tom Dieck-Kosniowski-Stong localization theorem and a differential operator

-A joint work with Qiangbo Tan

Zhi Lü

School of Mathematical Sciences Fudan University, Shanghai

-SINGULARITY THEORY CONFERENCE , Hefei, 2011

Zhi Lü

Background—equivariant cobordism classification

- tom Dieck-Kosniowski-Stong localization theorem
- A differential operator
- Main result—an equivalent description of tom Dieck-Kosniowski-Stong localization theorem
- Application

zhi Lü tom Dieck-Kosniowski-Stong I

・ロ・・ 日本・ ・ 日本・ ・ 日本

- Background—equivariant cobordism classification
- tom Dieck-Kosniowski-Stong localization theorem
- A differential operator
- Main result—an equivalent description of tom Dieck-Kosniowski-Stong localization theorem
- Application

zhi Lü tom Dieck-Kosniowski-Stong I

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Background—equivariant cobordism classification
- tom Dieck-Kosniowski-Stong localization theorem

tom Dieck-Kosniowski-Stong I

- A differential operator
- Main result—an equivalent description of tom Dieck-Kosniowski-Stong localization theorem

Zhi Lü

Application

- Background—equivariant cobordism classification
- tom Dieck-Kosniowski-Stong localization theorem
- A differential operator
- Main result—an equivalent description of tom Dieck-Kosniowski-Stong localization theorem
- Application

< 日 > < 回 > < 回 > < 回 > < 回 > <

tom Dieck-Kosniowski-Stong I

₹ 9 Q (~

- Background—equivariant cobordism classification
- tom Dieck-Kosniowski-Stong localization theorem
- A differential operator
- Main result—an equivalent description of tom Dieck-Kosniowski-Stong localization theorem
- Application

▲□ → ▲ □ → ▲ □ →

tom Dieck-Kosniowski-Stong I

∃ 99<</p>

In 1954, Thom invented the cobordism theory

All closed manifolds are classified up to cobordism.

Two key points:

- \bullet cobordism relation \longleftrightarrow a complete invariant (characteristic numbers)
- Determination of

$$\mathfrak{N}_* = \sum_{n \geq 0} \mathfrak{N}_n$$
 (unoriented case)

and

$$\Omega_* = \sum_{n \geq 0} \Omega_n$$
 (orientable case)

tom Dieck-Kosniowski-Stong I

In 1954, Thom invented the cobordism theory

All closed manifolds are classified up to cobordism.

Two key points:

- \bullet cobordism relation \longleftrightarrow a complete invariant (characteristic numbers)
- Determination of

$$\mathfrak{N}_* = \sum_{n \geq 0} \mathfrak{N}_n$$
 (unoriented case)

and

$$\Omega_* = \sum_{n \geq 0} \Omega_n$$
 (orientable case)

tom Dieck-Kosniowski-Stong I

In 1954, Thom invented the cobordism theory

All closed manifolds are classified up to cobordism.

Two key points:

- \bullet cobordism relation \longleftrightarrow a complete invariant (characteristic numbers)
- Determination of

$$\mathfrak{N}_* = \sum_{n \geq 0} \mathfrak{N}_n$$
 (unoriented case)

and

$$\Omega_* = \sum_{n \ge 0} \Omega_n$$
 (orientable case)

tom Dieck-Kosniowski-Stong I

In 1954, Thom invented the cobordism theory

All closed manifolds are classified up to cobordism.

Two key points:

- \bullet cobordism relation \longleftrightarrow a complete invariant (characteristic numbers)
- Determination of

$$\mathfrak{N}_* = \sum_{n \geq 0} \mathfrak{N}_n$$
 (unoriented case)

and

$$\Omega_* = \sum_{n \ge 0} \Omega_n$$
 (orientable case)

tom Dieck-Kosniowski-Stong I

In 1954, Thom invented the cobordism theory

All closed manifolds are classified up to cobordism.

Two key points:

- \bullet cobordism relation \longleftrightarrow a complete invariant (characteristic numbers)
- Determination of

$$\mathfrak{N}_* = \sum_{n \geq 0} \mathfrak{N}_n$$
 (unoriented case)

and

$$\Omega_* = \sum_{n \geq 0} \Omega_n$$
 (orientable case)

In 1960s, Conner and Floyd:

Equivariant cobordism theory.

A fundamental problem of equivariant cobordism theory

To classify all closed *G*-manifolds up to equivariant cobordism *G*: a compact Lie group.

Unlike non-equivariant case, the ring structures of \mathfrak{N}^{G}_{*} and Ω^{G}_{*} are still open.

Zhi Lü

In 1960s, Conner and Floyd:

Equivariant cobordism theory.

A fundamental problem of equivariant cobordism theory

To classify all closed *G*-manifolds up to equivariant cobordism *G*: a compact Lie group.

Unlike non-equivariant case, the ring structures of \mathfrak{N}^G_* and Ω^G_* are still open.

Zhi Lü

In 1960s, Conner and Floyd:

Equivariant cobordism theory.

A fundamental problem of equivariant cobordism theory

To classify all closed *G*-manifolds up to equivariant cobordism *G*: a compact Lie group.

Unlike non-equivariant case, the ring structures of \mathfrak{N}^{G}_{*} and Ω^{G}_{*} are still open.

Zhi Lü

Throughout this talk, assume $G = (\mathbb{Z}_2)^k$.

Theorem (tom Dieck in 1970s)

A closed $(\mathbb{Z}_2)^k\text{-mfd}\sim 0 \Longleftrightarrow$ all equiv. Stiefel-Whitney numbers are zero.

RK. 1) Each equiv. Stiefel-Whitney number is a polynomial in $H^*(B(\mathbb{Z}_2)^k; \mathbb{Z}_2)$.

tom Dieck-Kosniowski-Stong I

2) It is still difficult to determine \mathfrak{N}^G_* .

Throughout this talk, assume $G = (\mathbb{Z}_2)^k$.

