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Abstract. The Euclidean distance degree of an algebraic variety is a well-studied
topic in applied algebra and geometry. It has direct applications in geometric modeling,
computer vision, and statistics. We use non-proper Morse theory to give a topological
interpretation of the Euclidean distance degree of an affine variety in terms of Euler
characteristics. As a concrete application, we solve the open problem in computer
vision of determining the Euclidean distance degree of the affine multiview variety.

1. Introduction

To any α = (α1, . . . , αn) ∈ Cn, one associates the squared Euclidean distance function
fα : Cn → C given by

fα(z1, . . . , zn) :=
∑

1≤i≤n

(zi − αi)2.

Note that fα is not the square of an actual distance; the terminology is derived from the
fact that, for α ∈ Rn, fα is the complexification of the square of the usual Euclidean
distance on Rn. If X is an irreducible closed subvariety of Cn then, for generic choices
of α, the function fα|Xreg has finitely many critical points on the smooth locus Xreg of
X. Moreover, this number of critical points is independent of the generic choice of α, so
it defines an invariant of the embedding of X in Cn called the Euclidean distance degree
(or ED degree); see [5]. It is denoted by EDdeg(X).

The motivation for studying ED degrees comes from the fact that many models in
data science or engineering are realized as real algebraic varieties, for which one needs
to solve a nearest point problem. Specifically, for such a real algebraic variety X ⊂ Rn,
one needs to solve the following:

Problem 1 (Nearest point). Given α ∈ Rn, compute α∗ ∈ Xreg that minimizes the
squared Euclidean distance from the given point α.

The standard approach to Problem 1 is to list and examine all critical points of the
squared Euclidean distance function on the regular locus of the real variety X. In
practice, algorithms (e.g., in numerical algebraic geometry) find all complex critical
points of the squared Euclidean distance function fα on the regular part of the Zariski
closure of X in Cn, and then sort out the real ones. Thus, the ED degree gives an
algebraic measure of complexity of the nearest point problem.
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This paper deals with a very specific nearest point problem, motivated by the tri-
angulation problem in computer vision and the multiview conjecture of [5, Conjecture
3.4]. In computer vision, triangulation refers to the process of reconstructing a point in
3D space from its camera projections onto several images. The triangulation problem
has many practical applications, e.g., in tourism, for reconstructing the 3D structure
of a tourist attraction based on a large number of online pictures [1]; in robotics, for
creating a virtual 3D space from multiple cameras mounted on an autonomous vehicle;
in filmmaking, for adding animation and graphics to a movie scene after everything is
already shot, etc.

The triangulation problem is in theory trivial to solve: if the image points are given
with infinite precision, then two cameras suffice to determine the 3D point. In practice,
however, various sources of “noise” (such as pixelation or lens distortion) lead to inac-
curacies in the measured image coordinates. The problem, then, is to find a 3D point
which optimally fits the measured image points.

A 3D world point gives rise to n 2D projections in n given cameras. Roughly speaking,
the space of all possible n-tuples of such projections is the affine multiview variety Xn;
see [5, Example 3.1] and Section 4 for more details. The above optimization problem
translates into finding a point α∗ ∈ Xn of minimum distance to a (generic) point α ∈
R2n obtained by collecting the 2D coordinates of n “noisy” images of the given 3D
point. Once α∗ is obtained, a 3D point is recovered (as already mentioned in the
previous paragraph) by triangulating any two of its n projections. In order to find such
a minimizer algebraically, one regards Xn as a complex algebraic variety and examines
all complex critical points of the squared Euclidean distance function fα on Xn. Under
the assumption that n ≥ 3 and the n cameras are in general position, the complex
algebraic variety Xn is smooth, so one is then interested in computing the Euclidean
distance degree EDdeg(Xn) of the affine multiview variety Xn.

An explicit conjectural formula for the Euclidean distance degree EDdeg(Xn) was
proposed in [5, Conjecture 3.4], based on numerical computations from [18] for configu-
rations involving n ≤ 7 cameras:

Conjecture 1.1. [5] The Euclidean distance degree of the affine multiview variety Xn

is given by:

(1) EDdeg(Xn) =
9

2
n3 − 21

2
n2 + 8n− 4.

It was recently shown in [8] that

EDdeg(Xn) ≤ 6n3 − 15n2 + 11n− 4,

for any n ≥ 2.
In this paper we give a proof of Conjecture 1.1 for n ≥ 3 cameras in general position. In

order to achieve this task, we first interpret the ED degree in terms of an Euler-Poincaré
characteristic, as follows (see Theorem 3.8):

Theorem 1.2. Suppose X is a smooth closed subvariety of Cn. Then for general β =
(β0, . . . , βn) ∈ Cn+1 we have:

(2) EDdeg(X) = (−1)dimXχ
(
X ∩ Uβ

)
,



ED DEGREE OF THE MULTIVIEW VARIETY 3

where Uβ := Cn \ {(z1, . . . , zn) ∈ Cn |
∑

1≤i≤n(zi − βi)2 + β0 = 0}.

Given formula (2) and the fact that the affine multiview variety Xn is smooth, we
prove Conjecture 1.1 by computing the Euler-Poincaré characteristic χ

(
Xn ∩ Uβ

)
for a

generic β ∈ Cn+1. This is done in this paper by regarding the affine multiview variety
Xn as a Zariski open subset in its closure Yn in (P2)n, and using additivity properties of
the Euler-Poincaré characteristic together with a detailed study of the topology of the
divisor Yn \Xn “at infinity”.

Theorem 1.2 is proved using Morse theory. We study real Morse functions of the form
log |f |, where f is a nonvanishing holomorphic Morse function on a complex manifold.
Such a Morse function has the following important properties:

(1) The critical points of log |f | coincide with the critical points of f .
(2) The index of every critical point of log |f | is equal to the complex dimension of

the manifold on which f is defined.

However, as a real-valued Morse function log |f | is almost never proper. So we use here
the non-proper Morse theory techniques developed by Palais-Smale [14] (see also [10]).

Alternatively one can derive Theorem 1.2 (and its generalization to singular varieties
as in Theorem 1.3 below) by using more general results from stratified Morse theory as
in [17], [19, Chapter 6], or [16]. However, our proof of Theorem 1.2 is more elementary
and it suffices to prove Conjecture 1.1 which motivated this work. Moreover, it may also
be of independent interest.

In the presence of singularities, formula (2) is no longer true. Instead, one needs to
replace the Euler-Poincaré characteristic on the right hand side by the Euler characteris-
tic of the local Euler obstruction function to capture the topology of singularities. More
precisely, the results in [17], [19, Chapter 6], or [16] can be used to prove the following
generalization of Theorem 1.2 to the singular setting (see Theorem 3.11):

Theorem 1.3. Let X be an irreducible closed subvariety of Cn. Then for a general
β ∈ Cn+1 we have:

(3) EDdeg(X) = (−1)dimXχ(EuX |Uβ
),

where EuX is the local Euler obstruction function on X.

