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Griffiths’ program (1969): Find positive polynomials for
ample vector bundles.

Let c1, c2, . . . be variables with deg(ci) = i.

Fix n, e ∈ N. Let P (c1, . . . , ce) be a homogeneous polynomial
of degree n.

We say that P is positive for ample vector bundles, if for
every n-dimensional projective variety X
and any ample vector bundle of rank e on X,
deg(P (c1(E), . . . , ce(E)) > 0.

Computations of Griffiths: c1, c2, c21 − c2.

red herring: it was thought that c21 − 2c2 is positive but is not.
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Kleiman: polynomials that are positive for ample
vector bundles on surfaces are nonnegative combinations of c2
and c21 − c2.

Bloch-Gieseker: cn is always positive; important link to Hard
Lefschetz Theorem.

Fulton-Lazarsfeld showed that a polynomial is positive
iff its coefficients in the basis od Schur polynomials are
nonnegative.

n = 3 c3, c2c1 − c3, c31 − 2c2c1 + c3.

For globally generated bundles, a very closed result was
obtained by Usui-Tango.

Whenever we speak about the classes of algebraic cycles, we
always mean their Poincaré dual classes in cohomology.
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Let Σ be an algebraic right-left invariant set in J k(Cm

0 ,Cn
0 ).

Then there exists a universal polynomial T Σ over Z

in m+ n variables which depends only on Σ, m and n

s.t. for any manifolds Mm, Nn and general map f : M → N

the class of Σ(f) = f−1
k

(Σ) is equal to

T Σ(c1(M), . . . , cm(M), f∗c1(N), . . . , f∗cn(N)).

where fk : M → J k(M,N) is the k-jet extension of f .

If a singularity class Σ is “stable” (e.g. closed under the

contact equivalence), then T Σ depends on ci(TM − f∗TN).
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Schur functions
Alphabet A: a finite set of indeterminates.

We identify an alphabet A = {a1, . . . , am} with the sum
a1 + · · ·+ am.

Take another alphabet B.

∑
Si(A−B)zi =

∏

b∈B

(1−bz)/
∏

a∈A

(1−az) .

Given a partition I = (0 ≥ i1 ≥ · · · ≥ ih ≥ 0), the Schur
function SI(A−B) is

SI(A−B) :=
∣∣∣Sip−p+q(A−B)

∣∣∣
1≤p,q≤h

.
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∣∣∣∣∣∣∣∣∣∣∣

S4 S5 S6 S7 S8

S3 S4 S5 S6 S7

S1 S2 S3 S4 S5

1 S1 S2 S3 S4
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∣∣∣∣∣∣∣∣∣∣∣

.
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E.g., writing Si = Si(A−B),

S44333(A−B) =

∣∣∣∣∣∣∣∣∣∣∣

S4 S5 S6 S7 S8

S3 S4 S5 S6 S7

S1 S2 S3 S4 S5

1 S1 S2 S3 S4

0 1 S1 S2 S3

∣∣∣∣∣∣∣∣∣∣∣

.

The factorization formula!

For vector bundles E,F , we write SI(E−F ) for A and B

specialized to the Chern roots of E and F .

Giambelli’s formula: The class of a Schubert variety in a
Grassmannian is given by a Schur polynomial of the
tautological bundle on it.
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In the Chern class monomial basis, a Thom polynomial can
have negative coefficients:
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In the Chern class monomial basis, a Thom polynomial can
have negative coefficients: m = n, I2,2: c22 − c1c3

Theorem. (PP+AW, 2006) Let Σ be a nontrivial stable
singularity class. Then for any partition I the coefficient
αI in

T Σ =
∑

αISI(T
∗M − f∗T ∗N) ,

is nonnegative and
∑

αI > 0.

– conjectured for Thom-Boardman singularities by Feher and

Komuves (2004) who computed T Σi,j [−i+1].
For any singularity class Σ, the coefficients in

T Σ =
∑

αI,JSI(T
∗M)SJ(f

∗T ∗N)

are nonnegative.
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Lagrangian Thom polynomials
Let L be a Lagrangian submanifold in the linear symplectic
space V = W ⊕W ∗ equipped with the standard symplectic
form.
Classically, in real symplectic geometry, the Maslov class is
represented by the cycle

Σ = {x ∈ L : dim(TxL ∩W ∗) > 0}.

This cycle is the locus of singularities of L → W . Its
cohomology class is integral, and mod 2 equals w1(T

∗L).

