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Let X be a topological space. Let PX be the space of all free paths on
X (with the compact - open topology) and π : PX → X × X be the
standard fibration assigning to each path p : [0, 1] → X the pair of its
ends (p(0), p(1)).

Definition
The topological complexity of (motion planning on) X is the smallest
number n such that X × X is partitioned into Euclidean neighborhood
retracts (local domains) Xi (i = 1, 2, . . . , n) and on each Xi there exists
a section (local rule) si : Xi → PX of π (i.e., π ◦ si = idXi ). Each choice
of a partition X × X =

⋃
i Xi and sections (si) is called a motion

planning algorithm for X.
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This definition was given by Michael Farber about 10 years ago. We
abbreviate the topological complexity of X as TC(X ).

TC is a specialization of the Schwartz genus which was defined and
studied for an arbitrary fibration by Albert Schwarz in 60s; the
Schwartz genus is in turn a generalization of the Lusternik -
Schnirelman category. Other specializations of the Schwartz genus
have been used by Smale and Vassiliev for different fibrations.
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(1) TC(X ) is an invariant of the homotopy type of X .

(2) TC(X ) = 1 if and only if X is contractible.

(3) TC(X ) < 2 dim X + 2.
If X is r -connected then

TC(X) <
2 dim X + 1

r + 1
+ 1.

(4) TC(X × Y ) ≤ TC(X )+ TC(Y )− 1.
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(5) Cohomological lower bound.

Let k be a field and A = H∗(X ; k) (considered as a graded algebra).
Define the graded algebra structure on A⊗ A via

(a1 ⊗ b1)(a2 ⊗ b2) = (−1)|b1||a2|a1a2 ⊗ b1b2.

where ai , bi are homogeneous elements from A.

Then the multiplication in A is the graded algebra homomorphism
µ : A⊗ A → A whose kernel J is called the ideal of zero divisors. The
zero divisor cup length `(J) is the length of the longest non-vanishing
product in J. Then

TC(X) > `(J).
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1. If X = S1 then TC(X ) = 2.
Indeed by (3) TC(X ) ≤ 3; by (2) (or (5)) it is greater than 1. But it is
easy to design a motion algorithm with the partition into two sets:
X1 = {(A, B)|A = −B}, X2 = X × X \ X1 and move B to A along a fixed
orientation for (A, B) ∈ X1 and along the shortest arc otherwise.

2. If X = Sn, n is odd then again TC(X ) = 2.
The proof is similar using a tangent non-vanishing vector field.
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3. For even n we have TC(Sn) = 3.
To find a lower bound let u be a generator of Hn(Sn, Z). Then
v = u ⊗ 1− 1⊗ u ∈ J and v2 = 2u ⊗ u 6= 0. Thus TC(Sn) ≥ 3. For the
opposite inequality one can use a vector field with one 0 at A0 and the
partition X1 = {(A0,−A0)}, X2 = {(A,−A)|A 6= A0} and
X3 = Sn × Sn \ (X1 ∪ X2).
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Let X be a simply connected finite polyhedron of dimension 2n; k is a
field of zero characteristic. Suppose that there exists u ∈ H2(X ; k)
such that un 6= 0. Then TC(X ) = 2n + 1.

Indeed the inequality ≤ follows from (3) with r = 1. The opposite
inequality follows from (5):

(u ⊗ 1− 1⊗ u)2n = ±
(

2n
n

)
un ⊗ un 6= 0.

As a corollary, if X is a simply connected symplectic manifold

TC(X) = 2 dimC(X) + 1.

In particular
TC(CPn) = 2n + 1.
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Real Projective Spaces

Here we give an example showing that in general TC is a very
non-trivial invariant.

Theorem
Let X = RPn.
(i) If n = 1, 3, or 7 then TC(X ) = n + 1;
(ii) For every other value of n the number TC(X) coincides with the
smallest number k such that X admits an immersion into Rk−1.
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The theorem says that the problem of calculating TC(RPn) is
equivalent to the classical immersion problem for the real projective
spaces. The latter is a topological problem with a long history and a lot
of research although the general answer is not found. The known
results allow one to calculate TC(RPn) for n ≤ 23. More precisely
TC(RP23) = 39.
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Definition
A (complex linear) hyperplane arrangement is a set A of n linear
hyperplanes in Cr . The complement of A is the topological space
M = Cr \

⋃
H∈A H.