With formula (3) one can compute the ED degree of a singular affine variety by
understanding the Euler characteristic of the local Euler obstruction function on X.
The ED degree of singular varieties comes up in many instances in applications, the
most familiar being the Eckhart-Young theorem (see [5, Example 2.3]) which is used in
low-rank approximation.

Let us also recall here that if Y is an irreducible closed subvariety of Pn, the (projective)
Euclidean distance degree of Y is defined by EDdegproj(Y ) = EDdeg(C(Y )), where C(Y )
is the affine cone of Y in Cn+1. The affine cone acquires a complicated singularity at the
cone point, so the computation of EDdegproj(Y ) via formula (3) is in general very difficult.
Instead, one aims in this case to describe EDdeg(C(Y )) in terms of the topology of Y
itself. This problem has been addressed by Aluffi and Harris in [3, Theorem 8.1] (building
on preliminary results from [5]) in the special case when Y is a smooth projective variety.
A formula computing the (projective) Euclidean distance degree of any projective variety
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Y has been recently obtained in [12], by employing techniques similar to those used in
this paper.

The paper is organized as follows. In Section 2, we introduce the necessary material
on the non-proper Morse theory of Palais-Smale and explain a holomorphic analogue of
this theory. In Section 3, we apply the results from Section 2 to study the topology of
smooth affine varieties (Theorem 3.1). As a further application, we prove Theorem 1.2
on a topological formula for the Euclidean distance degree of smooth affine varieties. We
also indicate here how results of [17] and [16] can be employed to compute the Euclidean
distance degree of any affine variety. Section 4 is devoted to the proof of Conjecture 1.1.
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2. Non-proper Morse theory

Classical Morse theory (e.g., see [13]) relates the number of critical points of a Morse
function on a space with the topology of the space. In this paper, we are interested in
real-valued Morse functions that are induced from holomorphic Morse functions.

2.1. Non-proper Morse theory and Palais-Smale conditions. First, we recall the
definition of Morse functions.

Definition 2.1. Let M be a smooth manifold. A smooth function f : M → R is a
real-valued Morse function if all of its critical points are non-degenerate.

In literature, Morse functions are often required to be proper and to have distinct
critical values. In this paper, we deal with non-proper functions. Since we use Morse
theory only to count the number of cells attached, we also do not require the critical
values to be distinct. In fact, the critical values can be made distinct by a perturbation
argument, while keeping the critical points unchanged.

Definition 2.2. Let M be a complex manifold. A holomorphic function f : M → C is a
holomorphic Morse function if all of its critical points are non-degenerate. A C∗-valued
holomorphic function is a C∗-valued holomorphic Morse function if it is a holomorphic
Morse function when regarded as a C-valued function.

Let f : M → R be a smooth function on a manifold M . For any real numbers a < b,
we define fa,b := f−1

(
[a, b]

)
and fa := f−1

(
(−∞, a]

)
. The following result is due to

Palais-Smale1:

Theorem 2.3 ([14]). Let M be a complete Riemannian manifold, and let f : M → R
be a real-valued Morse function satisfying the following condition:

1The proof was skipped in the original paper of Palais-Smale [14], but a proof is sketched in [10,
Theorem 3.1].
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(PS1) If S is a subset of M on which |f | is bounded but on which ||∇f || is not bounded
away from zero, then there exists a critical point of f in the closure of S.

Then the following properties hold:

(1) For any real numbers a < b, there are finitely many critical points of f in fa,b.
(2) Let a, b be regular values of f . Suppose that there are r critical points of f in fa,b

having index d1, . . . , dr, respectively. Then f b has the homotopy type of fa with
r cells of dimensions d1, . . . , dr attached.

(3) If c is a regular value of f , then f has the structure of a fiber bundle in a small
neighborhood of c.

In [10, Theorem 3.2], a circle-valued analogue of Theorem 2.3 was proved. In this
paper, we develop holomorphic versions of the Palais-Smale condition (PS1).

2.2. Holomorphic Palais-Smale conditions. Let M be a complex manifold with a
complete Hermitian metric h. Let f : M → C be a holomorphic Morse function on M .
We introduce the following Palais-Smale condition of a C-valued holomorphic Morse
function:

(PS2) If S is a subset of M on which |f | is bounded but on which ||∇f ||h is not bounded
away from zero, then there exists a critical point of f in the closure of S.

Similarly, we can define a Palais-Smale condition for a C∗-valued function. Let f :
M → C∗ be a holomorphic Morse function on M . We call the following the Palais-Smale
condition of a C∗-valued holomorphic Morse function:

(PS3) If S is a subset of M on which log |f | is bounded but on which ||∇ log f ||h is not
bounded away from zero, then there exists a critical point of f in the closure of
S.

Here we notice that even though log f is a multivalued funtion, d log f = df
f

is well-

defined, and hence ∇ log f is well-defined.

Lemma 2.4. Let M be a complex manifold with a Hermitian metric h. Denote the
associated Riemannian metric of h by g, i.e., g is the real part of h. Let f : M → C be
a holomorphic function. Then

||∇f ||h =
√

2 · ||∇f1||g
where f1 = Re f is the real part of f .

Proof. Notice that a Riemannian (resp., Hermitian) metric on a real (resp., complex)
vector space induces a Riemannian (resp., Hermitian) metric on the dual vector space.
Thus, we can also consider h and g as metrics on the complex and real cotangent vector
bundle of M , respectively. Then, by the definition of gradient, we have

||∇f ||h = ||df ||h and ||∇f1||g = ||df1||g.
Since g is the associated Riemannian metric of h, we have

(4) ||v||2h = 〈v, v〉h = 〈Re v,Re v〉g + 〈Im v, Im v〉g = ||Re v||2g + || Im v||2g
for any complex cotangent vector v at any point on M . Denote Im f by f2. By the
Cauchy-Riemann equation, we have

(5) ||df1||g = ||df2||g
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at every point of M . By equations (4) and (5), we have ||df ||h =
√

2||df1||g. �

Lemma 2.5. Let M be a complex manifold with a Hermitian metric h. If f : M → C∗
is a C∗-valued holomorphic Morse function satisfying the Palais-Smale condition (PS3),
then log |f | is a real-valued Morse function satisfying the Palais-Smale condition (PS1).
Moreover, f and log |f | have the same critical points, and the index of all critical points
of log |f | is the complex dimension of M .

Proof. In the notations of Lemma 2.4, it suffices to prove that for any subset S of M ,
the function ||d log f ||h is bounded away from zero on S if and only if

∣∣∣∣d log |f |
∣∣∣∣
g

is

bounded away from zero on S.

Let f̃ : M̃ → C be the lifting of f : M → C∗ by the exponential map exp : C → C∗
defined by exp(z) = ez. Then there is a natural infinite cyclic covering map π : M̃ →M ,

which induces a Hermitian metric h̃ on M̃ . Denote the associated Riemannian metric
by g̃. Let S̃ = π−1(S). We claim that the following statements are equivalent:

(1) On S, the function ||d log f ||h is bounded away from zero.

(2) On S̃, the function ||df̃ ||h̃ is bounded away from zero.