We fix an integer k >> 0 and identify two germs of
Lagrangian submanifolds if the degree of their tangency at 0
is greater than k.
We obtain the space of k-jets of Lagrangian submanifolds,
denoted J k(V ).
Every germ of a Lagrangian submanifold of V is the image of
W via a certain germ symplectomorphism.
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J k(V ) = Aut(V )/P ,

where Aut(V ) is the group of k-jet symplectomorphisms,
and P is the stabilizer of W (k is fixed).

Of course, LG(V ) is contained in J k(V ).

One has also J k(V ) → LG(V ) s.t. L 7→ T0L (which is not a
vector bundle for k ≥ 3).

Let H be the subgroup of Aut(V ) consisting of holomorphic
symplectomorphisms preserving the fibration V → W . Two
Lagrangian jets are Lagrangian equivalent if they belong to
the same orbit of H.

A Lagrange singularity class is any closed pure dimensional
algebraic subset of J k(V ) which is invariant w.r.t. the action
of H.

On positivity of Thom polynomials – p. 9/29



Given any alphabet X = {x1, x2, . . .}, we set Q̃i(X) = ei(X),
the ith elementary symmetric function in X .
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For i ≥ j, we set

Q̃i,j(X) = Q̃i(X)Q̃j(X) + 2

j∑

p=1

(−1)pQ̃i+p(X)Q̃j−p(X) .
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Given any alphabet X = {x1, x2, . . .}, we set Q̃i(X) = ei(X),
the ith elementary symmetric function in X .
For i ≥ j, we set

Q̃i,j(X) = Q̃i(X)Q̃j(X) + 2

j∑

p=1

(−1)pQ̃i+p(X)Q̃j−p(X) .

Given any partition I = (i1 ≥ · · · ≥ ih ≥ 0), where we can
assume h to be even, we set

Q̃I(X) = Pfaffian(Q̃ip,iq(X)) .

ρ := (n, n− 1, . . . , 1)
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Let c1, c2, . . . be commuting variables, where deg(ci) = i. We
identify Z[c1, c2, . . .] with the ring of symmetric functions in
X.
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polynomial corresponding to Q̃I(X). If E is a vector bundle,

then Q̃I(E) := Q̃I(X), where X is the alphabet of the Chern
roots of E.
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roots of E.

Suppose that a general flag V• : V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ V of
isotropic subspaces with dim Vi = i, is given.
Given a strict partition I ⊂ ρ, i.e.
I = (n ≥ i1 > · · · > ih > 0), we define

ΩI(V•) = {L ∈ LG(V ) : dim
(
L∩Vn+1−ip

)
≥ p, p = 1, . . . , h}.
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Let c1, c2, . . . be commuting variables, where deg(ci) = i. We
identify Z[c1, c2, . . .] with the ring of symmetric functions in
X.
Given a partition I, we denote by Q̃I ∈ Z[c1, c2, . . .] the

polynomial corresponding to Q̃I(X). If E is a vector bundle,

then Q̃I(E) := Q̃I(X), where X is the alphabet of the Chern
roots of E.

Suppose that a general flag V• : V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ V of
isotropic subspaces with dim Vi = i, is given.
Given a strict partition I ⊂ ρ, i.e.
I = (n ≥ i1 > · · · > ih > 0), we define

ΩI(V•) = {L ∈ LG(V ) : dim
(
L∩Vn+1−ip

)
≥ p, p = 1, . . . , h}.

Theorem. (P, 1986) ΩI = Q̃I(R
∗), where R is the

tautological subbundle on LG(V ).
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A Lagrange singularity class Σ ⊂ J k(V ) defines the
cohomology class

[Σ] ∈ H∗(J k(V ),Z) ∼= H∗(LG(V ),Z) .
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A Lagrange singularity class Σ ⊂ J k(V ) defines the
cohomology class

[Σ] ∈ H∗(J k(V ),Z) ∼= H∗(LG(V ),Z) .
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sum runs over strict partitions I ⊂ ρ and αI ∈ Z (it is
important here to use the bundle R∗).
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A Lagrange singularity class Σ ⊂ J k(V ) defines the
cohomology class

[Σ] ∈ H∗(J k(V ),Z) ∼= H∗(LG(V ),Z) .

Suppose that this class is equal to
∑

I αI Q̃I(R
∗) , where the

sum runs over strict partitions I ⊂ ρ and αI ∈ Z (it is
important here to use the bundle R∗).

Then T Σ :=
∑

I αI Q̃I is called the Thom polynomial
associated with the Lagrange singularity class Σ.

Theorem. (MM+PP+AW, 2007) For any Lagrange

singularity class Σ, the Thom polynomial T Σ is a

nonnegative combination of Q̃-functions.
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Let i : G = LG(V ) →֒ J be the inclusion.
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We look at the coefficients αI of the expression
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∑

αI Q̃I(R
∗) .

