Monodromy representations of conformal field theory

Toshitake Kohno

The University of Tokyo

July 2011

• The space of conformal blocks

æ

⊡ ► < ≣ ►

- The space of conformal blocks
- Quantum representations of mapping class groups

- The space of conformal blocks
- Quantum representations of mapping class groups
- Monodromy representations of braid groups and Gauss-Manin connections

- The space of conformal blocks
- Quantum representations of mapping class groups
- Monodromy representations of braid groups and Gauss-Manin connections
- Images of quantum representations of mapping class groups

Wess-Zumino-Witten model

Conformal Field Theory

 (Σ,p_1,\cdots,p_n) : Riemann surface with marked points $\lambda_1,\cdots,\lambda_n$: level K highest weights

Wess-Zumino-Witten model

Conformal Field Theory

 $(\Sigma, p_1, \cdots, p_n)$: Riemann surface with marked points $\lambda_1, \cdots, \lambda_n$: level K highest weights $\mathcal{H}_{\Sigma}(p, \lambda)$: space of conformal blocks vector space spanned by holomorphic parts of the WZW partition function.

Wess-Zumino-Witten model

Conformal Field Theory

 $(\Sigma, p_1, \cdots, p_n)$: Riemann surface with marked points $\lambda_1, \cdots, \lambda_n$: level K highest weights $\mathcal{H}_{\Sigma}(p, \lambda)$: space of conformal blocks vector space spanned by holomorphic parts of the WZW partition function.

Geometry : vector bundle over the moduli space of Riemann surfaces with n marked points with projectively flat connection.

 $\mathfrak{g}=sl_2(\mathbf{C})$ has a basis

$$H = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right), E = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), F = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right).$$

 λ : non-negative integer

 V_{λ} : irreducible highest weight representation of $sl_2(\mathbf{C})$ with highest weight vector v such that

$$Hv = \lambda v, Ev = 0$$

 $\widehat{\mathfrak{g}}=\mathfrak{g}\otimes \mathbf{C}((\xi))\oplus \mathbf{C}c$: affine Lie algebra with commutation relation

 $[X \otimes f, Y \otimes g] = [X, Y] \otimes fg + \operatorname{Res}_{\xi=0} df \ g \ \langle X, Y \rangle c$

$$\begin{split} K \text{ a positive integer (level)} \\ \widehat{\mathfrak{g}} &= \mathcal{N}_+ \oplus \mathcal{N}_0 \oplus \mathcal{N}_- \\ c \text{ acts as } K \cdot \text{id.} \end{split}$$

 $\widehat{\mathfrak{g}}=\mathfrak{g}\otimes \mathbf{C}((\xi))\oplus \mathbf{C}c$: affine Lie algebra with commutation relation

$$[X \otimes f, Y \otimes g] = [X, Y] \otimes fg + \operatorname{Res}_{\xi=0} df g \langle X, Y \rangle c$$

$$\begin{split} K \text{ a positive integer (level)} \\ \widehat{\mathfrak{g}} &= \mathcal{N}_+ \oplus \mathcal{N}_0 \oplus \mathcal{N}_- \\ c \text{ acts as } K \cdot \text{id.} \end{split}$$

 λ : an integer with $0 \le \lambda \le K$ \mathcal{H}_{λ} : irreducible quotient of \mathcal{M}_{λ} called the integrable highest weight modules. G: the Lie group $SL(2, \mathbb{C})$ $LG = \operatorname{Map}(S^1, G)$: loop group $\mathcal{L} \longrightarrow LG$: complex line bundle with $c_1(\mathcal{L}) = K$ G: the Lie group $SL(2, \mathbb{C})$ $LG = \operatorname{Map}(S^1, G)$: loop group $\mathcal{L} \longrightarrow LG$: complex line bundle with $c_1(\mathcal{L}) = K$

The affine Lie algebra $\widehat{\mathfrak{g}}$ acts on the space of sections $\Gamma(\mathcal{L})$. The integrable highest weight modules \mathcal{H}_{λ} , $0 \leq \lambda \leq K$, appears as sub representations.

As the infinitesimal version of the action of the central extension of $\mathrm{Diff}(S^1)$ the Virasoro Lie algebra acts on \mathcal{H}_{λ} .

The space of conformal blocks - definition -

Suppose $0 \leq \lambda_1, \dots, \lambda_n \leq K$. $p_1, \dots, p_n \in \Sigma$ Assign highest weights $\lambda_1, \dots, \lambda_n$ to p_1, \dots, p_n . \mathcal{H}_j : irreducible representations of $\hat{\mathfrak{g}}$ with highest weight λ_j at level K.

The space of conformal blocks - definition -

Suppose $0 \leq \lambda_1, \dots, \lambda_n \leq K$. $p_1, \dots, p_n \in \Sigma$ Assign highest weights $\lambda_1, \dots, \lambda_n$ to p_1, \dots, p_n . \mathcal{H}_j : irreducible representations of $\hat{\mathfrak{g}}$ with highest weight λ_j at level K.

