̃ θy (Ξ), given by f(α) = 1+ye−iθ−α

1−e−iθ−α .

As a convention, if Φ is one of the above characteristic classes, we write Φ(X) for the class of the
holomorphic tangent bundle TX of X. For a holomorphic vector bundle Ξ on the complex manifold
X, we let Ω(Ξ) denote the sheaf of germs of holomorphic sections of Ξ. In what follows, we omit the
symbol Ω(−) and write Hi(X; Ξ) = Hi(X; Ω(Ξ)).

Let g be an automorphism of the pair (X,Ξ), where as before X is a compact complex manifold
and Ξ is a holomorphic bundle on X. Then g induces automorphisms on the global sections Γ(X; Ξ)
and also on the higher cohomology groups Hi(X; Ξ). The g-holomorphic Euler characteristic of Ξ
over X is defined by:

(1) χ(X,Ξ; g) :=
∑
i

(−1)i · trace
(
g|Hi(X; Ξ)

)
.

Note that if g is the identity, the above invariant is simply the holomorphic Euler characteristic
χ(X; Ξ). The automorphism g : X → X also induces a map dg on the holomorphic cotangent bundle
T ∗X , so an automorphism of (X; Ξ) induces an automorphism of the pair (X; Ξ⊗ΛpT ∗X), p ∈ Z. The
following invariant is a parametrized version of χ(X,Ξ; g):

(2) χy(X,Ξ; g) :=
∑
p≥0

χ(X,Ξ⊗ ΛpT ∗X ; g) · yp.

Now assume that a finite group G acts holomorphically on the compact complex manifold X. Then
for g ∈ G, the fixed-point set Xg := {x ∈ X| gx = x} is a complex submanifold of X and g acts on
the normal bundle Ng of Xg in X. Since X is complex, we have a decomposition

Ng =
⊕

0<θ<2π

Ng
θ ,

where each sub-bundle Ng
θ inherits a complex structure from that of X, and g acts as eiθ on Ng

θ .
We now recall that if Ξ ∈ KG(X) is a G-equivariant vector bundle on the complex manifold X on
which G acts trivially, then we can write Ξ as a sum Ξ =

∑
i Ξi ⊗ χi, for Ξi ∈ K(X) and χi ∈ R(G),

where K(X) denotes the Grothendieck group of C-vector bundles on X and R(G) is the complex



4 S. E. CAPPELL, L. MAXIM, AND J. L. SHANESON

representation ring of G (see [Seg], Prop. 2.2). We then define

ch(Ξ)(g) :=
∑
i

ch(Ξi) · χi(g) ∈ H∗(X; C).

We apply this fact to the group 〈g〉 generated by g, which acts trivially on Xg. For example, since g
acts on Ng

θ by eiθ, we have ch(Ng
θ )(g) = eiθ · ch(Ng

θ ).
We can now state the following

Theorem 2.1. (The Atiyah-Singer holomorphic Lefschetz theorem, [AS])
Let Ξ be a holomorphic vector bundle on a compact complex manifold X and g an automorphism of
(X,Ξ). Then

(3) χ(X,Ξ; g) = 〈ch(Ξ|Xg )(g) ·
∏

0<θ<2π

Uθ(Ng
θ ) · td(Xg), [Xg]〉.

(The dot stands for the cup product in cohomology, while 〈−,−〉 denotes the non-degenerate bilinear
evaluation pairing.)

This result can be formally generalized to the following parametrized version (see [[HZ], p. 52]):

(4) χy(X,Ξ; g) = 〈ch(Ξ|Xg )(g) · T̃y(Xg) ·
∏

0<θ<2π

T̃ θy (Ng
θ ), [Xg]〉

= 〈ch(1+y)(Ξ|Xg )(g) · Ty(Xg) ·
∏

0<θ<2π

T θy (Ng
θ ), [Xg]〉,

and we note that (3) is a special case of (4) at y = 0.
It is worth mentioning that if g is the identity, then the equation (3) above specializes to the

Hirzebruch-Riemann-Roch theorem (HHR):

(5) χ(X; Ξ) = 〈ch(Ξ) · td(X), [X]〉,
Similarly, the equation (4) above specializes at g = id to the generalized Hirzebruch-Riemann-Roch
theorem (g-HRR):

(6) χy(X; Ξ) = 〈ch(Ξ) · T̃y(X), [X]〉 = 〈ch(1+y)(Ξ) · Ty(X), [X]〉.
We also want to point out that if Ξ = I is the trivial line bundle and y = 1, then (4) reduces to the
g-signature theorem ([AS]) in this complex setting. In particular, for a compact complex manifold
X, χ1(X; g) can be identified with the g-signature σ(X; g); see [HZ] for details.