Theorem (tom Dieck in 1970s)

A closed $(\mathbb{Z}_2)^k\text{-mfd}\sim 0 \Longleftrightarrow$ all equiv. Stiefel-Whitney numbers are zero.

RK. 1) Each equiv. Stiefel-Whitney number is a polynomial in $H^*(B(\mathbb{Z}_2)^k; \mathbb{Z}_2)$.

(四) < 三) < 三) < 三) 三

tom Dieck-Kosniowski-Stong I

2) It is still difficult to determine \mathfrak{N}^G_* .

Throughout this talk, assume $G = (\mathbb{Z}_2)^k$.

Theorem (tom Dieck in 1970s)

A closed $(\mathbb{Z}_2)^k\text{-mfd}\sim 0 \iff$ all equiv. Stiefel-Whitney numbers are zero.

RK. 1) Each equiv. Stiefel-Whitney number is a polynomial in $H^*(B(\mathbb{Z}_2)^k; \mathbb{Z}_2)$.

< □ > < □ > < □ > □ Ξ

tom Dieck-Kosniowski-Stong I

2) It is still difficult to determine \mathfrak{N}^{G}_{*} .

By Conner-Floyd's idea, consider the natural homomorphism

$$\Phi:\mathfrak{N}^{(\mathbb{Z}_2)^k}_*\longrightarrow\mathfrak{N}_*(BO)$$

by mapping

$$\{M\}\longmapsto \sum_{F\subset M^G}\{\nu\longrightarrow F\}$$

where $\mathfrak{N}^{(\mathbb{Z}_2)^k}_*$: equivariant Thom cobordism ring of all closed $(\mathbb{Z}_2)^k\text{-mfds}$

 $\mathfrak{N}_*(BO)$: the cobordism ring of all $(\mathbb{Z}_2)^k$ -vector bundles over closed mfds.

Theorem (Stong)

 $\Phi: \mathfrak{N}^{(\mathbb{Z}_2)^{\kappa}}_* \longrightarrow \mathfrak{N}_*(BO)$ is a monomorphism

By Conner-Floyd's idea, consider the natural homomorphism

$$\Phi:\mathfrak{N}^{(\mathbb{Z}_2)^k}_*\longrightarrow\mathfrak{N}_*(BO)$$

by mapping

$$\{M\}\longmapsto \sum_{F\subset M^G}\{\nu\longrightarrow F\}$$

where $\mathfrak{N}^{(\mathbb{Z}_2)^k}_*:$ equivariant Thom cobordism ring of all closed $(\mathbb{Z}_2)^k\text{-mfds}$

 $\mathfrak{N}_*(BO)$: the cobordism ring of all $(\mathbb{Z}_2)^k$ -vector bundles over closed mfds.

Theorem (Stong)

 $\Phi:\mathfrak{N}^{(\mathbb{Z}_2)^k}_*\longrightarrow\mathfrak{N}_*(BO)$ is a monomorphism

A natural question

Question

Given a family of vector *G*-bundles over closed mfds $\sqcup_{F^k} \nu^{n-k} \longrightarrow F^k$, under what condition do these bundles can become the normal bundle of some $G \curvearrowright M^n$?

zhi Lü tom Dieck-Kosniowski-Stong I

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Borel construction

Given $G \curvearrowright X$ (where X: a top. space) $EG \longrightarrow BG$: universal principal *G*-bundle. We obtain $G \curvearrowright EG \times X$ by $(g, (x, y)) \longmapsto (xg^{-1}, gy).$

$$X_G := EG \times X/G(i.e., EG \times_G X)$$

is called Borel construction.

Equivariant cohomology

Equivariant cohomology of $G \curvearrowright X$ is defined as

$H^*_G(X) := H^*(EG \times_G X)$

• **Remark.** $X \longrightarrow EG \times_G X \longrightarrow BG$ implies that $H^*_G(X)$ is a $H^*(BG)$ -module

zhi Lü tom Dieck-Kosniowski-Stong I

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の Q ()

Equivariant cohomology

Equivariant cohomology of $G \curvearrowright X$ is defined as

$$H^*_G(X) := H^*(EG \times_G X)$$

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○ ○

tom Dieck-Kosniowski-Stong I

• **Remark.** $X \longrightarrow EG \times_G X \longrightarrow BG$ implies that $H^*_G(X)$ is a $H^*(BG)$ -module

$$G := (\mathbb{Z}_2)^k$$

Localization Theorem (Borel)

Let $G \curvearrowright X$, where X is a paracompact G-space. Then the localized restriction homomorphism

$$S^{-1}H^*_G(X;\mathbb{Z}_2)\longrightarrow S^{-1}H^*_G(X^G;\mathbb{Z}_2)$$

is an isomorphism where $S = H^*(BG; \mathbb{Z}_2) - \{0\}$.

Remark

Localization theorem implies that the global information of $G \frown X$ can be described by the local information.

Localization theorem—explicit formula

$$\begin{array}{l} --\textbf{Case:} \ G = \mathbb{Z}_2 \curvearrowright M^n, \text{ a smooth closed mfd} \\ \nu \longrightarrow M^{\mathbb{Z}_2} = \sqcup_{F^k \subset M^{\mathbb{Z}_2}} \nu^{n-k} \longrightarrow F^k: \text{ normal bundle} \end{array}$$

Kosniowski-Stong formula

Let $\mathbb{Z}_2 \curvearrowright M^n$. Then for any symmetric function *f* of deg = *n*

$$f(x_1,...,x_n)[M^n] = \sum_{F^k \subset M^{\mathbb{Z}_2}} \frac{f(1+y_1,...,1+y_{n-k},z_1,...,z_k)}{\prod_{i=1}^{n-k}(1+y_i)} [F^k]$$

where $w(\tau(M)) = \prod_{i=1}^{n} (1 + x_i)$: total Stiefel-Whitney class $w(\nu^{n-k}) = \prod_{i=1}^{n-k} (1 + y_i)$ $w(\tau(F^k)) = \prod_{i=1}^{k} (1 + z_i)$