 \mathcal{M}_p denotes the set of meromorphic functions on Σ with poles at most at p_1, \cdots, p_n .

The space of conformal blocks - definition -

Suppose $0 \leq \lambda_1, \dots, \lambda_n \leq K$. $p_1, \dots, p_n \in \Sigma$ Assign highest weights $\lambda_1, \dots, \lambda_n$ to p_1, \dots, p_n . \mathcal{H}_j : irreducible representations of $\hat{\mathfrak{g}}$ with highest weight λ_j at level K.

 \mathcal{M}_p denotes the set of meromorphic functions on Σ with poles at most at p_1, \cdots, p_n .

The space of conformal blocks is defined as

$$\mathcal{H}_{\Sigma}(p,\lambda) = \mathcal{H}_{\lambda_1} \otimes \cdots \otimes \mathcal{H}_{\lambda_n} / (\mathfrak{g} \otimes \mathcal{M}_p)$$

where $\mathfrak{g} \otimes \mathcal{M}_p$ acts diagonally via Laurent expansions at $p_1, \cdots, p_n.$

Conformal block bundle

 Σ_g : Riemann surface of genus g p_1, \cdots, p_n : marked points on Σ_g Fix the highest weights $\lambda_1, \cdots, \lambda_n$.

Conformal block bundle

 Σ_g : Riemann surface of genus g p_1, \dots, p_n : marked points on Σ_g Fix the highest weights $\lambda_1, \dots, \lambda_n$.

The union

$$\bigcup_{p_1,\cdots,p_n} \mathcal{H}_{\Sigma_g}(p,\lambda)$$

for any complex structures on Σ_g forms a vector bundle on $\mathcal{M}_{g,n}$, the moduli space of Riemann surfaces of genus g with n marked points.

Conformal block bundle

 Σ_g : Riemann surface of genus g p_1, \dots, p_n : marked points on Σ_g Fix the highest weights $\lambda_1, \dots, \lambda_n$.

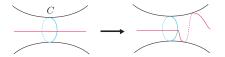
The union

$$\bigcup_{p_1,\cdots,p_n} \mathcal{H}_{\Sigma_g}(p,\lambda)$$

for any complex structures on Σ_g forms a vector bundle on $\mathcal{M}_{g,n}$, the moduli space of Riemann surfaces of genus g with n marked points.

This vector bundle is called the conformal block bundle and is equipped with a natural projectively flat connection. The holonomy representation of the mapping class group is called the quantum representation. $\Gamma_{g,n}$: mapping class group of the Riemann surface of genus g with n marked points (orientation preserving diffeomorphisms of Σ upto isotopy)

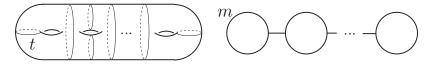
 $\Gamma_{g,n}$ is generated by Dehn twists.



Dehn twist along the curve ${\boldsymbol C}$

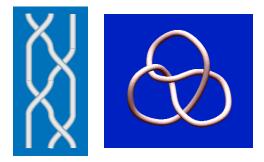
 $\Gamma_{g,n}$ acts on \mathcal{H}_{Σ} : quantum representation ρ_K .

A basis of the space of conformal blocks is given by trivalent graphs labelled by highest weights dual to pants decomposition of the surface.



The Dehn twist along t acts as $e^{2\pi i \Delta_m}$ (Δ_m : conformal weight)

A braid and its closure (figure 8 knot)



genus 0 case : The flat connection is the **KZ connection**, which is interpreted as **Gauss-Manin connection** via hypergeometric integrals.

 $p_1, \cdots, p_{n+1} \in \mathbb{C}P^1$ with $p_{n+1} = \infty$ Assign highest weights $\lambda_1, \cdots, \lambda_{n+1} \in \mathbb{Z}$ to p_1, \cdots, p_{n+1} . $p_1, \dots, p_{n+1} \in \mathbb{C}P^1$ with $p_{n+1} = \infty$ Assign highest weights $\lambda_1, \dots, \lambda_{n+1} \in \mathbb{Z}$ to p_1, \dots, p_{n+1} .

We have a flat vector bundle over the configuration space

$$X_n = \{(z_1, \cdots, z_n) \in \mathbf{C}^n ; z_i \neq z_j, i \neq j\}.$$

with KZ connection.

 $p_1, \dots, p_{n+1} \in \mathbb{C}P^1$ with $p_{n+1} = \infty$ Assign highest weights $\lambda_1, \dots, \lambda_{n+1} \in \mathbb{Z}$ to p_1, \dots, p_{n+1} .

We have a flat vector bundle over the configuration space

$$X_n = \{(z_1, \cdots, z_n) \in \mathbf{C}^n ; z_i \neq z_j, i \neq j\}.$$

with KZ connection.