Lemma. For a strict partition I ⊂ ρ, there exists only one
strict partition I ′ ⊂ ρ and |I ′| = dimLG(V )− |I| , for

which Q̃I(R
∗) · ΩI ′ 6= 0. (I ′ complements I in ρ).
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the zero-section inclusion.
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Let i : G = LG(V ) →֒ J be the inclusion.
We look at the coefficients αI of the expression

i∗[Σ] =
∑

αI Q̃I(R
∗) .

Lemma. For a strict partition I ⊂ ρ, there exists only one
strict partition I ′ ⊂ ρ and |I ′| = dimLG(V )− |I| , for

which Q̃I(R
∗) · ΩI ′ 6= 0. (I ′ complements I in ρ).

We have αI = i∗[Σ] · ΩI ′.
Let

C = CG∩ΣΣ ⊂ NGJ

be the normal cone of G ∩ Σ in Σ. Denote by j : G →֒ NGJ
the zero-section inclusion. By deformation to the normal
cone, we have in A∗G the equality

i∗[Σ] = j∗[C] .
On positivity of Thom polynomials – p. 13/29



It follows that
αI = [C] · ΩI ′

(intersection in NGJ ).
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It follows that
αI = [C] · ΩI ′

(intersection in NGJ ).

Proposition. Let π : E → X be a globally generated
bundle on a proper homogeneous variety X. Let C be a
cone in E, and let Z be any algebraic cycle in X of the
complementary dimension. Then the intersection [C] · [Z]
is nonnegative.
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cone in E, and let Z be any algebraic cycle in X of the
complementary dimension. Then the intersection [C] · [Z]
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Take X = G
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It follows that
αI = [C] · ΩI ′

(intersection in NGJ ).

Proposition. Let π : E → X be a globally generated
bundle on a proper homogeneous variety X. Let C be a
cone in E, and let Z be any algebraic cycle in X of the
complementary dimension. Then the intersection [C] · [Z]
is nonnegative.

Take X = G

Take E = NGJ ∼=
⊕k+1

i=3 Symi(R∗) is g.g.
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It follows that
αI = [C] · ΩI ′

(intersection in NGJ ).

Proposition. Let π : E → X be a globally generated
bundle on a proper homogeneous variety X. Let C be a
cone in E, and let Z be any algebraic cycle in X of the
complementary dimension. Then the intersection [C] · [Z]
is nonnegative.

Take X = G

Take E = NGJ ∼=
⊕k+1

i=3 Symi(R∗) is g.g.

Take Z = ΩI ′.
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Some Legendrian geometry
Fix n ∈ N. Let W be a vector space of dimension n, and let
ξ be a vector space of dimension one.
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– standard symplectic space equipped with the twisted
symplectic form ω ∈ Λ2V ∗ ⊗ ξ. Have Lagrangian
submanifolds (germs through the origin).
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Legendrian submanifolds of V ⊕ ξ are maximal integral
submanifolds of α, i.e. the manifolds of dimension n with
tangent spaces contained in Ker(α).
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Some Legendrian geometry
Fix n ∈ N. Let W be a vector space of dimension n, and let
ξ be a vector space of dimension one.

V := W ⊕ (W ∗ ⊗ ξ).

– standard symplectic space equipped with the twisted
symplectic form ω ∈ Λ2V ∗ ⊗ ξ. Have Lagrangian
submanifolds (germs through the origin).
Standard contact space equipped with the contact form α,

V ⊕ ξ = W ⊕ (W ∗ ⊗ ξ)⊕ ξ .

Legendrian submanifolds of V ⊕ ξ are maximal integral
submanifolds of α, i.e. the manifolds of dimension n with
tangent spaces contained in Ker(α).
Any Legendrian submanifold in V ⊕ ξ is determined by its
Lagrangian projection to V and any Lagrangian submanifold
in V lifts to V ⊕ ξ. On positivity of Thom polynomials – p. 15/29



We shall work with pairs of Lagrangian submanifolds and try
to classify all the possible relative positions.
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Two Lagrangian submanifolds, if they are in generic position,
intersect transversally. The singular relative positions can be
divided into Legendrian singularity classes.
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Two Lagrangian submanifolds, if they are in generic position,
intersect transversally. The singular relative positions can be
divided into Legendrian singularity classes.

The group of symplectomorphisms of V acts on the pairs of
Lagrangian submanifolds.

Lemma. Any pair of Lagrangian submanifolds is
symplectic equivalent to a pair (L1, L2) such that L1 is a
linear Lagrangian subspace and the tangent space T0L2 is
equal to W .

On positivity of Thom polynomials – p. 16/29



We shall work with pairs of Lagrangian submanifolds and try
to classify all the possible relative positions.