Localization theorem—explicit formula

-General case: $G = (\mathbb{Z}_2)^k \cap M^n$ a smooth closed mfd

 $\nu \longrightarrow M^G = \sqcup_{F^k \subset M^G} \nu^{n-k} \longrightarrow F^k$: normal bundle

Write $w^{G}(\tau(M)) = \prod_{i=1}^{n} (1 + x_i)$: total equivariant Stiefel-Whitney class

Kosniowski–Stong formula

Let $(\mathbb{Z}_2)^k \curvearrowright M^n$. Then

$$f(x_1,...,x_n)[M^n] = \sum_{F^k \subset M^G} \frac{f|_F}{\chi^G(\nu^{n-k})}[F^k] \in H^*(BG;\mathbb{Z}_2)$$

where $f|_F$ is the restriction of f to F^k $\chi^{G}(\nu^{n-k})$ is the equivariant Euler class of $\nu^{n-k} \longrightarrow F^{k}$ tom Dieck-Kosniowski-Stong I

Recall

Question

Given a family of vector *G*-bundles over closed mfds $\sqcup_{F^k} \nu^{n-k} \longrightarrow F^k$, under what condition do these bundles can become the normal bundle of some $G \curvearrowright M^n$?

tom Dieck, Kosniowski, Stong gave a partial answer.

Recall

Question

Given a family of vector *G*-bundles over closed mfds $\sqcup_{F^k} \nu^{n-k} \longrightarrow F^k$, under what condition do these bundles can become the normal bundle of some $G \curvearrowright M^n$?

tom Dieck, Kosniowski, Stong gave a partial answer.

< □ > < □ > < □ > □ Ξ

tom Dieck-Kosniowski-Stong localization theorem

Assume $(\mathbb{Z}_2)^k \curvearrowright M^n$ fixes only *I* isolated points $p_1, ..., p_l$ $\tau_1, ..., \tau_l$: *n*-dim real $(\mathbb{Z}_2)^k$ -representations

tom Dieck-Kosniowski-Stong localization theorem

 $\tau_1, ..., \tau_l$ become the tangent representations at $p_1, ..., p_l$ of $(\mathbb{Z}_2)^k \curvearrowright M^n \Leftrightarrow$ for any symmetric $f(x_1, ..., x_n)$

$$\sum_{i=1}^{l} \frac{f(\tau_i)}{\chi^G(\tau_i)} \in H^*(B(\mathbb{Z}_2)^k;\mathbb{Z}_2) = \mathbb{Z}_2[t_1,...,t_k]$$

where $\chi^{G}(\tau_{i})$ is a product of *n* nonzero elements in $H^{1}(B(\mathbb{Z}_{2})^{k};\mathbb{Z}_{2}) = \text{Span}\{t_{1},...,t_{k}\}\ f(\tau_{i})$ implies that *n* variables $x_{1},...,x_{n}$ are replaced by those degree-one factors in $\chi^{G}(\tau_{i})$

Case

The fixed point set consists of isolated pts.

Let $\mathcal{Z}_*((\mathbb{Z}_2)^k) \subset \mathfrak{N}_*^{(\mathbb{Z}_2)^k}$ consist of smooth closed $(\mathbb{Z}_2)^k$ -mfds fixing isolated pts, which forms a graded commutative algebra over \mathbb{Z}_2 .

zhi Lü tom Dieck-Kosniowski-Stong I

・ロト ・四ト ・ヨト ・ヨト

Case

The fixed point set consists of isolated pts.

Let $\mathcal{Z}_*((\mathbb{Z}_2)^k) \subset \mathfrak{N}_*^{(\mathbb{Z}_2)^k}$ consist of smooth closed $(\mathbb{Z}_2)^k$ -mfds fixing isolated pts, which forms a graded commutative algebra over \mathbb{Z}_2 .

zhi Lü tom Dieck-Kosniowski-Stong I

The restriction to $\mathcal{Z}_*((\mathbb{Z}_2)^k)$ of Stong's monomorphism

$$\Phi:\mathfrak{N}^{(\mathbb{Z}_2)^k}_*\longrightarrow\mathfrak{N}_*(BO)$$

induces

$$\Phi: \mathcal{Z}_*((\mathbb{Z}_2)^k) \longrightarrow R_*((\mathbb{Z}_2)^k)$$

by

$$\{M\} \longmapsto \sum_{p \in M^{(\mathbb{Z}_2)^k}} [\tau_p M]$$

where $R_*((\mathbb{Z}_2)^k)$ is an algebra over \mathbb{Z}_2 introduced by Conner and Floyd, generated by all irreducible $(\mathbb{Z}_2)^k$ -representations. $R_*((\mathbb{Z}_2)^k)$: called the **Conner-Floyd algebra**

The restriction to $\mathcal{Z}_*((\mathbb{Z}_2)^k)$ of Stong's monomorphism

$$\Phi:\mathfrak{N}^{(\mathbb{Z}_2)^k}_*\longrightarrow\mathfrak{N}_*(BO)$$

induces

$$\Phi: \mathcal{Z}_*((\mathbb{Z}_2)^k) \longrightarrow R_*((\mathbb{Z}_2)^k)$$

by

$$\{M\}\longmapsto \sum_{p\in M^{(\mathbb{Z}_2)^k}} [\tau_p M]$$

where $R_*((\mathbb{Z}_2)^k)$ is an algebra over \mathbb{Z}_2 introduced by Conner and Floyd, generated by all irreducible $(\mathbb{Z}_2)^k$ -representations. $R_*((\mathbb{Z}_2)^k)$: called the **Conner-Floyd algebra**

(部) (注) (主) (主)

A characterization result

$$\mathcal{Z}_*((\mathbb{Z}_2)^k)\cong \mathsf{Im}\Phi\subset \mathcal{R}_*((\mathbb{Z}_2)^k)$$

In particular, $\tau_1 + \cdots + \tau_l \in Im\Phi \iff$ for any symmetric polynomial function *f*,

$$\sum_{i=1}^{l} \frac{f(\tau_i)}{\chi^{(\mathbb{Z}_2)^k}(\tau_i)} \in H^*(B(\mathbb{Z}_2)^k;\mathbb{Z}_2)$$

Conner and Floyd showed that when k = 1 $\mathbb{Z}_*(\mathbb{Z}_2) \cong \mathbb{Z}_2$.

tom Dieck-Kosniowski-Stong I

Conner-Floyd-Kosniowski-Stong

When k = 2, $\mathcal{Z}_*((\mathbb{Z}_2)^2) \cong \mathbb{Z}_2[u]$ where *u* denotes the class of $\mathbb{R}P^2$ with the standard linear $(\mathbb{Z}_2)^2$ -action.