The monodromy representation is the quantum representation of the braid groups.

$$\begin{split} \{I_{\mu}\}: \text{ orthonormal basis of } \mathfrak{g} \text{ w.r.t. Killing form.} \\ \Omega &= \sum_{\mu} I_{\mu} \otimes I_{\mu} \\ r_i: \mathfrak{g} \to End(V_i), \ 1 \leq i \leq n \text{ representations.} \end{split}$$

▶ < ∃ ▶ <</p>

$$\begin{split} \{I_{\mu}\}: \text{ orthonormal basis of } \mathfrak{g} \text{ w.r.t. Killing form.} \\ \Omega &= \sum_{\mu} I_{\mu} \otimes I_{\mu} \\ r_i: \mathfrak{g} \to End(V_i), \ 1 \leq i \leq n \text{ representations.} \end{split}$$

 Ω_{ij} : the action of Ω on the *i*-th and *j*-th components of $V_1 \otimes \cdots \otimes V_n$.

$$\omega = \frac{1}{\kappa} \sum_{i,j} \Omega_{ij} d \log(z_i - z_j), \quad \kappa \in \mathbf{C} \setminus \{0\}$$

 ω defines a flat connection for a trivial vector bundle over the configuration space X_n with fiber $V_1 \otimes \cdots \otimes V_n$ since we have

$$\omega \wedge \omega = 0$$

Monodromy representations of braid groups

As the holonomy we have representations

$$\theta_{\kappa}: P_n \to GL(V_1 \otimes \cdots \otimes V_n).$$

In particular, if $V_1 = \cdots = V_n = V$, we have representations of braid groups

$$\theta_{\kappa}: B_n \to GL(V^{n\otimes}).$$

Monodromy representations of braid groups

As the holonomy we have representations

$$\theta_{\kappa}: P_n \to GL(V_1 \otimes \cdots \otimes V_n).$$

In particular, if $V_1 = \cdots = V_n = V$, we have representations of braid groups

$$\theta_{\kappa}: B_n \to GL(V^{n\otimes}).$$

We shall express the horizontal sections of the KZ connection : $d\varphi = \omega \varphi$ in terms of homology with coefficients in local system homology on the fiber of the projection map

$$\pi: X_{m+n} \longrightarrow X_n.$$

 $X_{n,m}$: fiber of π , $Y_{n,m} = X_{n,m}/S_m$

$$\begin{array}{l} \mathcal{L}: \mbox{ rank 1 local system over } Y_{n,m} \\ m = \frac{1}{2}(\lambda_1 + \cdots + \lambda_n - \lambda_{n+1}) \\ \mathcal{H}_{n,m}: \mbox{ local system over } X_n \mbox{ with fiber } H_m(Y_{n,m},\mathcal{L}) \end{array}$$

Theorem

There is an injective bundle map from the conformal block bundle

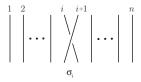
$$\bigcup \mathcal{H}_{\mathbf{C}P^1}(p,\lambda) \longrightarrow \mathcal{H}_{n,m}$$

via hypergeometric integrals. The KZ connection is interpreted as Gauss-Manin connection.

Asymptotic faithfulness

Any two elements of the mapping class group are distinguished by the quantum representation for sufficiently large K (J. Andersen).

 $B_n[k]$: normal subgroup of the braid group B_n generated by σ_i^k , $1 \le i \le n-1$.



Theorem (L. Funar and T. Kohno)

For any infinite set $\{k\}$, we have $\bigcap_k B_n[2k] = \{1\}$.

A positive answer to Squier's conjecture.

The quantum representations are projectively unitary.

$$\rho_K : \Gamma_g \longrightarrow PU(\mathcal{H}_{\Sigma_g})$$

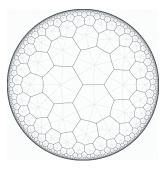
The k-th Johnson subgroup acts trivially on the k-th lower central series of the fundamental group $\pi_1(\Sigma_g)$.

The image of the quantum representation is "big" in the following sense.

Theorem (L. Funar and T. Kohno)

Suppose $g \ge 4$ and K sufficiently large. Then the image of any Johnson subgroup by ρ_K contains a non-abelian free group.

Images of braid groups B_3 in the mapping class group by the quantum representation ρ_K are related to Schwarz triangle groups.



tessellation of the Poincaré disc by the triangle group

Gilmer and Masbaum show in the case $\kappa = K + 2$ is odd prime, the image of the quantum representation ρ_K is contained in

 $PU(\mathcal{O}_{\kappa})$

where \mathcal{O}_{κ} is the ring of cyclotomic integers:

 $\mathcal{O}_{\kappa} \subset \mathbf{Q}(e^{2\pi i/\kappa})$

Suppose g, K sufficiently large.

Theorem (L. Funar and T. Kohno)

 $\rho_K(\Gamma_g)$ is of infinite index in $PU(\mathcal{O}_\kappa)$.

Reference: L. Funar and T. Kohno, On images of quantum representations of mapping class groups, arXiv:0907.0568