Two Lagrangian submanifolds, if they are in generic position,
intersect transversally. The singular relative positions can be
divided into Legendrian singularity classes.

The group of symplectomorphisms of V acts on the pairs of
Lagrangian submanifolds.

Lemma. Any pair of Lagrangian submanifolds is
symplectic equivalent to a pair (L1, L2) such that L1 is a
linear Lagrangian subspace and the tangent space T0L2 is
equal to W .

Get 2 types of submanifolds: linear subspaces,

On positivity of Thom polynomials – p. 16/29



We shall work with pairs of Lagrangian submanifolds and try
to classify all the possible relative positions.

Two Lagrangian submanifolds, if they are in generic position,
intersect transversally. The singular relative positions can be
divided into Legendrian singularity classes.

The group of symplectomorphisms of V acts on the pairs of
Lagrangian submanifolds.

Lemma. Any pair of Lagrangian submanifolds is
symplectic equivalent to a pair (L1, L2) such that L1 is a
linear Lagrangian subspace and the tangent space T0L2 is
equal to W .

Get 2 types of submanifolds: linear subspaces,
the submanifolds which have the tangent space at the
origin equal to W ; they are the graphs of the differentials of
the functions f : W → ξ satisfying df(0) = 0 and d2f(0) = 0
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Let J k(W, ξ) be the set of pairs (L1, L2) of k-jets of
Lagrangian submanifolds of V such that L1 is a linear space
and T0L2 = W .
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Let J k(W, ξ) be the set of pairs (L1, L2) of k-jets of
Lagrangian submanifolds of V such that L1 is a linear space
and T0L2 = W .

Let π : J k(W, ξ) → LG(V, ω) be the projection.
Clearly, π is a trivial vector bundle with the fiber equal to:⊕k+1

i=3 Symi(W ∗)⊗ ξ.
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Let π : J k(W, ξ) → LG(V, ω) be the projection.
Clearly, π is a trivial vector bundle with the fiber equal to:⊕k+1

i=3 Symi(W ∗)⊗ ξ.

We are interested in a larger group than the group of
symplectomorphisms, the group of contact automorphisms of
V ⊕ ξ.
By a Legendre singularity class we mean a closed algebraic
subset Σ ⊂ J k(Cn,C) invariant with respect to holomorphic

contactomorphisms of C2n+1.

On positivity of Thom polynomials – p. 17/29



Let J k(W, ξ) be the set of pairs (L1, L2) of k-jets of
Lagrangian submanifolds of V such that L1 is a linear space
and T0L2 = W .

Let π : J k(W, ξ) → LG(V, ω) be the projection.
Clearly, π is a trivial vector bundle with the fiber equal to:⊕k+1

i=3 Symi(W ∗)⊗ ξ.

We are interested in a larger group than the group of
symplectomorphisms, the group of contact automorphisms of
V ⊕ ξ.
By a Legendre singularity class we mean a closed algebraic
subset Σ ⊂ J k(Cn,C) invariant with respect to holomorphic

contactomorphisms of C2n+1.
Additionally, we assume that Σ is stable with respect to
enlarging the dimension of W .
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Jet bundle J k(W, ξ)
Let X be a topological space, W a complex rank n vector
bundle over X, and ξ a complex line bundle over X.
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Jet bundle J k(W, ξ)
Let X be a topological space, W a complex rank n vector
bundle over X, and ξ a complex line bundle over X.
Let τ : LG(V, ω) → X denote the Lagrange Grassmann
bundle parametrizing Lagrangian linear submanifolds in Vx,
x ∈ X.
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Jet bundle J k(W, ξ)
Let X be a topological space, W a complex rank n vector
bundle over X, and ξ a complex line bundle over X.
Let τ : LG(V, ω) → X denote the Lagrange Grassmann
bundle parametrizing Lagrangian linear submanifolds in Vx,
x ∈ X. We have a relative version of the map:
π : J k(W, ξ) → LG(V, ω) .

The space J k(W, ξ) fibers over X. It is equal to the
pull-back:

J k(W, ξ) = τ∗

(
k+1⊕

i=3

Symi(W ∗)⊗ ξ

)
.
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Jet bundle J k(W, ξ)
Let X be a topological space, W a complex rank n vector
bundle over X, and ξ a complex line bundle over X.
Let τ : LG(V, ω) → X denote the Lagrange Grassmann
bundle parametrizing Lagrangian linear submanifolds in Vx,
x ∈ X. We have a relative version of the map:
π : J k(W, ξ) → LG(V, ω) .