2.2. Hodge-theoretic Atiyah-Meyer formulae. The Hirzebruch-Riemann-Roch theorem (5) is
one of the key ingredients for obtaining Atiyah-Meyer formulae in the complex algebraic context, see
[CLMSa, CLMSb]. Such formulae give an explicit computation of Hirzebruch genera and character-
istic classes of complex algebraic varieties in terms of monodromy contributions, and are motivated
by pioneering works by Atiyah [At] and, resp., Meyer [Me] in the case of signature.

Let X be a compact complex algebraic manifold of pure dimension n, and L an admissible variation
of mixed Hodge structures on X (e.g., a geometric variation or a polarized variation of Hodge struc-
tures) with associated flat bundle with Hodge filtration (V,F•). The sheaf cohomology H∗(X;L)
carries a canonical mixed Hodge structure, and we define the twisted χy-characteristic of X by the
formula:

(7) χy(X;L) :=
∑
i,p

(−1)idimCGrpFH
i(X;L ⊗ C) · (−y)p,
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with F • the Hodge filtration on H∗(X;L ⊗ C).

Theorem 2.2. ([CLMSa]) In the above notations, we have:

(8) χy(X;L) = 〈ch(1+y)(χy(V)) · Ty(X), [X]〉,

where
χy(V) :=

∑
p

[GrpFV] · (−y)p ∈ K0(X)[y, y−1]

is the K-theory χy-characteristic of V, for K0(X) the Grothendieck group of algebraic vector bundles
on X.

The main application of Theorem 2.2 is to the computation of the Hirzebruch χy-genera of varieties
that are topologically fibered, see [CLMSa], Thm 4.1 or [MS], Thm 4.5 for a precise formulation.

One of the main goals of this note is to obtain an equivariant analogue of formula (8).

3. Equivariant Atiyah-Meyer formulae

Consider a complex algebraic action of a finite group G on a complex algebraic variety X (not
necessarily smooth nor compact). Then each g ∈ G acts algebraically on X, and the induced self-
map on the cohomology H∗(X; Q) is a morphism of mixed Hodge structures (so it preserves the
weight and, resp., Hodge filtration). It follows that each g ∈ G acts on the quotient C-vector spaces
GrpFH

∗(X; C), p ∈ Z.

Definition 3.1. The g-equivariant χy-genus of X is the polynomial defined by the formula:

(9) χy(X; g) :=
∑
i,p

(−1)itrace
(
g|GrpFH

i(X; C)
)
· (−y)p.

Similarly, we define the additive equivariant χy-genus, χcy(X; g), by using instead the Hodge filtration
on the compactly supported cohomology H∗c (X; Q).

Here by “additive” we mean that if Y ⊂ X is a G-invariant Zariski closed subset, then for any g ∈ G:

χcy(X; g) = χcy(Y ; g) + χcy(X \ Y ; g).

This is an easy consequence of the fact that the long exact sequence of compactly supported coho-
mology

· · · → Hi
c(X \ Y ; C)→ Hi

c(X; C)→ Hi
c(Y ; C)→ · · ·

respects both the mixed Hodge structures and the algebraic group action.

Remark 3.2. Alternatively, one can define polynomial invariants

HdgG(X, y) :=
∑
i,p

(−1)iGrpFH
i(X; C) · (−y)p ∈ R(G)[y]

with coefficients in the complex representation ring R(G) of the finite group G. However, since R(G)
may be canonically identified with the character ring of G (e.g., see [Ser]), the information contained
in these new invariants is exactly the same as that given by the polynomials {χy(X; g)| g ∈ G}.
Similar considerations apply to invariants defined by using compact supports.
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Remark 3.3. (i) If X is smooth and projective, it follows by Deligne’s theory [De] that our definition
3.1 agrees with that given by Hirzebruch-Zagier in the case of compact complex manifolds [HZ].
(ii) If y = −1, the equivariant χy-genera specialize to the Lefschetz numbers Λ(g) and, resp., Λc(g).
(iii) In the case when X is smooth and connected of complex dimension n, the Poincaré duality
isomorphism takes classes of type (p, q) in Hi(X; C) to classes of type (n− p, n− q) in H2n−i(X; C),
thus χcy(X; g) = (−y)n · χy−1(X; g) for any algebraic automorphism g of X.
(iv) If G is a finite group of algebraic automorphisms of X so that the action of G embeds in the
continuous action of a connected group, then G acts trivially on the cohomology H∗(X; Q) and on
its filtrations coming from the mixed Hodge structure. It follows that in this case we have that
χy(X; g) = χy(X) for all g ∈ G. In particular, this applies to the computation of Hirzebruch genera
of weighted projective spaces P(w) = Pn/G(w), for G(w) = G(w0) × · · · × G(wn) and G(m) the
multiplicative group of mth roots of unity. We obtain that χy(P(w)) = χy(Pn) = 1− y+ · · ·+ (−y)n.
(v) In some cases, the information encoded by the equivariant Hirzebruch genus χy(X; g) coincides
with that given by the equivariant Poincaré polynomial

P (X, y; g) :=
∑
i

trace
(
g|Hi(X; C)

)
· yi.

