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Cobordism classification

In 1954, Thom invented the cobordism theory
All closed manifolds are classified up to cobordism.

Two key points:

e cobordism relation<— a complete invariant (characteristic
numbers)

e Determination of

N, = > _ N, (unoriented case)
n>0

and

Q.= Qq (orientable case)
n>0
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Equivariant cobordism classification

In 1960s, Conner and Floyd:
Equivariant cobordism theory.

A fundamental problem of equivariant cobordism theory

To classify all closed G-manifolds up to equivariant cobordism
G: a compact Lie group.

Unlike non-equivariant case, the ring structures of %€ and
QC are still open.
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Equivariant cobordism classification

Throughout this talk, assume G = (Z)k.

Theorem (tom Dieck in 1970s)

A closed (Z2)X-mfd ~ 0 <= all equiv. Stiefel-Whitney numbers
are zero.

RK. 1) Each equiv. Stiefel-Whitney number is a polynomial
in H*(B(Zg)k; Zg).

2) It is still difficult to determine ME.
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Equivariant cobordism classification

By Conner-Floyd’s idea, consider the natural
homomorphism

o 0" _, q,.(BO)
by mapping

where mﬁZZ)k: equivariant Thom cobordism ring of all closed
(Z)K-mfds

M. (BO): the cobordism ring of all (Z,)X-vector bundles
over closed mfds.

Theorem (Stong)

O ngZ)k — N.(BO) is a monomorphism

Zhi Lii om Dieck-Kosnhiowski-Stong



Background—equivariant cobordism classification

A natural question

Given a family of vector G-bundles over closed mfds
Ue""K — FK, under what condition do these bundles
can become the normal bundle of some G ~ M"?




Localization theorem
Localization theorem

e Borel construction

Given G ~ X (where X: a top. space)
EG — BG: universal principal G-bundle.
We obtain G ~ EG x X by

(9, (x,¥)) — (xg ", gy).

X = EGx X/G(i.e.,EG xg X)
is called Borel construction.
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Localization theorem
Localization theorem

e Equivariant cohomology
Equivariant cohomology of G ~ X is defined
as

Ha(X) := H*(EG x g X)

o Remark. X — EG xg X — BG implies
that H;(X)is a H*(BG)-module




Localization theorem

Localization theorem

G = (Zo)

Localization Theorem (Borel)

Let G ~ X, where X is a paracompact G-space. Then the
localized restriction homomorphism

STTHL(X: Zo) — STTHA(XC; Zy)

is an isomorphism where S = H*(BG; Z,) — {0}.

Localization theorem implies that the global information
of G ~ X can be described by the local information.




Localization theorem

Localization theorem—explicit formula

—Case: G =Z, ~ M", a smooth closed mfd
v — M?2 = Uge ™% — FK: normal bundle

Kosniowski-Stong formula

Let Zo, ~ M". Then for any symmetric function f of
deg=n

fA+yi,....1+Vok, 24, .... Z
f(X1,...,Xn)[Mn] _ Z ( Yi Yn—k, Z1 k)[Fk]

—k

where w(r(M )) 17 (1 + x;): total Stiefel-Whitney class
w("*) = 175 (1 + )

w(r(F¥) = TTi,(1 + 2)




Localization theorem

Localization theorem—explicit formula

—General case: G = (Z»)" ~ M" a smooth closed
mfd
v — MC = Uge o™ % — F¥: normal bundle

Write w&(7(M)) = T]_,(1 + x): total equivariant
Stiefel-Whitney class

Kosniowski—Stong formula
Let (Z2)k ~ M". Then

flr

Kk * .
T mlFl € H(BGZy)

f(X1, o Xp) M = >

FkcMG

where f|r is the restriction of f to F¥
x(v"¥) is the equivariant Euler class of "% — Fk
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Localization theorem

Given a family of vector G-bundles over closed mfds
Ue"~K — FK under what condition do these bundles
can become the normal bundle of some G ~ M"?

tom Dieck, Kosniowski, Stong gave a partial answer. )
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tom Dieck-Kosniowski-Stong localization theorem

Assume (Z)* ~ M" fixes only / isolated points ps, ..., p;
74, ..., 72 n-dim real (Z,)X-representations

tom Dieck-Kosniowski-Stong localization theorem

71, ..., 77 become the tangent representations at py, ..., p; of
(Z2)k ~ M" < for any symmetric f(xy, ..., Xp)

I
Z f GH* (B(Z2)"; Zo) = Zolty, ..., t]

i=1

where x%(;) is a product of n nonzero elements in

H? (B(Zg)k; Zg) = Span{ﬁ, sa0g tk}

f(r;) implies that n variables xq, ..., x, are replaced by those
degree-one factors in x&(7))
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To equivariant cobordism classification

The fixed point set consists of isolated pts.