(3) On S̃, the function ||dRe f̃ ||g̃ is bounded away from zero.
(4) On S, the function

∣∣∣∣d log |f |
∣∣∣∣
g

is bounded away from zero.

The equivalences (1)⇐⇒(2) and (3)⇐⇒(4) follow immediately from the construction.
The equivalence (2)⇐⇒(3) follows from Lemma 2.4. Thus, the function log |f | satisfies
(PS1). Notice that log |f | = Re log f , so by the Cauchy-Riemann equations the critical
points of f are the same as the critical points of log |f |. Moreover, by the holomorphic
Morse lemma [21, Section 2.1.2], the index of each critical point of log |f | is equal to the
complex dimension of M . �

Lemma 2.6. Let M be a complex manifold with a Hermitian metric h. Suppose f :
M → C is a holomorphic Morse function satisfying the C-valued Palais-Smale condition
(PS2). Then, for any t ∈ C, the restriction f |Ut : Ut → C∗ satisfies the C∗-valued
Palais-Smale condition (PS3), with Ut := f−1(C \ {t}) endowed with the same metric h.

Proof. The C∗-valued Palais-Smale condition (PS3) for f |Ut states that there does not
exists S ⊂ Ut such that:

(1) log |f − t| is bounded on S;
(2) ||d log(f − t)||h is not bounded away from zero on S;
(3) f has no critical point in the closure of S in Ut.

On the other hand, the holomorphic Palais-Smale condition (PS2) for f states that there
does not exists S ⊂M such that:

(4) |f | is bounded;
(5) ||df ||h is not bounded away from zero on S;
(6) f has no critical point in the closure of S in M .

Notice that d log(f − t) = df
f−t . When log |f − t| is bounded, ||df ||h is not bounded

away from zero on S if and only if ||d log(f − t)||h = || df
f−t ||h is not bounded away from

zero on S. Thus, (1) + (2) ⇒ (5). Evidently, (1) ⇒ (4) and (3) ⇒ (6). Therefore,
(1) + (2) + (3)⇒ (4) + (5) + (6), and the assertion in the theorem follows. �
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The following result is analogous to Theorem 4.10 of [10], and the proof is essentially
the same.

Theorem 2.7. Let X be a smooth closed subvariety of Cn with the induced Hermitian
metric from the Euclidean metric on Cn. Then for a general linear function l on Cn,
its restriction l|X to X is a holomorphic Morse function satisfying the C-valued Palais-
Smale condition (PS2).

Proof. Denote the complex vector space Cn by V , and denote its dual vector space by
V ∨. We define a closed subvariety Z ⊂ V × V ∨ by

Z = {(x, l) ∈ V × V ∨ | x is a critical point of l|X}.

If we consider V × V ∨ as the cotangent space of V , then Z is equal to the conormal
bundle of X in V . Now, consider the second projection p : V × V ∨ → V ∨. Since
dimZ = dimV ∨ = n, the restriction p|Z : Z → V ∨ is generically finite. Therefore,
there exists a nonempty Zariski open subset U ⊂ V ∨ on which the map p|Z is finite
and étale, that is, a finite (unramified) covering map (e.g., see [20, Corollary 5.1]). If
the map p|Z : Z → V ∨ is not dominant, one may have Z ∩ p−1(U) = ∅, and we get a
covering map from the empty set; the arguments in the rest of the proof still apply to
this situation.

We will show that for any l ∈ U , its restriction l|X is a holomorphic Morse function
satisfying the C-valued Palais-Smale condition (PS2). So let us fix l ∈ U .

First, there exists a bijection between the intersection Z∩p−1(l) and the critical points
of l|X . Moreover, a critical point of l|X is non-degenerate if and only if the intersection
Z ∩ p−1(l) is transverse at the corresponding point. By our construction, p|Z : Z → V ∨

is étale at l, which means that the intersection Z ∩ p−1(l) is transverse. Therefore, l|X
is a holomorphic Morse function on X.

Next, we prove that l|X satisfies the Palais-Smale condition (PS2). Suppose xi ∈ X,
for i = 1, 2, . . ., is a sequence of points in S such that the sequence ||∇(l|X)xi ||h converges
to zero. By [10, Lemma 6.2], there exist li ∈ V ∨ such that ||li − l||h = ||∇(l|X)xi ||h, and
(li)|X has a critical point at xi. Here the metric on V ∨ is the induced Hermitian metric
from the standard Euclidean Hermitian metric on V = Cn. Then we have a sequence
(xi, li) ∈ Z with li converging to l in V ∨. Since the map p|Z : Z → V ∨ is finite and étale
near l ∈ V ∨, there exists a subsequence of (xi, li) converging to a point in V × V ∨ (see
[10, Lemma 6.1] for a precise proof of this fact). The limit point is of the form (x0, l).
Since Z is closed in V × V ∨, we have (x0, l) ∈ Z. Hence, the point x0 is a critical point
of l|X , which is in the closure of S. �

Remark 2.8. In fact, the proof of Theorem 2.7 shows that l|X satisfies a stronger
condition than (PS2), where we do not require that |l|X | is bounded on S. In other
words, we have shown that if S is a subset of X on which ||∇l|X || is not bounded away
from zero, then there exists a critical point of l|X in the closure of S. Now, by Lemma
2.4, for a general linear function l : Cn → C, the real valued function Re l|X : X → R
satisfies (PS1).

Remark 2.9. For a smooth affine variety X ⊂ Cn, the holomorphic Palais-Smale con-
dition (PS2) for l|X essentially means that fiberwise there is no critical point at infinity.
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Given a linear map l : Cn → C, we can compactify fiberwise and obtain a proper map
l : Pn−1 × C → C, extending l. Let X be the closure of X in Pn−1 × C. Suppose X
is also smooth. Then l|X satisfies (PS2) if and only if the function lX : X → C has no
critical point in the boundary X \X.

Remark 2.10. The proof of Theorem 2.7 shows that the number of critical points of
l|X is the degree of the projection p|Z : Z → V ∨.

3. Topology of affine varieties and the Euclidean distance degree

In this section, we apply the results from Section 2 to study the topology of smooth
affine varieties. As a further application, we derive a topological formula for the Eu-
clidean distance degree of smooth affine varieties. Moreover, by using results of [17, 16],
we also show how to compute the Euclidean distance degree of a possibly singular affine
variety in terms of the local Euler obstruction function.

3.1. Euler-Poincaré characteristic and the number of critical points.

Theorem 3.1. Let X be a smooth closed subvariety of dimension d in Cn. Let l : Cn →
C be a general linear function, and let Hc be the hyperplane in Cn defined by the equation
l = c for a general c ∈ C. Then:

(1) X is homotopy equivalent to X ∩Hc with finitely many d-cells attached;
(2) the number of d-cells is equal to the number of critical points of l|X ;
(3) the number of critical points of l|X is equal to (−1)dχ(X \Hc).