For example, if X is the complement of a hyperplane arrangement in Cn, then the mixed Hodge
structure in each cohomology group Hi(X; Q) is pure of Hodge type (i, i) (cf. [K]). Therefore for
any g ∈ G we have that χy(X; g) = P (X, y; g). So in this case the equivariant χy-genera determine
the linear representations of G on the cohomology spaces Hi(X; C).

One of the main motivations for considering Hirzebruch genera in the equivariant setting is the
fact that they can be used for computing Hodge numbers of orbifolds. Indeed, we have the following:

Proposition 3.4. Let G be a finite group acting by algebraic automorphisms on the complex quasi-
projective variety X. Then:

(10) χy(X/G) =
1
|G|

∑
g∈G

χy(X; g).

Proof. Since X is quasi-projective and G is finite, the orbifold X/G is in fact an algebraic variety.
Therefore its cohomology carries Deligne’s canonical mixed Hodge structure, and the orbit map p :

X → X/G induces a morphism of mixed Hodge structures in cohomology H∗(X/G; Q)
p∗→ H∗(X;Q).

In particular, the induced isomorphism H∗(X/G; Q) '→ H∗(X; Q)G (cf. [[Gro], p. 202]) is in fact an
isomorphism of mixed Hodge structures. We now have the following sequence of identities:

χy(X/G) =
∑
i,p

(−1)idimCGrpFH
i(X/G; C) · (−y)p

=
∑
i,p

(−1)idimCGrpF
(
Hi(X; C)G

)
· (−y)p

(∗)
=

∑
i,p

(−1)idimC
(
GrpFH

i(X; C)
)G · (−y)p

(∗∗)
=

∑
i,p

(−1)i

 1
|G|

∑
g∈G

trace(g|GrpFH
i(X; C))

 · (−y)p
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=
1
|G|

∑
g∈G

∑
i,p

(−1)itrace
(
g|GrpFH

i(X; C)
)
· (−y)p

 ,

where (*) follows from the fact that the G-invariant cohomology H∗(X; Q)G = Image p∗ is a sub-
mixed Hodge structure of H∗(X; Q), and (**) is a consequence of [[HZ], 1.4]. �

Corollary 3.5. Let G be a finite group acting freely by algebraic automorphisms on the complex
projective manifold X. Then

(11) χy(X/G) =
1
|G|

χy(X).

Proof. Indeed, by the Atiyah-Singer holomorphic Lefschetz formula (4) it follows that χy(X; g) = 0
for all g ∈ G \ {id}. The result follows now from Proposition 3.4. �

Remark 3.6. Formula (11) above is not true in general if one drops the compactness assumption,
e.g., consider the action of a finite cyclic group on C∗. However, see Corollary 3.12 below for another
instance when (11) is valid in a more general context.

For closed manifolds, results similar to that of Proposition 3.4 are discussed in [[HZ], §2.3] for
Euler characteristics and, resp., [[HZ], §2.1, Thm 4] for the case of signatures. We also want to point
out that a formula similar to (10) can be obtained for the additive χy-genus χcy(−), provided that the
action of G on X extends to an action by algebraic automorphisms on a projective variety X̄ which
contains X as a G-invariant Zariski open subset.

Remark 3.7. Formulae such as (10) can be used (as Corollary 3.5 already suggests) to relate invari-
ants of the quotient variety X/G to those of X. For example, if G2 is the cyclic group of order two
generated by an algebraic automorphism g of X, then formula (10) yields the relation:

(12) 2χy(X/G2) = χy(X) + χy(X; g).

This indicates the value of computing the equivariant χy-genus χy(X; g). In [H69], Hirzebruch used
this sort of relationship (and the G-signature theorem of [AS]) in order to compute the signature of
certain ramified coverings of manifolds. Similarly, if X is a compact algebraic manifold, one can use
the Atiyah-Singer holomorphic Lefschetz formula (4) in order to calculate the polynomials χy(X; g),
g ∈ G, and, in particular, to fully understand (12). Alternatively, if X is neither smooth nor compact,
one of our main results below (see Theorem 3.11) yields a formula for the polynomial χy(X; g) in the
case when the variety X is the total space of a locally trivial topological G-fibration over a smooth
compact base; see Theorem 3.11 for the precise statement.

In order to state our results, we first need a twisted version of the equivariant χy-genus. Let us
make the following:

Definition 3.8. Let X be a smooth, connected complex algebraic variety and G a finite group of alge-
braic automorphisms acting on X. A G-equivariant admissible variation L of mixed Hodge structures
on the G-space X is a G-equivariant sheaf of Q-vector spaces (that is, a sheaf L with a collec-
tion of isomorphisms {αg : g∗L '→ L}g∈G so that α1 is the identity map and the cocycle condition
αg◦h = αh ◦ h∗(αg) holds for all g, h ∈ G), which is also an admissible variation of mixed Hodge
structures on X, so that the group action is compatible with (i.e., it preserves) all (Hodge and resp.
weight) filtrations associated with L. By this we mean, in particular, that each induced mapping
Lx

'→ Lgx (g ∈ G) on the stalks of L is an isomorphism of mixed Hodge structures, and the flat



8 S. E. CAPPELL, L. MAXIM, AND J. L. SHANESON

vector bundle V := L ⊗Q OX together with the holomorphic sub-bundles Fp of its Hodge filtration
become G-equivariant holomorphic bundles on X.