Among the arrangement complements there are, for instance, K [π, 1]
spaces for all pure Artin groups and all pure Artin type groups for all
finite complex reflection groups.
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Example. Consider
(r

2

)
hyperplanes given by the equations xi = xj for

all 1 ≤ i < j ≤ r . This arrangement is called Braid arrangement
because π1(M) is the pure Braid group on r strings. Moreover M is the
K [π, 1] for that group.
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An arrangement is essential if the intersection of all hyperplanes is 0.
In the rest of the talk, we will be assuming that A is an essential
arrangement.

The intersections of all subsets of hyperplanes form a geometric
intersection lattice L = L(A) if ordered opposite to inclusions.

An equivalent combinatorial structure is a simple matroid. The latter
structure consists of all independent subsets of hyperplanes (see
below). The rank rkA of an arrangement A is the maximal length of its
independent subsets. For an (essential) arrangement rkA = r . An
independent subset of size r is called a base.
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For each X ∈ L we put AX = {H ∈ A|X ⊂ H}. The rank of X
rk X = rkAX that is equal to codim X . Notice that rk 0 = rkA = r .

If a property holds fro all arrangements AX including X = 0 we say it
holds locally for A.
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The cohomology algebra H∗(M) over C (or Z) is known. Ffix for each
hyperplane H ∈ A a linear form αH such that H = ker αH and denote
by ωH the differential 1-form dαH

αH
. We can identify A with the set of αH .

When it is needed we will fix a linear order on hyperplanes and
abbreviate αHi as αi .

Theorem
De Rham map reduces to the graded algebra isomorphism
ρ : A → H∗(M; C) where A is the subalgebra of the algebra Ω∗ of
differential forms on M generated by {ωH |H ∈ A}.

An immediate corollary is that M is a formal space.

15



The cohomology algebra H∗(M) over C (or Z) is known. Ffix for each
hyperplane H ∈ A a linear form αH such that H = ker αH and denote
by ωH the differential 1-form dαH

αH
. We can identify A with the set of αH .

When it is needed we will fix a linear order on hyperplanes and
abbreviate αHi as αi .

Theorem
De Rham map reduces to the graded algebra isomorphism
ρ : A → H∗(M; C) where A is the subalgebra of the algebra Ω∗ of
differential forms on M generated by {ωH |H ∈ A}.

An immediate corollary is that M is a formal space.

15



The cohomology algebra H∗(M) over C (or Z) is known. Ffix for each
hyperplane H ∈ A a linear form αH such that H = ker αH and denote
by ωH the differential 1-form dαH

αH
. We can identify A with the set of αH .

When it is needed we will fix a linear order on hyperplanes and
abbreviate αHi as αi .

Theorem
De Rham map reduces to the graded algebra isomorphism
ρ : A → H∗(M; C) where A is the subalgebra of the algebra Ω∗ of
differential forms on M generated by {ωH |H ∈ A}.

An immediate corollary is that M is a formal space.

15



Let E be the exterior algebra over C generated by {eH |H ∈ A}. Then A
is a quotient of E by an ideal. We do not need to know the ideal. It
suffices to say that for every S ⊂ {1, . . . , n} the product eS of ei , i ∈ S
is in the ideal if and only if the respective set of hyperplanes is
dependent.
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Thus the monomials with independent supports in A generate the
whole algebra. However they are not in general linearly independent.
As a monomial basis for A one can use a Gröbner basis for any
ordering of A .
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TCM has been calculated in the past for the two classes of
arrangements - general position ones and the sets of reflection
hyperplanes of classical series of Coxeter groups. In this talk we give
the answer for an arbitrary arrangement.

Definition
Let A be an arrangement in Cr and A = B ∪ C a partition. The partition
is called basic if |B| = r (i.e., B is a base) and there exists a total
ordering of A such that both blocks give monomials of some Gröbner
basis.

Of course not all arrangements have basic partitions. A simple
necessary (but not sufficient) condition is n ≤ 2r , even (more subtle)
n ≤ 2r − 1.
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Now we show that the property to have a basic partition can be
formulated without any reference to a basis.

Lemma
An arrangement A is basic if and only if there is no X ∈ L such that
|AX | ≥ 2 rk X.
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Definition
A subarrangement (subset) of an arrangement A is basic if it has the
same rank as A and admits a basic partition. The maximal cardinality
of basic subsets of A is the basic number b(A).