Proof. Let BX denote the bifurcation set for the function l|X : X → C. It is well-known
that BX is finite and that l|X is a smooth fiber bundle over C \BX . Let c ∈ C \BX , and
denote by Bε(c) the disc in C centered at c with radius ε > 0. Since c is not a bifurcation
point, the map l|X : X → C is a fiber bundle near c ∈ C. Thus, for ε sufficiently small,
l|−1X (c) is a deformation retract of l|−1X

(
Bε(c)

)
.

By Theorem 2.7 and Lemma 2.6, the function l|Uc : Uc → C∗ is a C∗-valued holomor-
phic Morse function satisfying the Palais-Smale condition (PS3), where Uc := X \ Hc

is endowed with the Euclidean Hermitian metric induced from Cn. By Lemma 2.5, the
function log

∣∣l|Uc∣∣ : Uc → R is a real-valued Morse function satisfying the condition

(PS1). Moreover, the holomorphic function l|Uc and the real-valued function log
∣∣l|Uc∣∣

have the same critical points and the index of all critical points of log
∣∣l|Uc∣∣ is exactly

d. It then follows from Theorem 2.3 that, for ε > 0 sufficiently small, l|−1X
(
B 1

ε
(c)
)

is

homotopy equivalent to l|−1X
(
Bε(c)

)
with finitely many d-cells attached. Moreover, the

number of d-cells is equal to the number of critical points of l|Uc , which is equal to the
number of critical points of l|X . For ε > 0 sufficiently small so that BX ⊂ B 1

ε
(c), we

have that l|−1X
(
B 1

ε
(c)
)

is homotopy equivalent to X. Thus, the first two assertions follow

from Theorem 2.3.
By the additivity of the Euler characteristics for complex algebraic varieties, we have

χ(X \Hc) = χ(X)− χ(X ∩Hc) = (−1)d · (the number of critical points of l|X),

where the second equality follows from assertions (1) and (2). �
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Remark 3.2. The above proof also shows that, for general c ∈ C, the complement
Uc = X \ Hc of a generic hyperplane section of X is obtained (up to homotopy) from
a fiber bundle over S1 ' Bε(c) \ {c} with fiber homotopy equivalent to a finite CW-
complex, by attaching finitely many d-cells. In particular, it follows as in [10, Section
2] that Uc satisfies a weak form of generic vanishing for rank-one local systems, and the
number of d-cells (hence also the number of critical points of l|X) equals (up to a sign)
the middle Novikov (or L2) Betti number of Uc corresponding to the homomorphism
l∗ : π1(Uc)→ Z induced by l.

Remark 3.3. The assertion (1) of Theorem 3.1 is a special case of the affine Lefschetz
theorem, see [7, Theorem 5], though the proof presented here is more elementary. See
also Theorem 3.10 for a generalization of Theorem 3.1 to the singular context.

3.2. Examples. When V = Cn and V × V ∨ is the cotangent space of V , the conormal
variety of a smooth codimension c variety X in V has defining equations given by the
following. Let (z1, . . . , zn) denote the coordinates of V , (u1, . . . , un) denote the coordi-
nates of V ∨, and let {f1, . . . , fk} denote a set of polynomials generating the ideal of X.
If Jac(f1, . . . , fk) denotes the k× n matrix of partial derivatives where the (i, j)th entry
is given by ∂fi/∂zj, then the ideal of the conormal variety is generated by 〈f1, . . . , fk〉

and the collection of (c+ 1)× (c+ 1) minors of the (k+ 1)×n matrix

[
u1, . . . , un

Jac(f1, . . . , fk)

]
.

Readers with an optimization background can compare these defining equations to those
of the conormal variety of a projective variety presented in Chapter 5 of [4, p. 215].

Example 3.4. Let X ⊂ V = C2 be the zero locus of f(x, y) = y − x2. Let u, v be the
dual coordinates in V ∨. The conormal variety Z ⊂ V × V ∨ is defined by equations

y = x2, and u
∂f

∂y
− v∂f

∂x
= 0,

that is, by
y = x2, and u− 2vx = 0.

In this case, the second projection p|Z : Z → V ∨ is a birational map. It is finite
and étale, i.e., an isomorphism in this case, over U = {v 6= 0}. Therefore, for any
linear function of the form l = αx+ y, the function l|X is a holomorphic Morse function
satisfying (PS2), as observed in the proof of Theorem 2.7.

When l = αx + y, the function l|X has one critical point. On the other hand, since
X ∼= C and X has degree two, we have

χ(X \Hc) = χ(X)− χ(X ∩Hc) = 1− 2 = −1.

Example 3.5. Let X ⊂ V = C2 be defined by the equation x(x + 1)y = 1. Let u, v
be the dual coordinates in V ∨. Then the conormal variety Z ⊂ V × V ∨ is defined by
equations

x(x+ 1)y = 1, and (2x+ 1)yv − x(x+ 1)u = 0.

The second projection p|Z : Z → V ∨ is of degree four. The map is finite over U ′ = {v 6=
0}.

For a general linear function l = αx + βy, the restriction l|X is equal to αx + β
x(x+1)

on X. Since x is a coordinate function of X with x 6= 0, 1, we know that l|X has four
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critical points. On the other hand, X is a curve of degree three, which is isomorphic to
C \ {0, 1}. Thus, χ(X \Hc) = χ(X)− χ(X ∩Hc) = −1− 3 = −4.

The linear function l = x has no critical point on X. The intersection X ∩Hc consists
of one or zero points depending on whether c(c− 1) = 0. Thus,

χ(X \Hc) = χ(X)− χ(X ∩Hc) = −1 or − 2.

The number of critical points of l|X is not equal to (−1)dimXχ(X \ Hc) in either case.
We can also see that (PS2) fails in this case, because as x → 0 and y → ∞ in X, the
function l|X is bounded and the norm ||dl|X || → 0.

Example 3.6. Let X be a curve in C2 defined by a general degree d polynomial f(x, y) =
0. In particular, X is smooth. For a general linear function l = αx + βy on C2, the
critical points of l|X are defined by

f(x, y) = 0, and α
∂f

∂y
− β∂f

∂x
= 0.

By Bezout’s theorem, l|X has d(d− 1) critical points.

On the other hand, the compactification X is a smooth curve of genus g = (d−1)(d−2)
2

.
Thus, χ(X) = (2− 2g)− d = 2d− d2, and χ(X \Hc) = χ(X)− χ(X ∩Hc) = d− d2.

Example 3.7. Let X be a smooth closed subvariety of Cn whose defining equation does
not involve the last coordinate of Cn. Then any linear function l on Cn involving the
last coordinate has no critical point on X. On the other hand, the projection on the
first n− 1 coordinates induces a C∗-bundle structure on X \Hc. Thus, χ(X \Hc) = 0.

3.3. Euclidean distance degree. In this section we give a topological interpretation
of the Euclidean distance degree of an affine variety in terms of an Euler characteristic
invariant. (Other such interpretations can be derived in the smooth setting by using
Remark 3.2.) We begin with the following application of Theorem 3.1:

Theorem 3.8. Let X be a smooth closed subvariety of Cn, and let z1, . . . , zn be the
coordinates of Cn. For a general β = (β0, . . . , βn) ∈ Cn+1, let Uβ denote the complement
of the hypersurface

∑
1≤i≤n(zi − βi)2 + β0 = 0 in Cn. Then

(6) EDdeg(X) = (−1)dimXχ(X ∩ Uβ).