We refer to this situation by saying that G is a group of algebraic automorphisms of the pair (X,L).
Examples of such G-equivariant admissible variations are provided by the geometric variations

arising from G-equivariant algebraic morphisms.

If L is a G-equivariant admissible variation, it follows as in [[HZ], p.21] that G acts by C-linear
automorphisms on the vector spaces H∗(X;L⊗C). Note that from the above definition the holomor-
phic bundles GrpFV become G-equivariant, therefore (e.g., as in the proof of Theorem 3.10 below) we
get an induced action of G by C-linear automorphisms on the vector spaces GrpFH

∗(X;L ⊗ C). We
can now make the following:

Definition 3.9. Let g be an algebraic automorphism of the pair (X,L), for X and L as above. The
twisted g-equivariant χy-genus is defined by the formula:

(13) χy(X,L; g) :=
∑
i,p

(−1)itrace
(
g|GrpFH

i(X,L ⊗ C)
)
· (−y)p.

If g is the identity, then χy(X,L; g) reduces to the twisted χy-genus χy(X,L) studied in [CLMSa,
CLMSb, MS].

One of our main results is a direct application of the Atiyah-Singer holomorphic Lefschetz theorem
(see Theorem 2.1), and also provides an equivariant generalization of Theorem 2.2.

Theorem 3.10. Let X be a compact, connected complex algebraic manifold, and fix L an admissible
variation of mixed Hodge structures on X. Let G be a finite group of algebraic automorphism of
(X,L). Then, with the notations from §2.1, for any g ∈ G we have:

(14) χy(X,L; g) = 〈ch(1+y)(χy(V)|Xg )(g) · Ty(Xg) ·
∏

0<θ<2π

T θy (Ng
θ ), [Xg]〉,

where
χy(V) :=

∑
p

[GrpFV] · (−y)p ∈ K0
G(X)[y, y−1]

is the χy-characteristic of V in the G-equivariant algebraic K-theory (with K0
G(X) the Grothendieck

group of G-equivariant algebraic vector bundles on X).

Proof. Let V := L⊗QOX be the flat bundle with holomorphic connection5, whose sheaf of horizontal
sections is L⊗C. The bundle V comes equipped with its Hodge (decreasing) filtration by holomorphic
sub-bundles Fp, and these are required to satisfy the Griffiths’ transversality condition

5(Fp) ⊂ Ω1
Z ⊗Fp−1.

Next note that we have an isomorphism of C-vector spaces

Hk(X;L ⊗ C) ∼= Hk(X; Ω•X ⊗OX V),

and the Hodge filtration on Hk(X;L ⊗ C) is induced by the filtration F • on the twisted de Rham
complex Ω•X ⊗OX V that is defined by Griffiths’ transversality:

F p(Ω•X ⊗OX V) :=
[
Fp 5→ Ω1

X ⊗Fp−1 5→ · · · 5→ ΩiX ⊗Fp−i
5→ · · ·

]
The associated graded is the complex

GrpF (Ω•X ⊗OX V) =
(
Ω•X ⊗OX Gr

p−•
F V, GrF5

)
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with the induced differential.
Since G acts by algebraic automorphism on (X,L), it follows that the filtered twisted de Rham

complex (Ω•X ⊗OX V, F •) and its associated graded are holomorphic G-complexes. Therefore, we can
now write

χy(X,L; g) =
∑
p

χp(X,L; g) · (−y)p,

where

χp(X,L; g) =
∑
k

(−1)ktrace (g|GrpFH
k(X,L ⊗ C))

=
∑
k

(−1)ktrace (g|GrpFHk(X; Ω•X ⊗OX V))

(∗)
=

∑
k

(−1)ktrace (g|Hk(X; Ω•X ⊗OX Grp−•F V))

=: χ(X,Ω•X ⊗OX Grp−•F V; g),

where (∗) follows from [[PS], Theorem 3.18 (iv)] and the fact, proved by M. Saito, that (L,Ω•X⊗OX V)
is a cohomological mixed Hodge complex in the sense of Deligne.

The last term in the above equality can be computed by using the invariance of the trace under
an equivariant spectral sequences. More precisely, if K• is a complex of sheaves of C-vector spaces on
a topological space X, then there is the following spectral sequence calculating its hypercohomology
(e.g., see [Di], §2.1):

(15) Ei,j1 = Hj(X,Ki) =⇒ Hi+j(X;K•).