The space J k(W, ξ) fibers over X. It is equal to the
pull-back:

J k(W, ξ) = τ∗

(
k+1⊕

i=3

Symi(W ∗)⊗ ξ

)
.

Since any changes of coordinates of W and ξ induce
holomorphic contactomorphisms of V ⊕ ξ, any Legendre
singularity class Σ defines Σ(W, ξ) ⊂ J k(W, ξ).
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The tautological bundle over LG(V, ω) is denoted by RW,ξ, or
by R for short.
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LG(V, ω): 0 → R → V → R∗ ⊗ ξ → 0.
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The tautological bundle over LG(V, ω) is denoted by RW,ξ, or
by R for short.

The symplectic form ω gives an isomorphism V ∼= V ∗ ⊗ ξ.

There is a tautological sequence of vector bundles on
LG(V, ω): 0 → R → V → R∗ ⊗ ξ → 0.

Consider the virtual bundle A := W ∗ ⊗ ξ −RW,ξ.

We have the relation A+ A∗ ⊗ ξ = 0.

The Chern classes ai = ci(A) generate the cohomology

H∗(LG(V, ω),Z) ∼= H∗(J k(W, ξ),Z) as an algebra over
H∗(X,Z).

On positivity of Thom polynomials – p. 19/29



Let us fix an approximation of BU(1) =
⋃

n∈NPn, that is we

set X = Pn, ξ = O(1). Let W = 1n be the trivial bundle of
rank n.
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Let us fix an approximation of BU(1) =
⋃

n∈NPn, that is we

set X = Pn, ξ = O(1). Let W = 1n be the trivial bundle of
rank n.

Then H∗(LG(V, ω),Z) ∼= H∗(J k(W, ξ),Z) is isomorphic to
the ring of Legendrian characteristic classes for degrees
smaller than or equal to n.
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Let us fix an approximation of BU(1) =
⋃

n∈NPn, that is we

set X = Pn, ξ = O(1). Let W = 1n be the trivial bundle of
rank n.

Then H∗(LG(V, ω),Z) ∼= H∗(J k(W, ξ),Z) is isomorphic to
the ring of Legendrian characteristic classes for degrees
smaller than or equal to n.

The element [Σ(W, ξ)] of H∗(J k(W, ξ),Z), is called the
Legendrian Thom polynomial of Σ.
and is often denoted by T Σ. It is written in terms of the
generators ai and s = c1(ξ).
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Let ξ, α1, α2, . . . , αn be vector spaces of dimension one and let

W :=

n⊕

i=1

αi , V := W ⊕ (W ∗ ⊗ ξ) .
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Let ξ, α1, α2, . . . , αn be vector spaces of dimension one and let

W :=

n⊕

i=1

αi , V := W ⊕ (W ∗ ⊗ ξ) .

We have a symplectic form ω defined on V with values in ξ.
LG(V, ω) is a homogeneous space for the symplectic group
Sp(V, ω) ⊂ End(V ).
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Let ξ, α1, α2, . . . , αn be vector spaces of dimension one and let

W :=

n⊕

i=1

αi , V := W ⊕ (W ∗ ⊗ ξ) .

We have a symplectic form ω defined on V with values in ξ.
LG(V, ω) is a homogeneous space for the symplectic group
Sp(V, ω) ⊂ End(V ).
Fix two“opposite” standard isotropic flags in V :

F+
h

:=

h⊕

i=1

αi , F−
h

:=

h⊕

i=1

α∗
n−i+1⊗ξ , (h = 1, 2, . . . , n)
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Let ξ, α1, α2, . . . , αn be vector spaces of dimension one and let

W :=

n⊕

i=1

αi , V := W ⊕ (W ∗ ⊗ ξ) .

We have a symplectic form ω defined on V with values in ξ.
LG(V, ω) is a homogeneous space for the symplectic group
Sp(V, ω) ⊂ End(V ).
Fix two“opposite” standard isotropic flags in V :

F+
h

:=

h⊕

i=1

αi , F−
h

:=

h⊕

i=1

α∗
n−i+1⊗ξ , (h = 1, 2, . . . , n)