A characterization result

$$\mathcal{Z}_*((\mathbb{Z}_2)^k)\cong \mathsf{Im}\Phi\subset \mathcal{R}_*((\mathbb{Z}_2)^k)$$

In particular, $\tau_1 + \cdots + \tau_l \in Im\Phi \iff$ for any symmetric polynomial function *f*,

$$\sum_{i=1}^{l} \frac{f(\tau_i)}{\chi^{(\mathbb{Z}_2)^k}(\tau_i)} \in H^*(B(\mathbb{Z}_2)^k;\mathbb{Z}_2)$$

Conner and Floyd showed that when $k = 1 \ \mathcal{Z}_*(\mathbb{Z}_2) \cong \mathbb{Z}_2$.

tom Dieck-Kosniowski-Stong I

Conner-Floyd-Kosniowski-Stong

When k = 2, $\mathbb{Z}_*((\mathbb{Z}_2)^2) \cong \mathbb{Z}_2[u]$ where *u* denotes the class of $\mathbb{R}P^2$ with the standard linear $(\mathbb{Z}_2)^2$ -action.

A characterization result

$$\mathcal{Z}_*((\mathbb{Z}_2)^k)\cong \mathsf{Im}\Phi\subset \mathcal{R}_*((\mathbb{Z}_2)^k)$$

In particular, $\tau_1 + \cdots + \tau_l \in Im\Phi \iff$ for any symmetric polynomial function *f*,

$$\sum_{i=1}^{l} \frac{f(\tau_i)}{\chi^{(\mathbb{Z}_2)^k}(\tau_i)} \in H^*(B(\mathbb{Z}_2)^k;\mathbb{Z}_2)$$

Conner and Floyd showed that when $k = 1 \ \mathcal{Z}_*(\mathbb{Z}_2) \cong \mathbb{Z}_2$.

tom Dieck-Kosniowski-Stong I

Conner-Floyd-Kosniowski-Stong

When k = 2, $\mathcal{Z}_*((\mathbb{Z}_2)^2) \cong \mathbb{Z}_2[u]$ where *u* denotes the class of $\mathbb{R}P^2$ with the standard linear $(\mathbb{Z}_2)^2$ -action.

A reformulation of Conner-Floyd algebra

 Each nontrivial irreducible real (ℤ₂)^k-representation is 1-dim, and has the form

$$\lambda_{
ho}: (\mathbb{Z}_2)^k imes \mathbb{R} \longrightarrow \mathbb{R}, \; (\boldsymbol{g}, \boldsymbol{x}) \longmapsto (-1)^{
ho} \boldsymbol{x}$$

where $\rho \in \text{Hom}((\mathbb{Z}_2)^k, \mathbb{Z}_2)$ is nonzero. Thus

 $\{\text{all nontrivial irr. real } (\mathbb{Z}_2)^k \text{-rep.} \} \longleftrightarrow \text{Hom}((\mathbb{Z}_2)^k, \mathbb{Z}_2) \backslash \{0\}$

Conner-Floyd algebra R_{*}((Z₂)^k) is isomorphic to the algebra Z₂[Hom((Z₂)^k, Z₂)].

A reformulation of Conner-Floyd algebra

• Each nontrivial irreducible real $(\mathbb{Z}_2)^k$ -representation is 1-dim, and has the form

$$\lambda_{
ho}: (\mathbb{Z}_2)^k imes \mathbb{R} \longrightarrow \mathbb{R}, \; (\boldsymbol{g}, \boldsymbol{x}) \longmapsto (-1)^{
ho} \boldsymbol{x}$$

where $\rho \in \text{Hom}((\mathbb{Z}_2)^k, \mathbb{Z}_2)$ is nonzero. Thus

 $\{\text{all nontrivial irr. real } (\mathbb{Z}_2)^k \text{-rep.} \} \longleftrightarrow \text{Hom}((\mathbb{Z}_2)^k, \mathbb{Z}_2) \backslash \{0\}$

Conner-Floyd algebra R_{*}((Z₂)^k) is isomorphic to the algebra Z₂[Hom((Z₂)^k, Z₂)].

Dual algebra

Hom $(\mathbb{Z}_2, (\mathbb{Z}_2)^k)$: all homomorphisms from $\mathbb{Z}_2 \longrightarrow (\mathbb{Z}_2)^k$

$\mathbb{Z}_2[\text{Hom}(\mathbb{Z}_2, (\mathbb{Z}_2)^k)]$: polynomial algebra generated by nonzero elements of $\text{Hom}(\mathbb{Z}_2, (\mathbb{Z}_2)^k)$.

Zhi Lü

Dual algebra

Hom $(\mathbb{Z}_2, (\mathbb{Z}_2)^k)$: all homomorphisms from $\mathbb{Z}_2 \longrightarrow (\mathbb{Z}_2)^k$

1

$\mathbb{Z}_2[\text{Hom}(\mathbb{Z}_2, (\mathbb{Z}_2)^k)]$: polynomial algebra generated by nonzero elements of $\text{Hom}(\mathbb{Z}_2, (\mathbb{Z}_2)^k)$.