Assuming g is an automorphism of (X,K•) in the appropriate sense (so g induces automorphisms
on the hypercohomology groups H∗(X,K•) and also on the individual cohomology groups at the E1-
level), then if all (hyper)cohomology groups of (15) are finite dimensional, it follows from the Hopf
trace formula that

χ(X,K•; g) :=
∑
k

(−1)ktrace (g|Hk(X,K•))

=
∑
i,j

(−1)i+jtrace (g|Hj(X,Ki))

=
∑
i

(−1)iχ(X,Ki; g).

Therefore the equivariant twisted χy-genus χy(X,L; g) can be computed as follows:

χy(X,L; g) =
∑
p

χ(X,Ω•X ⊗OX Gr
p−•
F V; g) · (−y)p

=
∑
i,p

(−1)iχ(X,ΩiX ⊗Gr
p−i
F V; g) · (−y)p

(AS)
=

∑
i,p

(−1)i〈ch(ΩiX ⊗Gr
p−i
F V|Xg )(g) ·

∏
0<θ<2π

Uθ(Ng
θ ) · td(Xg), [Xg]〉 · (−y)p,

where the last step is an application of the Atiyah-Singer holomorphic Lefschetz theorem.
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In order to finish the proof, we now follow the procedure in [[HZ], p. 52]. More precisely, by using
the identity

T ∗X |Xg = T ∗Xg ⊕
∑

0<θ<2π

Ng
θ
∗
,

the last line of the above equation can be expanded as

(16) 〈ch(χy(V)|Xg )(g) · ch(λy(T ∗Xg ))(g) ·
∏

0<θ<2π

ch(λy(Ng
θ
∗))(g) ·

∏
0<θ<2π

Uθ(Ng
θ ) · td(Xg), [Xg]〉,

where for a holomorphic bundle Ξ, its total λy-class is defined by λy(Ξ) :=
∑
p ΛpΞ · yp. We further

note that ch(ΛpNg
θ
∗)(g) = e−ipθ · ch(ΛpNg

θ
∗), therefore

ch(λy(Ng
θ
∗))(g) =

∏
j

(1 + ye−iθ−αj ),

for {αj} the Chern roots of Ng
θ . Putting all this into (16) gives

(17) χy(X,L; g) = 〈ch(χy(V)|Xg )(g) · T̃y(Xg) ·
∏

0<θ<2π

T̃ θy (Ng
θ ), [Xg]〉,

The claimed formula (14) is just an easy re-writing of equation (17). �

In the relative (geometric) setting, the Theorem 3.10 can be used for computing equivariant Hirze-
bruch genera of varieties that fiber topologically over a smooth compact algebraic variety.

Theorem 3.11. Let f : Y → X be a G-equivariant quasi-projective morphism of complex algebraic
varieties, with X smooth, compact and connected, and G a finite group of algebraic automorphisms
of Y and resp. X. Assume for simplicity that f is a locally trivial topological fibration in the complex
topology. Then for any g ∈ G we have:

(18) χy(Y ; g) = 〈ch(1+y)(χy(f)|Xg )(g) · Ty(Xg) ·
∏

0<θ<2π

T θy (Ng
θ ), [Xg]〉,

where
χy(f) :=

∑
i,p

(−1)i [GrpFHi] · (−y)p ∈ K0
G(X)[y]

is the K-theory equivariant χy-characteristic of f , for Hi the flat bundle with connection 5i : Hi →
Hi ⊗OX Ω1

X , whose sheaf of horizontal sections is Rif∗CY .
Similarly,

(19) χcy(Y ; g) = 〈ch(1+y)(χcy(f)|Xg )(g) · Ty(Xg) ·
∏

0<θ<2π

T θy (Ng
θ ), [Xg]〉,

where
χcy(f) :=

∑
i,p

(−1)i [GrpFVi] · (−y)p ∈ K0
G(X)[y]

is the K-theory equivariant χcy-characteristic of f , for Vi the flat bundle of the local system Rif!CY .

Proof. By our assumptions, the sheaves Rsf∗QY and, resp., Rsf!QY (s ∈ Z) are locally constant,
and in fact they underlie geometric (thus admissible) variations of mixed Hodge structures on X.
Moreover, these variations are also G-equivariant, e.g., see [Sc03], §3.1. Note that the filtration F•
on the flat bundle associated to a geometric variation satisfies the property that GrpF = 0 for p < 0.
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In order to prove (18) we employ the Leray spectral sequence of f

(20) Ep,q2 = Hp(X,Rqf∗QY ) =⇒ Hp+q(Y ; Q).

This is a spectral sequence in the category of mixed Hodge structures (e.g., see [CLMSa], §2.3) and
is compatible with the g-action. Then, by definition,

χy(Y ; g) =
∑
i,p

(−1)itrace
(
g|GrpFH

i(Y ; C)
)
· (−y)p =:

∑
p

χp(Y ; g) · (−y)p,

and the spectral sequence (20) can be now used to write

χp(Y ; g) =
∑
k,l

(−1)k+ltrace
(
g|GrpFH

k(X;Rlf∗CY )
)

=
∑
l

(−1)lχp(X,Rlf∗QY ; g).