Consider two Borel groups B± ⊂ Sp(V, ω), preserving the
flags F±

• . The orbits of B± in LG(V, ω) form two“opposite”
cell decompositions {ΩI(F

±
• , ξ)} of LG(V, ω), indexed by

strict partiions.
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All that is functorial w.r.t. the automorphisms of the lines ξ
and αi’s, (they form a torus (C∗)n+1). Thus the construction
of the cell decompositions can be repeated for bundles ξ and
{αi}

n
i=1 over any base X. We get a Lagrange Grassmann

bundle
τ : LG(V, ω) → X
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All that is functorial w.r.t. the automorphisms of the lines ξ
and αi’s, (they form a torus (C∗)n+1). Thus the construction
of the cell decompositions can be repeated for bundles ξ and
{αi}

n
i=1 over any base X. We get a Lagrange Grassmann

bundle
τ : LG(V, ω) → X

LG(V, ω) admits two (relative) stratifications

{ΩI(F
±
• , ξ) → X}I
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All that is functorial w.r.t. the automorphisms of the lines ξ
and αi’s, (they form a torus (C∗)n+1). Thus the construction
of the cell decompositions can be repeated for bundles ξ and
{αi}

n
i=1 over any base X. We get a Lagrange Grassmann

bundle
τ : LG(V, ω) → X

LG(V, ω) admits two (relative) stratifications

{ΩI(F
±
• , ξ) → X}I

Assume that X = G/P is a compact manifold, homogeneous
with respect to an action of a linear group G. Then X admits
an algebraic cell decomposition {σλ}.
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All that is functorial w.r.t. the automorphisms of the lines ξ
and αi’s, (they form a torus (C∗)n+1). Thus the construction
of the cell decompositions can be repeated for bundles ξ and
{αi}

n
i=1 over any base X. We get a Lagrange Grassmann

bundle
τ : LG(V, ω) → X

LG(V, ω) admits two (relative) stratifications

{ΩI(F
±
• , ξ) → X}I

Assume that X = G/P is a compact manifold, homogeneous
with respect to an action of a linear group G. Then X admits
an algebraic cell decomposition {σλ}.
The subsets

Z−
Iλ

:= τ−1(σλ) ∩ ΩI(F
−
• , ξ)

form an algebraic cell decomposition of LG(V, ω).
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Theorem. Fix I ⊂ ρ and λ. Suppose that the vector
bundle J is globally generated. Then, in J , the
intersection of Σ(W, ξ) with the closure of any π−1(Z−

Iλ
) is

represented by a nonnegative cycle.
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Theorem. Fix I ⊂ ρ and λ. Suppose that the vector
bundle J is globally generated. Then, in J , the
intersection of Σ(W, ξ) with the closure of any π−1(Z−

Iλ
) is

represented by a nonnegative cycle.

We shall apply the Theorem in the situation when all αi are
equal to the same line bundle α (i.e. W = α⊕n) and α−m ⊗ ξ
is globally generated for m ≥ 3.
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Theorem. Fix I ⊂ ρ and λ. Suppose that the vector
bundle J is globally generated. Then, in J , the
intersection of Σ(W, ξ) with the closure of any π−1(Z−

Iλ
) is

represented by a nonnegative cycle.

We shall apply the Theorem in the situation when all αi are
equal to the same line bundle α (i.e. W = α⊕n) and α−m ⊗ ξ
is globally generated for m ≥ 3.
Consider the following three cases: the base is always
X = Pn and

ξ1 = O(−2) , α1 = O(−1) ,

ξ2 = O(1) , α2 = 1 ,

ξ3 = O(−3) , α3 = O(−1) ,

We obtain symplectic bundles Vi = α⊕n
i ⊕ (α∗

i ⊗ ξi)
⊕n with

twisted symplectic forms ωi for i = 1, 2, 3.
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To overlap all these three cases we consider the product
X := Pn ×Pn
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To overlap all these three cases we consider the product
X := Pn ×Pn and set

W := p∗1O(−1)⊕n , ξ := p∗1O(−3)⊗ p∗2O(1) ,

where pi : X → Pn, i = 1, 2, are the projections.
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W := p∗1O(−1)⊕n , ξ := p∗1O(−3)⊗ p∗2O(1) ,

where pi : X → Pn, i = 1, 2, are the projections.

Restricting the bundles W and ξ to the diagonal, or to the
factors we obtain the three cases considered above.
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To overlap all these three cases we consider the product
X := Pn ×Pn and set

W := p∗1O(−1)⊕n , ξ := p∗1O(−3)⊗ p∗2O(1) ,

where pi : X → Pn, i = 1, 2, are the projections.

Restricting the bundles W and ξ to the diagonal, or to the
factors we obtain the three cases considered above.

The space LG(V, ω) has a cell decomposition Z−
I,a,b

. The

dual basis of cohomology (in the sense of linear algebra) is
denoted by

eI,a,b = [Z−
I,a,b

]∗.
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To overlap all these three cases we consider the product
X := Pn ×Pn and set

W := p∗1O(−1)⊕n , ξ := p∗1O(−3)⊗ p∗2O(1) ,

where pi : X → Pn, i = 1, 2, are the projections.

Restricting the bundles W and ξ to the diagonal, or to the
factors we obtain the three cases considered above.