<回>< E> < E> < E> = E

 Define a differential operator *d* on ℤ₂[Hom(ℤ₂, (ℤ₂)^k)] as follows: for each monomial *s*₁ · · · *s*_i

$$d_i(s_1 \cdots s_i) = \begin{cases} \sum_{j=1}^i s_1 \cdots s_{j-1} \widehat{s}_j s_{j+1} \cdots s_i & \text{if } i > 1\\ 1 & \text{if } i = 1. \end{cases}$$

且 $d_0(1) = 0$

Basic fact

 $H_i(\mathbb{Z}_2[\operatorname{Hom}(\mathbb{Z}_2,(\mathbb{Z}_2)^k)];\mathbb{Z}_2)=0$

zhi Lü tom Dieck-Kosniowski-Stong I

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

 Define a differential operator *d* on Z₂[Hom(Z₂, (Z₂)^k)] as follows: for each monomial s₁ · · · s_i

$$d_i(s_1 \cdots s_i) = \begin{cases} \sum_{j=1}^i s_1 \cdots s_{j-1} \widehat{s}_j s_{j+1} \cdots s_i & \text{if } i > 1\\ 1 & \text{if } i = 1. \end{cases}$$

且 $d_0(1) = 0$

Basic fact

$$H_i(\mathbb{Z}_2[\operatorname{Hom}(\mathbb{Z}_2,(\mathbb{Z}_2)^k)];\mathbb{Z}_2)=0$$

zhi Lü tom Dieck-Kosniowski-Stong I

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Next purpose

Purpose

To discuss an equivalent description of tom Dieck-Kosniowski-Stong localization theorem

An equivalent description

 $Hom((\mathbb{Z}_2)^k,\mathbb{Z}_2)$ and $Hom(\mathbb{Z}_2,(\mathbb{Z}_2)^k)$ are dual to each other by the following pair

 $\langle \cdot, \cdot \rangle : \mathsf{Hom}(\mathbb{Z}_2, (\mathbb{Z}_2)^k) \times \mathsf{Hom}((\mathbb{Z}_2)^k, \mathbb{Z}_2) \longrightarrow \mathsf{Hom}(\mathbb{Z}_2, \mathbb{Z}_2)$

where $\langle \xi, \rho \rangle = \rho \circ \xi$.

Notations

- a degree-*k* homogeneous polynomial $g = \sum_{i} a_{i,1} \cdots a_{i,k} \in \mathbb{Z}_2[\text{Hom}((\mathbb{Z}_2)^k, \mathbb{Z}_2)]$ is said to be faithful if $a_{i,1}, \cdots, a_{i,k}$ form a basis of $\text{Hom}((\mathbb{Z}_2)^k, \mathbb{Z}_2)$.
- By the pair, g determines a unique degree-k homogeneous polynomial g^{*} = ∑_i s_{i,1} ··· s_{i,k} in ℤ₂[Hom(ℤ₂, (ℤ₂)^k))], called the dual polynomial of g.

An equivalent description

Hom $((\mathbb{Z}_2)^k, \mathbb{Z}_2)$ and Hom $(\mathbb{Z}_2, (\mathbb{Z}_2)^k)$ are dual to each other by the following pair

 $\langle \cdot, \cdot \rangle : \mathsf{Hom}(\mathbb{Z}_2, (\mathbb{Z}_2)^k) \times \mathsf{Hom}((\mathbb{Z}_2)^k, \mathbb{Z}_2) \longrightarrow \mathsf{Hom}(\mathbb{Z}_2, \mathbb{Z}_2)$

where $\langle \xi, \rho \rangle = \rho \circ \xi$.

Notations

- a degree-*k* homogeneous polynomial $g = \sum_{i} a_{i,1} \cdots a_{i,k} \in \mathbb{Z}_2[\text{Hom}((\mathbb{Z}_2)^k, \mathbb{Z}_2)]$ is said to be faithful if $a_{i,1}, \cdots, a_{i,k}$ form a basis of $\text{Hom}((\mathbb{Z}_2)^k, \mathbb{Z}_2)$.
- By the pair, g determines a unique degree-k homogeneous polynomial g^{*} = ∑_i s_{i,1} · · · s_{i,k} in Z₂[Hom(Z₂, (Z₂)^k))], called the dual polynomial of g.

An equivalent description

Recall that $\tau_1 + \cdots + \tau_l \in \operatorname{Im} \Phi_n \subset \mathcal{R}_n((\mathbb{Z}_2)^k) \iff$ for any symmetric polynomial function *f*,

$$\sum_{i=1}^l rac{f(au_i)}{\chi^{(\mathbb{Z}_2)^k}(au_i)} \in H^*(\mathcal{B}(\mathbb{Z}_2)^k;\mathbb{Z}_2)$$

and
$$\mathcal{R}_*((\mathbb{Z}_2)^k) \cong \mathbb{Z}_2[\operatorname{Hom}((\mathbb{Z}_2)^k, \mathbb{Z}_2)]$$

Theorem (Lü-Tan) Another characterization of $g \in Im\Phi_n$ in the case k = n

Let $g = \sum_{i=1}^{l} a_{i,1} \cdots a_{i,n} \in \mathbb{Z}_2[\text{Hom}((\mathbb{Z}_2)^n, \mathbb{Z}_2)]$ be faithful. Then $g \in \text{Im}\Phi_n$ (i.e., $a_{1,1} \cdots a_{1,n}, \dots, a_{l,1} \cdots a_{l,n}$ become the fixed data of some $(\mathbb{Z}_2)^n \curvearrowright M^n) \iff d(g^*) = 0$

An algebra corollary

Algebraic corollary

Let $g = \sum_{i=1}^{l} a_{i,1} \cdots a_{i,n} \in \mathbb{Z}_2[\text{Hom}((\mathbb{Z}_2)^n, \mathbb{Z}_2)]$ be faithful. Then $d(g^*) = 0$ in $\mathbb{Z}_2[\text{Hom}(\mathbb{Z}_2, (\mathbb{Z}_2)^n] \iff$ for any symmetric function $f(x_1, ..., x_n)$

$$\sum_{i=1}^{l} \frac{f(a_{i,1},\cdots,a_{i,n})}{a_{i,1}\cdots a_{i,n}} \in \mathbb{Z}_2[\operatorname{Hom}((\mathbb{Z}_2)^n,\mathbb{Z}_2)]$$

zhi Lü tom Dieck-Kosniowski-Stong l

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

Proof of Theorem

- key point is to use GKM theory, established by Goresky, Kottwitz and MacPherson.
- A faithful *G*-polynomial g ∈ Z₂[Hom((Z₂)ⁿ, Z₂)] belongs to ImΦ_n if and only if it is the coloring polynomial of a colored graph (Γ, α).
- d(g*) = 0 if and only if g is the coloring polynomial of a colored graph.