Proof. Consider the closed embedding

i : Cn ↪→ Cn+1; (z1, . . . , zn) 7→ (z21 + · · ·+ z2n, z1, . . . , zn).

Let w0, . . . , wn be the coordinates of Cn+1. Notice that function
∑

1≤i≤n(zi − βi)2 + β0
on Cn is equal to the pullback of the function

(7) w0 +
∑

1≤i≤n

−2βiwi +
∑

1≤i≤n

β2
i + β0

on Cn+1. The theorem follows by applying Theorem 3.1(3) to the smooth affine variety
i(X) ⊂ Cn+1. �

Remark 3.9. Notice that we translate the squared Euclidean distance function on Cn

by β0 ∈ C to ensure that (7) is a generic affine linear function on Cn+1.
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Let us next show how to compute the ED degree of a singular affine variety. We first
remark that Theorem 3.1 is a special case of the following result.

Theorem 3.10. [17, Equation (2)] Let X be an irreducible closed subvariety in Cn. Let
l : Cn → C be a general linear function, and let Hc be the hyperplane in Cn defined by
the equation l = c for a general c ∈ C. Then the number of critical points of l|Xreg is
equal to (−1)dimXχ(EuX |Uc), where Uc = X \Hc and EuX is the local Euler obstruction
function on X.

Theorem 3.10 can also be derived from [16, Theorem 1.2], by letting α := (−1)dimXEuX
and k = 0 in their formula (3) 2. In fact, the paper [16] deals with a variant of non-proper
Morse theory for complex affine varieties, which uses projective compactifications and
transversality at infinity to conclude that there are no singularities at infinity in the
context of stratified Morse theory (see also [19, Chapter 6]).

Furthermore, Theorem 3.10 can be used as in the proof of Theorem 3.8 to compute
the ED degree of a (possibly) singular affine variety as follows.

Theorem 3.11. Let X be an irreducible closed subvariety of Cn. Then for a general
β ∈ Cn+1 we have:

(8) EDdeg(X) = (−1)dimXχ(EuX |Uβ
).

Remark 3.12. If X is smooth, one has the identity EuX = 1X , so Theorem 3.8 is indeed
a special case of Theorem 3.11.

4. Application to computer vision

In this section, we use Theorem 3.8 to determine the ED degree of a variety coming
from computer vision.

We consider a camera as a 3× 4 matrix of full rank that defines a linear map from P3

to P2 sending a point y ∈ P3 to its image A ·y ∈ P2. This map is well-defined everywhere
except at the kernel of A. This kernel corresponds to a point Pi in P3 that is called the
center of the camera. The multiview variety Yn associated to n cameras A1, A2, . . . , An
is the closure of the image of the map

P3 99K (P2)n, y 7→ (A1 · y, . . . , An · y).

Consider a general affine chart C2n of (P2)n. This amounts to choosing a general affine
chart C2 of each P2. Define the affine multiview variety Xn to be the restriction of Yn
to this chart, i.e., Xn = Yn ∩ C2n.

Problem 2. If each camera Ai is given by a 3×4 matrix of real numbers, then the data

α = (v1, w1, v2, w2, . . . , vn, wn) ∈ R2n

represents n noisy images (vi, wi) of a point in R3 taken by the n cameras. The prob-
lem of minimizing the squared Euclidean distance function fα on Xn is called n-view
triangulation in the computer vision literature.

2We are grateful to J. Schürmann for bringing the references [17], [19] and [16] to our attention.
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The motivation for paper [5] was to study the ED degree of Xn and solve n-view
triangulation (see also [2, 9, 18]). Our main application of Theorem 3.8 gives a closed
form expression for the ED degree of Xn when the cameras are in general position:

(9) EDdeg(Xn) =
9

2
n3 − 21

2
n2 + 8n− 4.

This formula was conjecture in [5, Example 3.3] and it agrees with the computations
done in [18] with n = 2, 3, . . . , 7.

The center of a camera P ∈ P3 defines a natural map FP : blP P3 → P2 where blP P3

is the blowup of P3 at P . Therefore, we have a proper map F : blP1,...,Pn P3 → (P2)n.
For the remainder of this section we will assume that n ≥ 3 and that the cameras are
in general position. Notice that in this case F is a closed embedding. By definition, Yn
is equal to the image of F , and hence Yn is isomorphic to blP1,...,Pn P3. Let Fi : Yn → P2

denote the projection of Yn to the i-th factor of (P2)n.
Now we are going to compute the ED degree of the affine multiview variety Xn. Since

Xn is a smooth affine variety, by Theorem 3.8 we have that

EDdeg(Xn) = −χ(Xn ∩ Uβ),

where β = (β0, β1, . . . , β2n) is a general point in C2n+1 and Uβ is the complement of the
hypersurface

∑
1≤i≤2n(zi − βi)2 + β0 = 0 in C2n.

Write each P2 as C2 ∪ P1
∞, where C2 is the chosen affine chart and P1

∞ is the line at
infinity. Denote the hypersurface P2 × · · · × P2 × P1

∞ × P2 × · · · × P2 in (P2)n by H∞,i,
where P1

∞ is the i-th factor. Let H∞ =
⋃

1≤i≤nH∞,i. Denote by HQ the closure of the

hypersurface
∑

1≤i≤2n(zi−βi)2 +β0 = 0 in (P2)n. In the remaining of this proof, we will
use the following notations:

DQ := Yn ∩HQ, D∞,i := Yn ∩H∞,i, D∞ := Yn ∩H∞.
Notice that H∞ is the complement of the affine chart C2n in (P2)n, thus D∞ is the
complement of Xn in Yn.

The main result of this section is the following.

Theorem 4.1. Suppose the blowup points in P2, the affine chart in each P2 and the
β ∈ C2n+1 are general. Then

(1) χ(Yn) = 2n+ 4;
(2) χ(DQ) = 4n3 − 9n2 + 9n;

(3) χ(D∞) = n3

6
− 3n2

2
+ 16n

3
;

(4) χ(DQ ∩D∞) = −n3

3
+ 13n

3
.

Since the Euler characteristic is additive in the complex algebraic setting, Theorem
4.1 then yields:

χ(Xn ∩ Uβ) = χ(Xn \DQ)

= χ
(
Yn \ (D∞ ∪DQ)

)
= χ(Yn)− χ(DQ)− χ(D∞) + χ(DQ ∩D∞)

= −9

2
n3 +

21

2
n2 − 8n+ 4.
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Therefore, equation (9) follows from Theorem 4.1 and Theorem 3.8.
The rest of this section will be devoted to prove the above theorem. We will first

prove the statements (1), (3), (4).

Proof of Theorem 4.1 (1), (3), (4). We start with statement (1). Since Yn is isomorphic
to the blowup of n points in P3, and since blowing up each point increases the Euler
characteristic by 2, (1) follows.