Let Z.((Z2)¥) msz”k consist of smooth closed
(Zo)k-mfds fixing isolated pts, which forms a graded
commutative algebra over Z,.
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To equivariant cobordism classification

The restriction to Z,((Z2)¥) of Stong’s monomorphism
o %" ., m,(BO)

induces
®: Z,((Z2)¥) — Ru((Z2)¥)

by

{My— > M

peM(2)
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To equivariant cobordism classification

The restriction to Z,((Z2)¥) of Stong’s monomorphism
o %" ., m,(BO)
induces
1 Z.((Z2)") — Ru((Z2)")

by
My — > [mpM]

peM(2)

where R.((Z2)¥) is an algebra over Z, introduced by Conner
and Floyd, generated by all irreducible (Z,)*-representations.
R.((Z2)¥): called the Conner-Floyd algebra
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/
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To equivariant cobordism classification

A characterization result
Z.((Z2)*) =2 Imd C R.((Z2)¥)

In particular, 74 + - - - + 7, € Im® <= for any symmetric
polynomial function f,

/

) X(ZfZ()TkizT,) € H*(B(Z2)"; Z»)
i=1 U

Conner and Floyd showed that when k =1 Z,(Zy) = Z».

Conner-Floyd-Kosniowski-Stong

When k = 2, Z,((Z2)?) = Z[u] where u denotes the class of
RP? with the standard linear (Z)?-action.




A differential operator

A reformulation of Conner-Floyd algebra

e Each nontrivial irreducible real (Z,)*-representation is
1-dim, and has the form

A (Z)f xR — R, (g, X) — (—1)x

where p € Hom((Z2), Z,) is nonzero. Thus

{all nontrivial irr. real (Z»)*-rep.} «— Hom((Z,), Z,)\ {0}




A differential operator

A reformulation of Conner-Floyd algebra

e Each nontrivial irreducible real (Z,)*-representation is
1-dim, and has the form

A (Z)f xR — R, (g, X) — (—1)x
where p € Hom((Z2), Z,) is nonzero. Thus

{all nontrivial irr. real (Z)-rep.} «— Hom((Z2)", Z2)\

e Conner-Floyd algebra R ((Z2)¥) is isomorphic to the
J

algebra Z,[Hom((Z2)k, Z,)

0}
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Dual algebra

Hom(Zs, (Z2)¥): all homomorphisms from Z, — (Z»)k




A differential operator

Dual algebra
Hom(Zs, (Z2)¥): all homomorphisms from Z, — (Z»)k

4

Zs[Hom(Zz, (Z2)¥)]: polynomial algebra generated by
nonzero elements of Hom(Zy, (Z2)¥).




A differential operator

e Define a differential operator d on
Zs[Hom(Zy, (Z2)¥)] as follows: for each monomial
31 “ e Si

i -~ ap s
D =181 81881005 ifi>1

d"(s"”s"):{1 ) ifi=1.

Hdo(1) =0




A differential operator

e Define a differential operator d on
Zs[Hom(Zy, (Z2)¥)] as follows: for each monomial

31 P Si
. N 2;21 54 "'Sj—1§j3j+1 ceesp ifi>1
ats S')_{1 ifi—1.
Hay(1) =0
Basic fact

H,‘(ZQ[HOIII(ZQ, (Zg)k)]; Zg) = O




Next purpose

Purpose

To discuss an equivalent description of tom
Dieck-Kosniowski-Stong localization theorem
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Hom((Zz)¥, Z») and Hom(Z,, (Z2)¥) are dual to each
other by the following pair

<-, > : Hom(Zg, (Zz)k) X Hom((Zg)k,Zg) — Hom(Zz,Zg)

where (§,p) = po¢.




An equivalent description

Hom((Zz)¥, Z») and Hom(Z,, (Z2)¥) are dual to each
other by the following pair

<-, > : Hom(Zg, (Zz)k) X Hom((Zg)k,Zg) — Hom(Zz,Zg)

where (§,p) = po¢.

@ a degree-k homogeneous polynomial
g=>ai1-aix € Zz[Hom((Z2)¥, Z»)] is said to be
faithful if a;4, - - - , @i« form a basis of Hom((Z2), Z,).

@ By the pair, g determines a unique degree-k
homogeneous polynomial g* = >";S;1--- Sk in
Zo[Hom(Zy, (Z2)¥))], called the dual polynomial of g.