Proof of Theorem

- key point is to use GKM theory, established by Goresky, Kottwitz and MacPherson.
- A faithful *G*-polynomial g ∈ Z₂[Hom((Z₂)ⁿ, Z₂)] belongs to ImΦ_n if and only if it is the coloring polynomial of a colored graph (Γ, α).
- d(g*) = 0 if and only if g is the coloring polynomial of a colored graph.

Proof of Theorem

- key point is to use GKM theory, established by Goresky, Kottwitz and MacPherson.
- A faithful *G*-polynomial g ∈ Z₂[Hom((Z₂)ⁿ, Z₂)] belongs to ImΦ_n if and only if it is the coloring polynomial of a colored graph (Γ, α).
- d(g*) = 0 if and only if g is the coloring polynomial of a colored graph.

Let Γ be a finite regular graph of valence *n* without loops. If there is a map α from the set E_{Γ} of all edges of Γ to all nontrivial elements of Hom $((\mathbb{Z}_2)^n, \mathbb{Z}_2)$ with the following properties:

1) for each vertex p of Γ , $\prod_{x \in E_p} \alpha(x)$ is faithful in $\mathbb{Z}_2[\text{Hom}((\mathbb{Z}_2)^n, \mathbb{Z}_2)]$, where E_p denotes the set of all edges adjacent to p;

2) for each edge *e* of Γ , $\alpha(E_p) \equiv \alpha(E_q) \mod \alpha(e)$ in Hom $((\mathbb{Z}_2)^n, \mathbb{Z}_2)$ where *p* and *q* are two endpoints of *e*; then the pair (Γ, α) is called a **colored graph** of Γ , and $g_{(\Gamma,\alpha)} = \sum_{p \in V_{\Gamma}} \prod_{x \in E_p} \alpha(x)$ in $\mathbb{Z}_2[\text{Hom}((\mathbb{Z}_2)^n, \mathbb{Z}_2)]$ is called the **coloring polynomial** of (Γ, α) .

Let Γ be a finite regular graph of valence *n* without loops. If there is a map α from the set E_{Γ} of all edges of Γ to all nontrivial elements of Hom $((\mathbb{Z}_2)^n, \mathbb{Z}_2)$ with the following properties:

1) for each vertex p of Γ , $\prod_{x \in E_p} \alpha(x)$ is faithful in $\mathbb{Z}_2[\text{Hom}((\mathbb{Z}_2)^n, \mathbb{Z}_2)]$, where E_p denotes the set of all edges adjacent to p;

2) for each edge e of Γ , $\alpha(E_p) \equiv \alpha(E_q) \mod \alpha(e)$ in Hom $((\mathbb{Z}_2)^n, \mathbb{Z}_2)$ where p and q are two endpoints of e; then the pair (Γ, α) is called a **colored graph** of Γ , and $g_{(\Gamma,\alpha)} = \sum_{p \in V_{\Gamma}} \prod_{x \in E_p} \alpha(x)$ in $\mathbb{Z}_2[\text{Hom}((\mathbb{Z}_2)^n, \mathbb{Z}_2)]$ is called the **coloring polynomial** of (Γ, α) .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Let Γ be a finite regular graph of valence *n* without loops. If there is a map α from the set E_{Γ} of all edges of Γ to all nontrivial elements of Hom $((\mathbb{Z}_2)^n, \mathbb{Z}_2)$ with the following properties:

1) for each vertex p of Γ , $\prod_{x \in E_p} \alpha(x)$ is faithful in $\mathbb{Z}_2[\text{Hom}((\mathbb{Z}_2)^n, \mathbb{Z}_2)]$, where E_p denotes the set of all edges adjacent to p;

2) for each edge *e* of Γ , $\alpha(E_p) \equiv \alpha(E_q) \mod \alpha(e)$ in Hom $((\mathbb{Z}_2)^n, \mathbb{Z}_2)$ where *p* and *q* are two endpoints of *e*;

then the pair (Γ, α) is called a **colored graph** of Γ , and $g_{(\Gamma,\alpha)} = \sum_{p \in V_{\Gamma}} \prod_{x \in E_p} \alpha(x)$ in $\mathbb{Z}_2[\text{Hom}((\mathbb{Z}_2)^n, \mathbb{Z}_2)]$ is called the **coloring polynomial** of (Γ, α) .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Let Γ be a finite regular graph of valence *n* without loops. If there is a map α from the set E_{Γ} of all edges of Γ to all nontrivial elements of Hom $((\mathbb{Z}_2)^n, \mathbb{Z}_2)$ with the following properties:

1) for each vertex p of Γ , $\prod_{x \in E_p} \alpha(x)$ is faithful in $\mathbb{Z}_2[\text{Hom}((\mathbb{Z}_2)^n, \mathbb{Z}_2)]$, where E_p denotes the set of all edges adjacent to p;

2) for each edge *e* of Γ , $\alpha(E_p) \equiv \alpha(E_q) \mod \alpha(e)$ in Hom $((\mathbb{Z}_2)^n, \mathbb{Z}_2)$ where *p* and *q* are two endpoints of *e*; then the pair (Γ, α) is called a **colored graph** of Γ , and $g_{(\Gamma,\alpha)} = \sum_{p \in V_{\Gamma}} \prod_{x \in E_p} \alpha(x)$ in $\mathbb{Z}_2[\text{Hom}((\mathbb{Z}_2)^n, \mathbb{Z}_2)]$ is called the **coloring polynomial** of (Γ, α) .