The space LG(V, ω) has a cell decomposition Z−
I,a,b

. The

dual basis of cohomology (in the sense of linear algebra) is
denoted by

eI,a,b = [Z−
I,a,b

]∗.

We have eI,a,b = eI,0,0 va1v
b
2 and eI,0,0 = [ΩI(F

+
• , ξ)].
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Theorem. (MM+PP+AW 2010) Let Σ be a Legendre
singularity class. Then [Σ(W, ξ)] has nonnegative
coefficients in the basis {eI,a,b}.

On positivity of Thom polynomials – p. 25/29



Theorem. (MM+PP+AW 2010) Let Σ be a Legendre
singularity class. Then [Σ(W, ξ)] has nonnegative
coefficients in the basis {eI,a,b}.

The bundle J here is gg (hence desired intersections in J are
nonnegative):

τ∗
(⊕k+1

j=3 Sym
j(W ∗)⊗ ξ

)
=

τ∗
(⊕k+1

j=3 Sym
j(1n)⊗ p∗1O(j−3)⊗ p∗2O(1)

)
.
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Theorem. (MM+PP+AW 2010) Let Σ be a Legendre
singularity class. Then [Σ(W, ξ)] has nonnegative
coefficients in the basis {eI,a,b}.

The bundle J here is gg (hence desired intersections in J are
nonnegative):

τ∗
(⊕k+1

j=3 Sym
j(W ∗)⊗ ξ

)
=

τ∗
(⊕k+1

j=3 Sym
j(1n)⊗ p∗1O(j−3)⊗ p∗2O(1)

)
.

Let Σ be a Legendre singularity class. Thom polynomial of Σ,
evaluated at the Chern classes of A = W ∗ ⊗ ξ −R and
c1(ξ) = v2 − 3v1, is a nonnegative Z-linear combination:
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Theorem. (MM+PP+AW 2010) Let Σ be a Legendre
singularity class. Then [Σ(W, ξ)] has nonnegative
coefficients in the basis {eI,a,b}.

The bundle J here is gg (hence desired intersections in J are
nonnegative):

τ∗
(⊕k+1

j=3 Sym
j(W ∗)⊗ ξ

)
=

τ∗
(⊕k+1

j=3 Sym
j(1n)⊗ p∗1O(j−3)⊗ p∗2O(1)

)
.

Let Σ be a Legendre singularity class. Thom polynomial of Σ,
evaluated at the Chern classes of A = W ∗ ⊗ ξ −R and
c1(ξ) = v2 − 3v1, is a nonnegative Z-linear combination:

T Σ =
∑

I,a,b

γI,a,b eI,a,b =
∑

I,a,b

γI,a,b[ΩI(F
+
• , ξ)]va1v

b
2 .
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Want: an additive basis of the ring of Legendrian
characteristic classes with the property that any Legendrian
Thom polynomial is a nonnegative combination of basis
elements.
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Want: an additive basis of the ring of Legendrian
characteristic classes with the property that any Legendrian
Thom polynomial is a nonnegative combination of basis
elements.
Take a pair of integers p, q.
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Want: an additive basis of the ring of Legendrian
characteristic classes with the property that any Legendrian
Thom polynomial is a nonnegative combination of basis
elements.
Take a pair of integers p, q.

ξ(p,q) = ξ⊗p
2 ⊗ ξ⊗q

3

α = α(p,q) = α⊗p
2 ⊗ α⊗q

3 = α⊗q
3
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elements.
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ξ(p,q) = ξ⊗p
2 ⊗ ξ⊗q

3

α = α(p,q) = α⊗p
2 ⊗ α⊗q

3 = α⊗q
3

Divide H∗(LG(V, ω),Q) by the relation: q · v1 = p · v2
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Want: an additive basis of the ring of Legendrian
characteristic classes with the property that any Legendrian
Thom polynomial is a nonnegative combination of basis
elements.
Take a pair of integers p, q.

ξ(p,q) = ξ⊗p
2 ⊗ ξ⊗q

3

α = α(p,q) = α⊗p
2 ⊗ α⊗q

3 = α⊗q
3

Divide H∗(LG(V, ω),Q) by the relation: q · v1 = p · v2
that is specializing the parameters to v1 = p · t, v2 = q · t, we

obtain the ring H∗(LG(V (p,q), ω(p,q)),Q) isomorphic to the
ring of Legendrian characteristic classes in degrees up to n
(provided that c1(ξ) = v2 − 3v1 is not specialized to 0.)
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Theorem. If p and q are nonnegative, q− 3p 6= 0, then the
Thom polynomial is a nonnegative combination of the

[ΩI(F
+
• , ξ)] ti’s.
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Theorem. If p and q are nonnegative, q− 3p 6= 0, then the
Thom polynomial is a nonnegative combination of the

[ΩI(F
+
• , ξ)] ti’s.