Therefore,
χy(Y ; g) =

∑
l

(−1)lχy(X,Rlf∗QY ; g)

and the rest follows from Theorem 3.10.
Formula (19) is obtained similarly by using instead the compactly supported Leray spectral se-

quence of f , that is,

(21) Ep,q2 = Hp
c (X,Rqf!QY ) =⇒ Hp+q

c (Y ; Q)

�

Formula (18), when combined with Proposition 3.4, yields the following extension of Corollary 3.5:

Corollary 3.12. Under the notations and assumptions of Theorem 3.11, suppose moreover that the
G-action on the base X is free. Then,

(22) χy(Y/G) =
1
|G|

χy(Y ).

Remark 3.13. In Theorem 3.10 and Theorem 3.11 we can drop the compactness assumption on the
base X, provided X has a G-equivariant good compactification (Z,D) (i.e., Z is a smooth compact
variety on which G acts by algebraic automorphisms, so that X is a G-invariant Zariski open subset
of Z, and D = Z \ X is a G-invariant normal crossing divisor). However, in this case we need to
allow contributions “at infinity” in our formulae. Indeed, in the notations of Theorem 3.10, the
cohomology groups H∗(X;L ⊗ C) are in this case computed by the twisted logarithmic de Rham
complex associated to the Deligne extension of L on (Z,D). Since all arguments of [[CLMSa], Thm
4.10 and Cor 4.12] admit an equivariant extension, we leave the details as an exercise for the interested
reader.

We conclude this section with another application of Theorem 3.10, namely to the computation of
equivariant intersection homology genera.

Let X be a n-dimensional complex algebraic variety acted upon by a finite group G of algebraic
automorphisms. Then the associated intersection chain sheaf ICX ∈ Db

G,c is a G-equivariant con-
structible complex (in fact, an equivariant perverse sheaf, cf. [[BL], 5.2]). Therefore, the intersection
cohomology groups of X, that is, IH∗(X; Q) := H∗−n(X; ICX), become G-representations, and one
can consider traces of the action of each element g ∈ G on these groups. Moreover, the groups
IH∗(X; Q) admit Saito’s canonical mixed Hodge structures, and the Hodge and resp. weight filtra-
tions are preserved by the group action. The latter claim follows from the fact that ICX underlies in
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fact a G-equivariant mixed Hodge module in the sense of Saito [Sa] (for a quick overview of equivariant
aspects of Saito’s theory, the reader is advised to consult [T]). We can now make the following

Definition 3.14. With the notation of the preceeding paragraph, for each g ∈ G we define an equi-
variant intersection homology χy-genus by the formula:

(23) Iχy(X; g) :=
∑
i,p

(−1)itrace
(
g|GrpF IH

i(X; C)
)
· (−y)p.

As another application of Theorem 3.10 to the geometric setting, we can compute these invariants
in the following special case. Let f : Y → X be a G-equivariant morphism as in the statement of
Theorem 3.11. Let Wi := Li ⊗Q OX be the flat bundle associated to the locally constant sheaf

Li := Ri−dimXf∗ICY .

It follows from the functorial calculus in G-equivariant derived categories (see [BL, Sc03]) that each
Li is a G-equivariant sheaf. Moreover, Saito’s theory of algebraic mixed Hodge modules [Sa] implies
that Li underlies an admissible variation of mixed Hodge structures which is compatible with the G-
action, in the sense of Def 3.1. (This follows from the more general fact that Li[dimX] is a (smooth)
G-equivariant mixed Hodge module.) Therefore each flat bundleWi comes equipped with a filtration
by holomorphic sub-bundles satisfying the Griffiths’ transversality condition. We can now define the
Iχy-characteristic of f in K-theory by the following formula:

(24) Iχy(f) :=
∑
i

(−1)i+dimF · χy(Wi) ∈ K0
G(X)[y],

with F the general fiber of f and χy(Wi) the K-theory equivariant χy-characteristic ofWi, as defined
in Theorem 3.10.

The following result is an equivariant extension of some results of [CLMSb, MS]:

Theorem 3.15. With the above definitions and notations, for each g ∈ G we have:

(25) Iχy(Y ; g) = 〈ch(1+y)(Iχy(f)|Xg )(g) · Ty(Xg) ·
∏

0<θ<2π

T θy (Ng
θ ), [Xg]〉.

Proof. The proof is similar to that of Theorem 3.11, and relies on using the perverse Leray spectral
sequence of the map f , that is,

(26) Ei,j2 = Hi(X, pHj(f∗ICY )) =⇒ Hi+j(Y ; ICY ) = IHi+j+dimY (Y ; Q).

Here pH stands for the perverse cohomology functor. In our setting, this can be regarded as the
cohomology functor on the category Db

G,c with respect to the perverse t-structure (cf. [BL], 5.1).
Since X is smooth, and smooth perverse sheaves are, up to a shift, just local systems, we have the
following identification of G-equivariant perverse sheaves:

(27) pHj(Rf∗ICY ) = (Rj−dimXf∗ICY )[dimX] = Lj [dimX].