In paper [Z. Lü, 2-torus manifolds, cobordism and small covers, Pacific J. Math. 241 (2009), 285–308], \mathfrak{M}_n consisting of equivariant cobordism classes of smooth closed *n*-mfds with effective $(\mathbb{Z}_2)^n$ -actions was introduced and studied.

Structure of M₃

 $\dim\mathfrak{M}_3=13$

In addition, the following conjecture was also posed

tom Dieck-Kosniowski-Stong I

Conjecture (*)

In paper [Z. Lü, 2-torus manifolds, cobordism and small covers, Pacific J. Math. 241 (2009), 285–308], \mathfrak{M}_n consisting of equivariant cobordism classes of smooth closed *n*-mfds with effective $(\mathbb{Z}_2)^n$ -actions was introduced and studied.

Structure of \mathfrak{M}_3

 $dim\,\mathfrak{M}_3=13$

In addition, the following conjecture was also posed

tom Dieck-Kosniowski-Stong I

Conjecture (*)

In paper [Z. Lü, 2-torus manifolds, cobordism and small covers, Pacific J. Math. 241 (2009), 285–308], \mathfrak{M}_n consisting of equivariant cobordism classes of smooth closed *n*-mfds with effective $(\mathbb{Z}_2)^n$ -actions was introduced and studied.

Structure of \mathfrak{M}_3

 $\dim\mathfrak{M}_3=13$

In addition, the following conjecture was also posed

tom Dieck-Kosniowski-Stong I

Conjecture (*)

In paper [Z. Lü, 2-torus manifolds, cobordism and small covers, Pacific J. Math. 241 (2009), 285–308], \mathfrak{M}_n consisting of equivariant cobordism classes of smooth closed *n*-mfds with effective $(\mathbb{Z}_2)^n$ -actions was introduced and studied.

Structure of \mathfrak{M}_3

 $dim\,\mathfrak{M}_3=13$

In addition, the following conjecture was also posed

tom Dieck-Kosniowski-Stong I

Conjecture (*)

Small cover

- Small covers were introduced by M. Davis and T. Januszkiewicz.
- An *n*-dimensional small cover is an *n*-dim smooth closed mfd *Mⁿ* with a locally standard (Z₂)ⁿ-action such that its orbit space is an *n*-dim simple convex polytope *Pⁿ*.
- A small cover is a topological version of a real toric variety.
- A canonical example is $\mathbb{R}P^n$ with a $(\mathbb{Z}_2)^n$ -action defined by

$$((g_1,...,g_n),[x_0,x_1,...,x_n]) \longmapsto [x_0,(-1)^{g_1}x_1,...,(-1)^{g_n}x_n]$$

whose orbit space is an *n*-simplex.

zhi Lü tom Dieck-Kosniowski-Stong I

・ロト ・ 日 ・ ・ ヨ ・

э

Small cover

- Small covers were introduced by M. Davis and T. Januszkiewicz.
- An *n*-dimensional small cover is an *n*-dim smooth closed mfd *Mⁿ* with a locally standard (ℤ₂)ⁿ-action such that its orbit space is an *n*-dim simple convex polytope *Pⁿ*.
- A small cover is a topological version of a real toric variety.
- A canonical example is $\mathbb{R}P^n$ with a $(\mathbb{Z}_2)^n$ -action defined by

$$((g_1,...,g_n),[x_0,x_1,...,x_n]) \longmapsto [x_0,(-1)^{g_1}x_1,...,(-1)^{g_n}x_n]$$

whose orbit space is an *n*-simplex.

zhi Lü tom Dieck-Kosniowski-Stong I

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

Small cover

- Small covers were introduced by M. Davis and T. Januszkiewicz.
- An *n*-dimensional small cover is an *n*-dim smooth closed mfd *Mⁿ* with a locally standard (Z₂)ⁿ-action such that its orbit space is an *n*-dim simple convex polytope *Pⁿ*.
- A small cover is a topological version of a real toric variety.
- A canonical example is $\mathbb{R}P^n$ with a $(\mathbb{Z}_2)^n$ -action defined by

$$((g_1,...,g_n),[x_0,x_1,...,x_n]) \longmapsto [x_0,(-1)^{g_1}x_1,...,(-1)^{g_n}x_n]$$

whose orbit space is an *n*-simplex.

zhi Lu tom Dieck-Kosniowski-Stong I

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

ъ

Small cover

- Small covers were introduced by M. Davis and T. Januszkiewicz.
- An *n*-dimensional small cover is an *n*-dim smooth closed mfd *Mⁿ* with a locally standard (Z₂)ⁿ-action such that its orbit space is an *n*-dim simple convex polytope *Pⁿ*.
- A small cover is a topological version of a real toric variety.
- A canonical example is $\mathbb{R}P^n$ with a $(\mathbb{Z}_2)^n$ -action defined by

$$((g_1,...,g_n),[x_0,x_1,...,x_n]) \longmapsto [x_0,(-1)^{g_1}x_1,...,(-1)^{g_n}x_n]$$

whose orbit space is an *n*-simplex.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

ъ

The restriction to \mathfrak{M}_n of Stong homomorphism gives a monomorphism $\Phi_n : \mathfrak{M}_n \longrightarrow \mathcal{R}_n((\mathbb{Z}_2)^n)$ by

$$\Phi_n(\{\boldsymbol{M}^n\}) = \sum_{\boldsymbol{p} \in \boldsymbol{M}^G} \{\tau_{\boldsymbol{p}} \boldsymbol{M}\}$$

Using the equivalence description of tom Dieck-Kosniowski-Stong localization theorem, we obtain

Theorem (Lü-Tan)

Conjecture (*) holds.

zhi Lü tom Dieck-Kosniowski-Stong I

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The restriction to \mathfrak{M}_n of Stong homomorphism gives a monomorphism $\Phi_n : \mathfrak{M}_n \longrightarrow \mathcal{R}_n((\mathbb{Z}_2)^n)$ by

$$\Phi_n(\{\boldsymbol{M}^n\}) = \sum_{\boldsymbol{p} \in \boldsymbol{M}^G} \{\tau_{\boldsymbol{p}} \boldsymbol{M}\}$$

Using the equivalence description of tom Dieck-Kosniowski-Stong localization theorem, we obtain

Theorem (Lü-Tan)

Conjecture (*) holds.

zhi Lü tom Dieck-Kosniowski-Stong I

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Let $\mathfrak{M}_* = \sum_{n \geq 1} \mathfrak{M}_n$. Then \mathfrak{M}_* forms a noncommutative ring.