Next, we prove (3). Denote the blowup map by π : Yn → P3, and let Ei = π−1(Pi)
be the divisor in Yn corresponding to blowing up Pi. By construction, Yn ∩H∞,i is the
preimage of a general hyperplane in P2 under the projection Fi : Yn → P2. In particular,
D∞,i = Yn ∩ H∞,i does not intersect Ej for j 6= i. Thus, D∞,i is isomorphic to the
blowup of P2 at a point, and π(D∞,i) is a general hyperplane in P3 passing through
Pi. Therefore, for any distinct pair i, j ∈ {1, . . . , n}, the intersection D∞,i ∩ D∞,j =
Yn ∩ H∞,i ∩ H∞,j is isomorphic to P1. For any distinct triple i, j, k ∈ {1, . . . , n}, the
intersection D∞,i ∩ D∞,j ∩ D∞,k = Yn ∩ H∞,i ∩ H∞,j ∩ H∞,k consists of a point. The
intersections of Yn with four or more hyperplanes at infinity are empty. Altogether, we
have:

• χ(D∞,i) = 4;
• χ(D∞,i ∩D∞,j) = 2;
• χ(D∞,i ∩D∞,j ∩D∞,k) = 1.

Thus, by the inclusion-exclusion principle for D∞ =
⋃

1≤i≤nD∞,i, we get

χ(D∞) = 4n− 2

(
n

2

)
+

(
n

3

)
=
n3

6
− 3n2

2
+

16n

3
.

To prove (4), we recall that HQ is the closure of the affine hypersurface

(10)
∑

1≤i≤2n

(zi − βi)2 + β0 = 0

in (P2)n. We introduce homogeneous coordinates xi, y2i−1, y2i with z2i−1 = y2i−1

xi
and

z2i = y2i
xi

for 1 ≤ i ≤ n. Then the homogenization of (10), and hence the equation of
HQ, is

(11)
(
(y1 − β1x1)2 + (y2 − β2x1)2

)
x22 · · ·x2n + · · ·

+ x21 · · ·x2n−1
(
(y2n−1 − β2n−1xn)2 + (y2n − β2nxn)2

)
+ β0x

2
1 · · ·x2n = 0,

and the hyperplane H∞,i is defined by xi = 0. Therefore,

(12) H∞,i ∩HQ =

{y2i−1 +
√
−1y2i = xi = 0} ∪ {y2i−1 −

√
−1y2i = xi = 0} ∪

⋃
j 6=i

{xi = xj = 0}.

We next introduce the following notations:

K+
i := Yn ∩ {y2i−1 +

√
−1y2i = xi = 0}

K−i := Yn ∩ {y2i−1 −
√
−1y2i = xi = 0}

Li,j := Yn ∩ {xi = xj = 0}, j 6= i.
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By construction, K+
i is equal to F−1i ([0,−

√
−1, 1]). Recall that H∞,i is the strict trans-

formation of a general hyperplane passing through Pi. In other words, π(D∞,i) =
π(Yn ∩ H∞,i) is a general hyperplane in P3 passing through Pi. Then, π(K+

i ) is a
general line in π(D∞,i) passing through Pi. So is π(K−i ). Moreover, π(D∞,i) ∩ π(D∞,j)
is a line in P3, and it is isomorphic to D∞,i∩D∞,j via the map π. Therefore, we conclude
the following:

(1) K±i ∩K±j = ∅, for i 6= j;

(2) K±i ∩ Li,j consists of a point, for j 6= i;
(3) K±i ∩ Lj,k = ∅, for distinct i, j, k;
(4) Li,j ∩ Li,k = Li,j ∩ Li,k ∩ Lj,k consists of a point, for distinct i, j, k;
(5) Li,j ∩ Lk,l = ∅, for distinct i, j, k, l;
(6) K±i ∩ Li,j ∩ Li,k = ∅, for distinct i, j, k, l.

Notice that

DQ ∩D∞ = Yn ∩HQ ∩H∞ =
⋃
i

K+
i ∪

⋃
i

K−i ∪
⋃
i 6=j

Li,j.

Thus, by the inclusion-exclusion principle, we have

χ
(
DQ ∩D∞

)
= 2n+ 2n+ 2

(
n

2

)
− 2n(n− 1)− 2

(
n

3

)
= −n

3

3
+

13n

3
.

�

The computation of χ(DQ) is more difficult, since DQ is a hypersurface in Yn with a
one-dimensional singular locus. A general formula for computing the Euler characteristic
of such singular hypersurfaces is given by the following result.

Theorem 4.2. [15], [11, Theorem 10.4.4] Let X be a smooth complex projective variety,
and let V be a very ample divisor in X. Let V =

⊔
S∈S S be a Whitney stratification

of X. Let W be another divisor on X that is linearly equivalent to V . Suppose W is
smooth and W intersects V transversally in the stratified sense (with respect to the above
Whitney stratification). Then we have

(13) χ(W )− χ(V ) =
∑
S∈S

µS · χ(S \W )

where µS is the Euler characteristic of the reduced cohomology of the Milnor fiber at any
point x ∈ S.

The notion of Milnor fiber is essential in the study of hypersurface singularities. Here
we give a precise definition of the constants µS, and we refer the readers to [11, Chapter
10] for more details. Choose any Whitney stratum S ∈ S and any point x ∈ S. In a
sufficiently small ball Bε,x centered at x, the hypersurface V is equal to the zero locus
of a holomorphic function f . The Milnor fiber of V at x ∈ S is given by

Fx = Bε,x ∩ {f = t}

for 0 < |t| � ε. The topological type of the Milnor fiber Fx is independent of the choice
of the local equation f at x, and it is constant along the given stratum containing x; in
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particular,

µS :=
∑
k≥1

(−1)k dim H̃k(Fx;Q)

is a well-defined intrinsic invariant of the stratum S of V .

Remark 4.3. Note that only singular strata of V contribute to the right-hand side of
formula (13) since the Milnor fiber at a smooth point is contractible.

We will prove Theorem 4.1 (2) in the following three steps.

(1) Compute the Euler characteristic of a smooth divisor in Yn that is linearly equiv-
alent to DQ = Yn ∩HQ.

(2) Find the singular locus of DQ and construct a Whitney stratification S of DQ.
(3) Compute the constants µS for each (singular) stratum S ∈ S.

In (P2)n, the hypersurface HQ is defined by the homogeneous equation (11). From
this equation, it is clear that we have a linear equivalence of divisors in (P2)n,

HQ ≡ 2H∞,1 + · · ·+ 2H∞,n.

Recall that Yn is a subvariety of (P2)n and Fi is the projection from Yn to the i-th factor
of (P2)n. Thus, as divisors of Yn, we have

DQ ≡ 2Yn ∩H∞,1 + · · ·+ 2Yn ∩H∞,n
≡ 2F ∗1 (HP2) + · · ·+ 2F ∗n(HP2),

where HP2 denotes a line in P2. By the construction of Yn and Fi,

F ∗i (HP2) ≡ DH − Ei
where DH is the preimage of a general hyperplane of P3 under π : Yn → P3, and
Ei = π−1(Pi). Therefore,

(14) DQ ≡ 2nDH − 2E1 − · · · − 2En.