The perverse Leray spectral sequence (26) is a spectral sequence in the category of mixed Hodge
structures (e.g., see [CLMSa], §2.3), and it comes equipped with a compatible linear automorphism
induced by the action of g ∈ G. Then, by definition,

Iχy(Y ; g) =
∑
i,p

(−1)itrace
(
g|GrpF IH

i(Y ; C)
)
· (−y)p = (−1)dimY ·

∑
p

χp(Y, ICY ; g) · (−y)p,
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where
χp(Y, ICY ; g) :=

∑
k,p

(−1)ktrace
(
g|GrpFHk(Y ; ICY )

)
· (−y)p.

The spectral sequence (26) can be now used to write

χp(Y, ICY ; g) =
∑
r,s

(−1)r+strace (g|GrpFHr(X; pHs(f∗ICY )))

=
∑
r,s

(−1)r+strace
(
g|GrpFH

r+dimX(X;Ls)
)

= (−1)dimX
∑
s

(−1)sχp(X,Ls; g).

Therefore,

Iχy(Y ; g) = (−1)dimY−dimX ·
∑
s,p

(−1)sχp(X,Ls; g) · (−y)p

= (−1)dimF ·
∑
s

(−1)sχy(X,Ls; g),

and the rest follows from Theorem 3.10.
�

Remark 3.16. If Y is a compact algebraic manifold, then by the Atiyah-Singer holomorphic Lefschetz
theorem, one can regard the equivariant genera χy(Y ; g) as obstructions to the existence of fixed-
point free G-actions on Y . In the singular and/or non-compact case, the formulae of Theorems 3.11
and 3.15 can be interpreted as obstructions to the existence of equivariant (topological) fibrations
f : Y → X over fixed-point free smooth G-varieties. (Note that if such a fibration exists, then Y is
also a fixed-point free G-space).

4. Special cases and applications

Besides their applicability in conjunction with Proposition 3.4, the formulae obtained in our The-
orems 3.10 and, resp., 3.11 admit some important special cases which are briefly discussed in what
follows.

4.1. Trivial group. If g = id, Theorems 3.10, 3.11 and 3.15 specialize to some of the (non-
equivariant) Atiyah-Meyer type formulae for Hodge genera discussed in [CLMSa, CLMSb, MS].

4.2. Equivariant signature. If in Theorem 3.10 we let X be smooth and projective and L a G-
equivariant polarized variation of Hodge structures, then for y = 1 we obtain an equivariant analogue
of the twisted signature formula of Meyer [Me] (in the complex algebraic setting). Similarly, if in
Theorem 3.11 we assume also that X and Y are smooth and projective, the specialization of formula
(18) for y = 1 yields an equivariant analogue of Atiyah’s formula for signatures of fiber bundles [At].

4.3. Equivariant Euler characteristic. In the notations of Theorem 3.10 we have that χ−1(V) =
[V] ∈ K0(X). As flat bundles have trivial rational Chern classes in positive degrees, the twisted
equivariant Euler characteristic is therefore computed by:

χ(X,L; g) = trace(g|Lx) · χ(X; g) = trace(g|Lx) · χ(Xg),

for x ∈ Xg. (We assume here implicitely that Xg is connected; in general, one should sum over the
connected components of Xg.)
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4.4. Trivial action on the base. If g (hence G) acts trivially on X, then formula (14) reduces to

(28) χy(X,L; g) = 〈ch(1+y)(χy(V))(g) · Ty(X), [X]〉.

Similarly, in the case of a G-equivariant fibration f : Y → X with trivial G-action on X, (18) reduces
to

(29) χy(Y ; g) = 〈ch(1+y)(χy(f))(g) · Ty(X), [X]〉,

and formula (19) becomes

(30) χcy(Y ; g) = 〈ch(1+y)(χcy(f))(g) · Ty(X), [X]〉.

An analoguous formula holds for Iχy(Y ; g).

4.5. Trivial monodromy. If in Theorem 3.11 we assume moreover that the base X is a trivial
G-space whose fundamental group acts trivially on the typical fiber F (e.g., π1(X) = 0), then we
obtain the following multiplicative formulae (recall that X is assumed to be compact):

(31) χy(Y ; g) = χy(F ; g) · χy(X)

and similarly,

(32) χcy(Y ; g) = χcy(F ; g) · χy(X).

Indeed, in this case, the variations of mixed Hodge structures Rsf∗QY and resp. Rsf!QY (s ∈ Z) are
constant on X, and it follows that

(33) ch(1+y)(χy(f))(g) = χy(F ; g), ch(1+y)(χcy(f))(g) = χcy(F ; g),

for F the fiber of the locally trivial topological fibration f . (Note that g acts on F since it acts
trivially on X, and all fibers of f are assumed to be equivariantly isomorphic to the typical fiber F .)
Similar considerations apply to the equivariant intersection homology genera.