An equivalent description

Recall that 74 + - - - + 7 € Im®, C Rp((Z2)¥) — for
any symmetric polynomial function f,

IZ_; X(Zz)k(T’.) S (B(ZZ) ,Zg)

and R.((Z2)¥) = Zo[Hom((Z2)*, Z>)]

Theorem (Li-Tan) Another characterization of

g €Imo, in the case k =n

Letg =, a1 ain € Zs[Hom((Zs)", Z)] be faithful.
Then g € Im®, (i.e., ai1---ain,...,a.1 - a, become the
fixed data of some (Z,)" ~ M") <= d(g*) =0




An algebra corollary

Algebraic corollary

Letg =1 a1 an € Zo[Hom((Z2)", Z»)] be faithful.
Then d(g*) = 0 in Zx[Hom(Zy, (Z,)"]|<= for any
symmetric function f(xi, ..., X,)

Z f(ai,1, e 7ai,n) c ZQ[HOm((Z2)n7 Zz)]

di18jn
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Proof of Theorem

@ key point is to use GKM theory, established by
Goresky, Kottwitz and MacPherson.

e A faithful G-polynomial g € Z,[Hom((Z2)", Z>)]
belongs to Im®, if and only if it is the coloring
polynomial of a colored graph (T, «).

e d(g*) = 0if and only if g is the coloring polynomial of
a colored graph.
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Colored graph and coloring polynomial

Let I be a finite regular graph of valence n without
loops. If there is a map « from the set Er of all edges of I
to all nontrivial elements of Hom((Z,)", Z,) with the
following properties:

1) for each vertex p of ', [, . a(x) is faithful in
Zs[Hom((Z2)", Z2)], where E, denotes the set of all edges
adjacent to p;

2) for each edge e of I', o Ep) = o(E;) mod «(e) in
Hom((Z2)", Z,) where p and g are two endpoints of e;

then the pair (I', «) is called a colored graph of I',
and gra) = 2 pev; [xeg, @(X) In Zz[Hom((Z2)", Z>)] is
called the coloring polynomial of (T, a).




Application

In paper [Z. L0, 2-torus manifolds, cobordism and
small covers, Pacific J. Math. 241 (2009), 285-3081 ,

M, consisting of equivariant cobordism classes of
smooth closed n-mfds with effective (Z,)"-actions was
introduced and studied.
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Application

In paper [Z. L0, 2-torus manifolds, cobordism and
small covers, Pacific J. Math. 241 (2009), 285-3081 ,

M, consisting of equivariant cobordism classes of
smooth closed n-mfds with effective (Z,)"-actions was
introduced and studied.

dim; =13

In addition, the following conjecture was also posed

Conjecture (x)

Each class of 9, contains a small cover as its
representative. It was showed that when n < 3, this is
true.
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A remark

@ Small covers were introduced by M. Davis and T.
Januszkiewicz.

@ An n-dimensional small cover is an n-dim smooth closed
mfd M" with a locally standard (Z;)"-action such that its
orbit space is an n-dim simple convex polytope P".

@ A small cover is a topological version of a real toric variety.
@ A canonical example is RP" with a (Z;)"-action defined by

((g1, -, 9n), [X0, X1, -+, Xn]) — [X0, (=1)9" X1, ..., (—1)9"x]

whose orbit space is an n-simplex.
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Application

The restriction to 9t, of Stong homomorphism gives
a monomorphism &, : M, — R,((Z2)") by

Sp({M"}) = > {rpM}
pEMEG

Using the equivalence description of tom
Dieck-Kosniowski-Stong localization theorem, we obtain

Theorem (Li-Tan)
Conjecture (x) holds.




Application

Let M, = > ,o; M,. Then M, forms a
noncommutative ring.

Theorem (Li-Tan)

M. is generated by equivariant cobordism classes of all
small covers over A™ x --. x A™, where A" is an

n;-simplex.




Application

Let M, = > ,o; M,. Then M, forms a
noncommutative ring.

Theorem (Li-Tan)

M. is generated by equivariant cobordism classes of all
small covers over A™ x --. x A™, where A" is an

n;-simplex.

We also determine 91,4

dim 2, = 510 and <N, is generated by small covers over
A2 x N2
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9= a1 a € Z[Hom((Zz)", Zy)]: faithful.

A summary-The following are equivalent

@ geclmo,
@ g is the coloring polynomial of a colored graph (I, )
e for any symmetric polynomial function f(xi, ..., X,)

/
> it a”’" a’”) € Zo[Hom((Z2)", Z>)]

,n

i=1




Application

9= a1 a € Z[Hom((Zz)", Zy)]: faithful.

A summary-The following are equivalent

@ geclmo,
@ g is the coloring polynomial of a colored graph (I, )
e for any symmetric polynomial function f(xi, ..., X,)

/
> it a”’" a’”) € Zo[Hom((Z2)", Z>)]

,n

i=1

° d(g)=0




Application

9= a1 a € Z[Hom((Zz)", Zy)]: faithful.

A summary-The following are equivalent

@ geclmo,
@ g is the coloring polynomial of a colored graph (I, )
e for any symmetric polynomial function f(xi, ..., X,)

/
y A a”’" 23n) ¢ 7,Hom((Z2)", Zo)]

,n

i=1

e d(g)=0
e g* is the coloring polynomial of a colored simple
convex polytope (P", \).




Thank You!




	Background�equivariant cobordism classification
	Localization theorem
	tom Dieck-Kosniowski-Stong localization theorem
	A differential operator
	Main result
	Application 