Clearly, HQ is a very ample divisor in (P2)n, and hence the divisor DQ in Yn is also very
ample. Therefore, a general divisor, denoted by D′, in the linear system Γ(Yn,O(DQ))
is smooth. Thus we have a short exact sequence of vector bundles on D′,

(15) 0→ TD′ → TYn|D′ → ND′/Yn → 0.

By the adjunction formula, we have

ND′/Yn
∼= OYn(D′)|D′ .

By (15) and the Whitney sum formula for the total Chern class, we have

c(TYn|D′) = c(TD′)c
(
OYn(D′)|D′

)
or equivalently,

(16) c(TD′) =
c(TYn|D′)

(1 + [D′])|D′
.
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By the standard formula for the total Chern class of the projective space and of a blowup
(see, e.g., [6, Example 3.2.11, Example 15.4.2]), we have

(17) c(TYn) = (1 + [DH ])4 +
∑

1≤i≤n

(
(1 + [Ei])(1− [Ei])

3 − 1
)
.

Since DQ ≡ D′, by (14), (16) and (17), we have
(18)

c(TD′) =

(
(1 + [DH ])4 +

∑
1≤i≤n

(
(1 + [Ei])(1− [Ei])

3 − 1
))
·

(
1 + 2n[DH ]− 2

∑
1≤i≤n

[Ei]

)−1∣∣∣∣∣∣
D′

.

Since [DH ] · [Ei] = 0 and [Ei] · [Ej] = 0 for any i 6= j, (18) implies

(19) c2(TD′) = (4n2 − 8n+ 6)[DH ]2
∣∣
D′
.

By the Gauss-Bonnet theorem, we have

(20) χ(D′) =

∫
D′

(4n2 − 8n+ 6)[DH ]2
∣∣
D′

=

∫
Yn

(4n2 − 8n+ 6)[DH ]2 · [D′].

Since [D′] = 2n[DH ]− 2
∑

1≤i≤n[Ei] and since [DH ] · [Ei] = 0 for every i, we have

(21)

∫
Yn

(4n2 − 8n+ 6)[DH ]2 · [D′] =

∫
Yn

(8n3 − 16n2 + 12n)[DH ]3 = 8n3 − 16n2 + 12n.

In summary, we have proved the following result:

Proposition 4.4. For a general divisor D′ in the linear system Γ(Yn,O(DQ)), we have

(22) χ(D′) = 8n3 − 16n2 + 12n.

Recall that the hypersurface HQ ⊂ (P2)n is defined by equation (11), which can be
rewritten as

(23)((
y21 + y22

)
x22 · · ·x2n + · · ·+ x21 · · ·x2n−1

(
y22n−1 + y22n

))
+ (β2

1 + · · ·+ β2
2n + β0)x

2
1 · · ·x22n

− 2
(
(β1y1 + β2y2)x1x

2
2 · · ·x2n + · · ·+ x21 · · ·x2n−1(β2n−1y2n−1 + β2ny2n)xn

)
= 0

If we consider y2i−1, y2i and xi as sections of line bundles Yn, then DQ = Yn ∩ HQ is a
general divisor in the linear system given by a subspace of

Γ(Yn,O(2nDH − 2E1 − · · · − 2En))

generated by the sections

•
(
(y21 + y22)x22 · · · x2n + · · ·+ x21 · · ·x2n−1

(
y22n−1 + y22n

))
,

• x21 · · ·x22n,

• y2i−1xi·x21 · · · x̂2i · · ·x2n and y2ixi·x21 · · · x̂2i · · · x2n, where ·̂ means that the respective
term is removed.

It is easy to see that the base locus of this linear system is equal to
⋃
i<j D∞,i ∩D∞,j.

By the Bertini theorem, DQ is smooth away from its base locus. On the other hand, DQ

has multiplicity at least 2 along
⋃
i<j D∞,i ∩D∞,j. Thus, we have proved the following:
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Proposition 4.5. The singular locus of DQ is equal to⋃
i<j

D∞,i ∩D∞,j.

Therefore, a Whitney stratification of DQ must be a refinement of the stratification

DQ = S0 t
⊔
i<j

Si,j t
⊔

i<j<k

Si,j,k,

with

S0 = (DQ)reg = DQ

∖⋃
i<j

D∞,i ∩D∞,j,

Si,j = D∞,i ∩D∞,j
∖ ⋃

k 6=i,k 6=j

D∞,i ∩D∞,j ∩D∞,k,

Si,j,k = D∞,i ∩D∞,j ∩D∞,k.
Considering xi, y2i−1, y2i as sections of line bundles on Yn, then DQ is defined as the zero
section of (11). Generically along Si,j, the divisor DQ is analytically isomorphic to the
product of a plane node and a disc, or, equivalently, the germ of xy = 0 at the origin
of C3 with coordinates x, y, z. However, if a point in Si,j satisfies (y2i−1 − β2i−1xi)2 +
(y2i− β2ixi)2 = 0 or (y2j−1− β2j−1xj)2 + (y2j − β2jxj)2 = 0, then the germ of DQ at that
point is isomorphic to the Whitney umbrella, or, equivalently, the germ of xy2 = z2 at
the origin of C3. When the choice of β = (β1, . . . , β2n) is general, the equation(

(y2i−1 − β2i−1xi)2 + (y2i − β2ixi)2
) (

(y2j−1 − β2j−1xj)2 + (y2j − β2jxj)2
)

= 0

defines 4 distinct points in Si,j. Now, denote the subset consisting of these 4 points in
Si,j by S1

i,j, and denote its complement in Si,j by S0
i,j. From the equation (11), it is easy

to see that DQ has the same singularity type along S0
i,j. More precisely, by the above

discussion, we know that along S0
i,j, DQ as a divisor in Yn has a local equation given

by xy = 0 for a suitable choice of local coordinates. Thus, locally along S0
i,j, the triple

Yn \ DQ, DQ \ S0
i,j, S

0
i,j form a Whitney stratification. Since S0 is the smooth locus of

DQ, the above analysis yields the following:

Proposition 4.6. The stratification

DQ = S0 t
⊔
i<j

S0
i,j t

⊔
i<j

S1
i,j t

⊔
i<j<k

Si,j,k

is a Whitney stratification of DQ.

Next, we will describe the singularity type of DQ along each stratum, and compute
the Euler characteristic of the reduced cohomology of the corresponding Milnor fiber.
The divisor DQ is smooth along S0. We have argued above that along S0

i,j, the divisor

DQ is locally isomorphic to the germ of xy = 0 at the origin of C3. Moreover, along S1
i,j,

the divisor DQ is locally isomorphic to the germ of xy2 = z2 at the origin.
Near Si,j,k, the holomorphic functions x := xi

y2i
, y :=

xj
y2j

and z := xk
y2k

form a coordinate

system of Yn. Thus, locally DQ is defined by an equation of holomorphic functions of
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the form

(24) u1x
2y2 + u2x

2z2 + u3y
2z2 = u4x

2y2z2

where u1, u2, u3, u4 are locally nonvanishing holomorphic functions. After a coordinate
change, equation (24) becomes

(25) x2y2 + x2z2 + y2z2 = x2y2z2.