Lemma above implies b(A) ≤ 2r − 1.
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In order to find a lower bound for TC(M(A)) we use the property (5),
i.e., the zero-divisor-cup-length of the Orlik-Solomon algebra A.

For each i consider the element

ei = 1⊗ ei − ei ⊗ 1 ∈ (A⊗ A)1.

Clearly ei ∈ J (the zero-divisor ideal) and we want to study the product

πI =
∏

ei

where the product is taken over some set I of indexes.
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Theorem
Let I be a subset of an arrangement A of full rank . Then πI 6= 0 if and
only if I is basic.

The ‘only if’ statement is easier. It can be calculated that πI = 0 for all
A of rank r and the cardinality of I equal 2r . Thus if I is not basic it has
a subset with such values of parameters whence πI has a zero
subproduct.
The ‘if’ statement is harder. The proof based on the fact that the
non-zero monomial term mB ⊗mC corresponding to the basic partition
of I in the decomposition of πI can not get canceled.
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Corollary
TC(M) ≥ b(A) + 1.

23



In order to obtain an upper bound for TC(M) we construct an explicit
motion planning algorithm for M.

We say that a pair (P, Q) of points from M lies in a local domain Di
(i = 0, 1, . . . , n) if the interval [P, Q] of the real (affine) line PQ
intersects with precisely i hyperplanes from A.

24



In order to obtain an upper bound for TC(M) we construct an explicit
motion planning algorithm for M.

We say that a pair (P, Q) of points from M lies in a local domain Di
(i = 0, 1, . . . , n) if the interval [P, Q] of the real (affine) line PQ
intersects with precisely i hyperplanes from A.

24



Let P̃Q be the complex line through PQ. The local rule (section) s is
defined for a pair (P, Q) as the path that goes from P to Q with
constant speed along PQ untill it reaches either Q or the interval of
small length centered at some Pi . Then it continues on the semicircle
centered at Pi lying P̃Q.

The half plane for the choice of the semicircle is given by the vector√
−1
−→
PQ.
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The main nn-trivial property of the algorithm is the following.

Theorem
By gluing together the domains Di for i ≥ b(A) and gluing the
respective si one still gets a motion planning algorithm with b(A) + 1
domains.

26



Theorem
TC(M) = b(A) + 1.

In particular this Theorem proves the conjecture that TS(M) is larger
by 1 than the zero-divisor-cup-length. This in turn shows that TC(M) is
a combinatorial invariant (while the homotopy type of M is not).
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Remarks

1. In matroid theory, there has been a popular topic about covering a
matroid by independent sets. In particular, a theorem of Jack Edmonds
has the following corollary. A matroid can be covered by two
independent sets if and only if |U| ≤ 2 rk U for every subset U where
rk U is the rank of the subset.

Our definition of a basic set is similar but an effect of our inequality can
be a lot stronger.

Example
Let k be a positive integer and the arrangement is: xi , yi , xi ± yi where
i = 1, 2, . . . , k . Clearly r = 2k and the arrangement satisfies the
weaker inequality. Indeed it can be partitioned into two bases with 2k
elements in each. On the other hand, one of the maximal basic sets
can be constructed by deleting all the differences xi − yi whence the
basic number is 3k .
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Here are more distant and vague relations of basic number to
Bernstein-Sato polynomials (b-functions). These are polynomials of
one indeterminate defined for given polynomial of several variables
(e.g., for the defining polynomials of arrangements). The construction
relates to holomorphic continuations and D-modules.

If f (x) is a polynomial in several variables then there is a non-zero
polynomial b(s) and a differential operator P(s) with polynomial
coefficients such that
P(s)f (x)s+1 = b(s)f (x)s.
The b-function is the monic polynomial of smallest degree amongst
such b(s).
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Moderate type

There are several famous conjectures about roots of b-functions. The
simplest conjecture specified to arrangements says that the number
− r

n is the largest root of the b-function for an arrangement.
The first significant progress about the conjecture (for arrangements)
was a proof of it for so called moderate type arrangements. This notion
requires the function q(X ) = rk X

|AX | on L to decrease, i.e., q(X ) ≥ q(Y )

for every Y > X .

Notice that the definition of basic arrangement in this language is:
q(X ) > 1

2 for every X . Thus an arrangement of moderate type is basic
if q(0) = r

n > 1
2 , i.e., n < 2r .
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