In the special case of signatures, that is, if all spaces involved are also smooth and y = 1, our
formula (31) should be compared with some of the topological results presented in the paper [CSW] of
Cappell-Shaneson-Weinberger. Formula (31) can be also regarded as an equivariant Hodge-theoretic
analogue of the signature formula of Chern-Hirzebruch-Serre [CHS]. Lastly, our formulae (31) and
(32) should be compared with results of Dimca-Lehrer [[DL],§6] where equivariant weight polynomials
are considered.

It is worth pointing out that in the case of a locally trivial topological fibration with trivial
monodromy action, the formula (31) remains valid without the compactness assumption on the base.
The result follows in this case by a direct analysis of the Leray spectral sequence of the fibration,
just as in the non-equivariant case considered in [CLMSa], §2.4. Similarly, in the case of equivariant
genera defined by using compact supports in cohomology, one can employ the (compactly supported)
Leray spectral sequence (21) to prove the following (compare [DL], §6):

Proposition 4.1. Let Y , X and F be complex algebraic varieties with X smooth and simply-
connected, and assume that the finite group G acts by algebraic automorphisms on each of these
spaces, the action on X being trivial. Let f : Y → X a G-equivariant algebraic morphism which is
also a locally trivial topological fibration with all fibers equivariantly isomorphic to F . Then for any
g ∈ G,

(34) χcy(Y ; g) = χcy(F ; g) · χcy(X).
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Such multiplicative formulae can be used, for example, in order to compute Hodge polynomials
of complex algebraic groups and of their homogeneous spaces. Moreover, when combined with the
additivity of χcy(−; g), Proposition 4.1 can be used to compute equivariant genera of algebraic varieties
on which equivariant stratified submersions are defined. Examples of such maps are provided by the
projection morphisms Y → Y/G, where Y is a quasi-projective variety and G is a finite group of
algebraic automorphisms acting (not necessarily freely) on Y . The result, whose proof is an easy
adaptation of that of [[CLMSa], Prop. 2.11], can be stated as follows:

Proposition 4.2. Let f : Y → X be a proper G-equivariant algebraic morphism of (possibly sin-
gular) complex algebraic varieties, with X is irreducible. Here G denotes a finite group of algebraic
automorphisms acting on both Y and X, so that the action of G on X is trivial. Let S be the set of
components of open strata of X in a G-equivariant stratification of f , and assume π1(S) = 0 for all
S ∈ S. For each S ∈ S with dimS < dimX, define χ̂cy(S̄) inductively by the formula:

χ̂cy(S̄) = χcy(S̄)−
∑
W<S

χ̂cy(W̄ ),

where the sum is over all W ∈ S with W ⊂ S̄ \ S. Then:

(35) χcy(Y ; g) = χcy(X) · χcy(F ; g) +
∑

S∈S,dimS<dimX

χ̂cy(S̄) ·
(
χcy(FS ; g)− χcy(F ; g)

)
,

where F is the generic fiber of the morphism f and FS denotes the fiber of f over the stratum S.

If X and Y are compact, the above result can be used in conjunction with Proposition 3.4.
The formula of Proposition 4.2 is usually refered to as the stratified multiplicative property (SMP, for

short) of the χcy(−; g)-genus (see [CMSa, CMSb, CLMSa] for similar results in the non-equivariant
setting, and also [[CS91], p. 525] where an equivariant SMP is discussed in the case of Goresky-
MacPherson signatures). In view of the considerations of §4.3, the monodromy assumptions in the
above result can be lifted in the special case when y = −1. In fact, in this case, we have the
following relation between the equivariant Euler characteristics of a complex algebraic G-variety Z:
χ(Z; g) = χc(Z; g) (e.g., see [DL], Remark 2.7).

In the case when the morphism f : Y → X of Proposition 4.2 is a projective map onto a smooth
curve X so that the action of G on Y preserves the fibers of f , then a careful analysis of the nearby and
vanishing cycles of f yields an equivariant version of our Hodge-theoretic Riemann-Hurwicz formula
from [[CLMSa], §3.2]. Since the proof of this result is more involved, we defer it to a future work.

Remark 4.3. Presumably, all results of this note admit characteristic class generalizations similar to
those described in [CLMSa, CLMSb, MS] for the non-equivariant case. The exact formulation of such
characteristic class formulae relies on the recent construction (cf. [Sc08]) of equivariant analogues
Ty∗(X; g) of the Brasselet-Schürmann-Yokura characteristic classes [BSY] via an equivariant version
of Saito’s theory of algebraic mixed Hodge modules. The characteristic class version of Proposition
3.4 would then provide Hodge-theoretic analogues in the complex algebraic setting of results by Zagier
for the L-classes of quotient spaces (cf. [Za], but see also [HZ], §I.3.2) and, resp., Baum-Fulton-Quart
for the homology Todd classes (cf. [BFQ]).
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