Proposition 4.7. Let µ0, µ
0
i,j, µ

1
i,j and µi,j,k be the Euler characteristic of the reduced

cohomology of the Milnor fiber of DQ along the strata S0, S
0
i,j, S

1
i,j and Si,j,k, respectively.

Then:

(1) µ0 = 0;
(2) µ0

i,j = −1;

(3) µ1
i,j = 1;

(4) µi,j,k = 15.

Proof. Since DQ is smooth along S0, assertion (1) follows from Remark 4.3. The Milnor
fiber of DQ along the stratum S0

i,j can be described as

{(x, y, z) ∈ C3 | xy = 1} ∼= C∗ × C,
hence it is homotopy equivalent to a circle. Thus, (2) follows.

Since xy2 − z2 is a graded homogeneous function, its local Milnor fiber at the origin
is equal to the global Milnor fiber Ft = {xy2 − z2 = t} in C3. The projection

Ft → C2, (x, y, z) 7→ (x, y)

is a proper degree 2 map, with ramification locus {xy = t}. Thus, the ramification locus
is isomorphic to C∗. Therefore,

χ(Ft) = 2χ(C2)− χ(C∗) = 2.

In other words, the reduced Euler characteristic is equal to 1, and hence (3) follows.
In fact, it can easily be seen, as an application of the Thom-Sebastiani theorem, that
the Milnor fiber of the Whitney umbrella at the origin is homotopy equivalent to the
2-sphere S2, see, e.g., [11, Example 10.1.21].

Denote by Bε the ball at the origin in C3 of radius ε > 0. Define

Gt = {x2y2 + x2z2 + y2z2 − x2y2z2 = t} ∩Bε

Then for 0 < |t| � ε� 1, Gt is homeomorphic to the Milnor fiber of DQ at Si,j,k. Notice
that there exists a proper degree 8 map

Φ : Gt → {xy + xz + yz − xyz = t} ∩Bε2 , (x, y, z) 7→ (x2, y2, z2).

Denote {xy + xz + yz − xyz = t} ∩ Bε2 by G′t. Then the map Φ is generically 8-to-1,
and ramifies along the disjoint union(

G′t ∩ {x = y = 0}
)
t
(
G′t ∩ {x = z = 0}

)
t
(
G′t ∩ {y = z = 0}

)
.

Over the ramification locus, the map Φ is 2-to-1. Since G′t ∩{x = y = 0} is a punctured
disc, its Euler characteristic is zero. Thus we have

(26) χ(Gt) = 8χ(G′t).
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Notice that the hypersurface xy + xz + yz − xyz = 0 has an isolated singularity at the
origin in C3, so the corresponding Milnor fiber G′t is homotopy equivalent to a bouquet
of 2-spheres. The number of the 2-spheres in this bouquet is the Milnor number, which
can easily be computed (by using the Jacobian ideal) to be 1. Therefore G′t ' S2, so
χ(G′t) = 2, By equation (26), we get that χ(Gt) = 16, and hence the Euler characteristic
of the reduced cohomology of Gt is 15. �

We can now complete the proof of Theorem 4.1.

Proof of Theorem 4.1 (2). We will apply Theorem 4.2 with V = DQ and W = D′,
together with the Whitney stratification of Proposition 4.6 and the Milnor fiber calcu-
lations of Proposition 4.7.

By our construction, each stratum Si,j,k consists of a single point and each S1
i,j consists

of 4 points. Each S0
i,j is equal to D∞,i ∩D∞,j with n+ 2 points removed: 4 points from

S1
i,j and n− 2 points from Si,j,k (k 6= i, j). Since D′ is chosen to be general, it does not

intersect any of the zero-dimensional strata S1
i,j and Si,j,k. The intersection D∞,i ∩D∞,j

is the preimage of a general line in P3 under the blowup map π : Yn → P3. Since as a
divisor of Yn,

D′ ≡ 2nDH − 2E1 − · · · − 2En

the divisor D′ intersects the line D∞,i ∩ D∞,j transversally at 2n points. Thus, each
S0
i,j \D′ is equal to a line P1 with 3n+ 2 points removed, and hence

(27) χ(S0
i,j \D′) = −3n.

Since each S1
i,j consists of 4 points and Si,j,k consists of one point, and since none of

them is contained in D′, we have

(28) χ(S1
i,j \D′) = 4 and χ(Si,j,k \D′) = 1.

By plugging (27), (28), and the calculations of Proposition 4.7 into equation (13) , we
conclude that

χ(D′)− χ(DQ) = −
∑
i<j

χ(S0
i,j \D′) +

∑
i<j

χ(S1
i,j \D′) +

∑
i<j<k

15χ(Si,j,k \D′)

= 3n

(
n

2

)
+ 4

(
n

2

)
+ 15

(
n

3

)
= 4n3 − 7n2 + 3n.

By using equation (22), we get that

(29) χ(DQ) = 4n3 − 9n2 + 9n,

thus proving assertion (2) of Theorem 4.1. �
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[5] J. Draisma, E. Horobeţ, G. Ottaviani, B. Sturmfels, and R. R. Thomas. The Euclidean distance
degree of an algebraic variety. Found. Comput. Math., 16(1):99–149, 2016. 1, 2, 3, 12

[6] W. Fulton. Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3.
Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas.
3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, second edition,
1998. 16

[7] H. A. Hamm. Lefschetz theorems for singular varieties. In Singularities, Part 1 (Arcata, Calif.,
1981), volume 40 of Proc. Sympos. Pure Math., pages 547–557. Amer. Math. Soc., Providence, RI,
1983. 9

[8] C. Harris and D. Lowengrub. The Chern-Mather class of the multiview variety. Comm. Algebra,
46(6):2488–2499, 2018. 2

[9] R. I. Hartley and P. Sturm. Triangulation. Computer Vision and Image Understanding, 68(2):146
– 157, 1997. 12

[10] Y. Liu, L. Maxim, and B. Wang. Topology of subvarieties of complex semi-abelian varieties. preprint
arXiv:1710.04310, 2017. 3, 4, 5, 7, 9

[11] L. Maxim. Intersection Homology & Perverse Sheaves, with Applications to Singularities, volume
281 of Graduate Texts in Mathematics. Springer, 2019. 14, 18

[12] L. Maxim, J. I. Rodriguez, and B. Wang. Euclidean distance degree of projective varieties. arXiv
e-prints, page arXiv:1901.05550, Jan 2019. 4

[13] J. Milnor. Morse theory. Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics
Studies, No. 51. Princeton University Press, Princeton, N.J., 1963. 4

[14] R. S. Palais and S. Smale. A generalized Morse theory. Bull. Amer. Math. Soc., 70:165–172, 1964.
3, 4
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