The family [ΩI(F
+
• , ξ)] ti is a one-parameter family of bases

depending on the parameter p/q.
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Theorem. If p and q are nonnegative, q− 3p 6= 0, then the
Thom polynomial is a nonnegative combination of the

[ΩI(F
+
• , ξ)] ti’s.

The family [ΩI(F
+
• , ξ)] ti is a one-parameter family of bases

depending on the parameter p/q.
Case 1. ξ1 = O(−2), α1 = O(−1). This corresponds to fixing
the parameter to be 1; p = 1 and q = 1 ; v1 = v2 = t.
Geometrically, this means that we study the restriction of the
bundles W and ξ to the diagonal of Pn ×Pn.
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Theorem. If p and q are nonnegative, q− 3p 6= 0, then the
Thom polynomial is a nonnegative combination of the

[ΩI(F
+
• , ξ)] ti’s.

The family [ΩI(F
+
• , ξ)] ti is a one-parameter family of bases

depending on the parameter p/q.
Case 1. ξ1 = O(−2), α1 = O(−1). This corresponds to fixing
the parameter to be 1; p = 1 and q = 1 ; v1 = v2 = t.
Geometrically, this means that we study the restriction of the
bundles W and ξ to the diagonal of Pn ×Pn.

Theorem. The Thom polynomial of a Legendre
singularity class Σ is a combination:

T Σ =
∑

j≥0

∑

I

αI,j Q̃I(A⊗ ξ−
1

2 ) · tj .

Here t = 1
2c1(ξ

∗), I ⊂ ρ, and αI,j are nonnegative integers.
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Legendrian vs. classical
t = v1 = v2
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Legendrian vs. classical
t = v1 = v2
Proposition. For a nonempty stable Legendre singularity
class Σ, the Lagrangian Thom polynomial (i.e. T Σ

evaluated at t = 0) is nonzero. (So, also T Σ is nonzero.)
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Legendrian vs. classical
t = v1 = v2
Proposition. For a nonempty stable Legendre singularity
class Σ, the Lagrangian Thom polynomial (i.e. T Σ

evaluated at t = 0) is nonzero. (So, also T Σ is nonzero.)

Kazarian: The classification of Legendre singularities is
parallel to the classification of critical point singularities w.r.t.
stable right equivalence. For a Legendre singularity class Σ
consider the associated singularity class of maps f : M → C
from n-dimensional manifolds to curves. We denote the
related Thom polynomial by TpΣ.
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Legendrian vs. classical
t = v1 = v2
Proposition. For a nonempty stable Legendre singularity
class Σ, the Lagrangian Thom polynomial (i.e. T Σ

evaluated at t = 0) is nonzero. (So, also T Σ is nonzero.)

Kazarian: The classification of Legendre singularities is
parallel to the classification of critical point singularities w.r.t.
stable right equivalence. For a Legendre singularity class Σ
consider the associated singularity class of maps f : M → C
from n-dimensional manifolds to curves. We denote the
related Thom polynomial by TpΣ.
We have

TpΣ = T Σ · cn(T
∗M ⊗ f∗TC) .
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Legendrian vs. classical
t = v1 = v2
Proposition. For a nonempty stable Legendre singularity
class Σ, the Lagrangian Thom polynomial (i.e. T Σ

evaluated at t = 0) is nonzero. (So, also T Σ is nonzero.)

Kazarian: The classification of Legendre singularities is
parallel to the classification of critical point singularities w.r.t.
stable right equivalence. For a Legendre singularity class Σ
consider the associated singularity class of maps f : M → C
from n-dimensional manifolds to curves. We denote the
related Thom polynomial by TpΣ.
We have

TpΣ = T Σ · cn(T
∗M ⊗ f∗TC) .

We know that TpΣ is nonzero. One shows that TpΣ,
specialized with f∗TC = 1 i.e. t = 0, is also nonzero. The
assertion follows from the equation.
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Explicit computations that led us to conjecture that the
above positivity results might be true were done using mainly
the“method of restriction equations”
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Explicit computations that led us to conjecture that the
above positivity results might be true were done using mainly
the“method of restriction equations”

of Rimányi, Fehér, Komuves, Bérczi.
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of Rimányi, Fehér, Komuves, Bérczi.

Several computations were shared with us by Kazarian.
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Explicit computations that led us to conjecture that the
above positivity results might be true were done using mainly
the“method of restriction equations”

of Rimányi, Fehér, Komuves, Bérczi.

Several computations were shared with us by Kazarian.

THE END
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