Theorem (Lü-Tan)

 \mathfrak{M}_* is generated by equivariant cobordism classes of all small covers over $\Delta^{n_1} \times \cdots \times \Delta^{n_\ell}$, where Δ^{n_i} is an n_i -simplex.

We also determine \mathfrak{M}_4

dim $\mathfrak{M}_4 = 510$ and \mathfrak{M}_4 is generated by small covers over $\Delta^2 \times \Delta^2$.

Zhi Lü

Let $\mathfrak{M}_* = \sum_{n \geq 1} \mathfrak{M}_n$. Then \mathfrak{M}_* forms a noncommutative ring.

Theorem (Lü-Tan)

 \mathfrak{M}_* is generated by equivariant cobordism classes of all small covers over $\Delta^{n_1} \times \cdots \times \Delta^{n_\ell}$, where Δ^{n_i} is an n_i -simplex.

We also determine \mathfrak{M}_4

 $dim\,\mathfrak{M}_4=510$ and \mathfrak{M}_4 is generated by small covers over $\Delta^2\times\Delta^2.$

Zhi Lü

$$g = \sum_{i=1}^{l} a_{i,1} \cdots a_{i,n} \in \mathbb{Z}_2[\mathsf{Hom}((\mathbb{Z}_2)^n, \mathbb{Z}_2)]$$
: faithful.

A summary–The following are equivalent

• $g \in \mathsf{Im}\Phi_n$

- g is the coloring polynomial of a colored graph (Γ, α)
- for any symmetric polynomial function $f(x_1, ..., x_n)$

$$\sum_{i=1}^{l} \frac{f(a_{i,1},\cdots,a_{i,n})}{a_{i,1}\cdots a_{i,n}} \in \mathbb{Z}_2[\mathsf{Hom}((\mathbb{Z}_2)^n,\mathbb{Z}_2)]$$

tom Dieck-Kosniowski-Stong

• $d(g^*) = 0$

$$g = \sum_{i=1}^{l} a_{i,1} \cdots a_{i,n} \in \mathbb{Z}_2[\mathsf{Hom}((\mathbb{Z}_2)^n, \mathbb{Z}_2)]$$
: faithful.

A summary–The following are equivalent

- $g \in \mathsf{Im}\Phi_n$
- g is the coloring polynomial of a colored graph (Γ, α)
- for any symmetric polynomial function $f(x_1, ..., x_n)$

$$\sum_{i=1}^{l} \frac{f(a_{i,1},\cdots,a_{i,n})}{a_{i,1}\cdots a_{i,n}} \in \mathbb{Z}_2[\mathsf{Hom}((\mathbb{Z}_2)^n,\mathbb{Z}_2)]$$

tom Dieck-Kosniowski-Stong

• $d(g^*) = 0$

$$g = \sum_{i=1}^{l} a_{i,1} \cdots a_{i,n} \in \mathbb{Z}_2[\mathsf{Hom}((\mathbb{Z}_2)^n, \mathbb{Z}_2)]$$
: faithful.

A summary–The following are equivalent

- $g \in \mathsf{Im}\Phi_n$
- g is the coloring polynomial of a colored graph (Γ, α)
- for any symmetric polynomial function $f(x_1, ..., x_n)$

$$\sum_{i=1}^{l} \frac{f(a_{i,1},\cdots,a_{i,n})}{a_{i,1}\cdots a_{i,n}} \in \mathbb{Z}_2[\mathsf{Hom}((\mathbb{Z}_2)^n,\mathbb{Z}_2)]$$

tom Dieck-Kosniowski-Stong

• $d(g^*) = 0$

$$g = \sum_{i=1}^{l} a_{i,1} \cdots a_{i,n} \in \mathbb{Z}_2[\operatorname{Hom}((\mathbb{Z}_2)^n, \mathbb{Z}_2)]$$
: faithful.

A summary–The following are equivalent

•
$$g \in \mathsf{Im}\Phi_n$$

- g is the coloring polynomial of a colored graph (Γ, α)
- for any symmetric polynomial function $f(x_1, ..., x_n)$

$$\sum_{i=1}^{l} \frac{f(a_{i,1},\cdots,a_{i,n})}{a_{i,1}\cdots a_{i,n}} \in \mathbb{Z}_2[\mathsf{Hom}((\mathbb{Z}_2)^n,\mathbb{Z}_2)]$$

tom Dieck-Kosniowski-Stong

•
$$d(g^*) = 0$$

$$g = \sum_{i=1}^{l} a_{i,1} \cdots a_{i,n} \in \mathbb{Z}_2[\operatorname{Hom}((\mathbb{Z}_2)^n, \mathbb{Z}_2)]$$
: faithful.

A summary–The following are equivalent

- $g \in \mathsf{Im}\Phi_n$
- g is the coloring polynomial of a colored graph (Γ, α)
- for any symmetric polynomial function $f(x_1, ..., x_n)$

$$\sum_{i=1}^{l} \frac{f(a_{i,1},\cdots,a_{i,n})}{a_{i,1}\cdots a_{i,n}} \in \mathbb{Z}_2[\mathsf{Hom}((\mathbb{Z}_2)^n,\mathbb{Z}_2)]$$

- *d*(*g*^{*}) = 0
- g^{*} is the coloring polynomial of a colored simple convex polytope (Pⁿ, λ).

Background-equivariant cobordism classification Localization theorem tom Dieck-Kosniowski-Stong localization theorem

Thank You!

zhi Lü tom Dieck-Kosniowski-Stong I

・ロト・西・・田・・日・・日・