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Motivation and Motivic Invariants

Topological Invariants of Singular Points

Motivic Invariants: Idea and Context

Milnor fibration
f: A(‘é“ — A}C non-constant algebraic or analytic morphism
x € f~1{0} singular point.

ForO0<d<<e<l1
o f:f}(D})NB(x,e) — D} locally trivial C*-fibration
o Fry:=f 1t} NB(x,e) Milnor fibre of f at the point x.
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Motivation and Motivic Invariants

Topologlcal Invariants of Singular Points
\Y

lotivic Invariants: Idea and Context

Topology of Fr

@ Betti numbers b;(Fr x) = dim(CHi(Ff,xac)
o Euler characteristic x(Frx) = ZIZO(—I)idim@Hi(Ff,X, C)

If x is an isolated singular point of f~1{0},

| 1 it =0,
bi(Ffx) = dimcH'(Frx,C) = ¢ p(f,x) if i=d,
0 it i£0,d

cElbaxenll s the Milnor number.

(6x1 T OXg 41

where p(f, x) = dim
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Motivation and Motivic Invariants

Topological Invariants of Singular Points

Motivic Invariants: Idea and Context

Geometric Monodromy The diffeomorphism of F¢ ,
corresponding to going once around the boundary of Dy.

Algebraic Monodromy Operator of the cohomology ring induced
by the geometric monodromy

M; .+ H*(Ffx,C) — H*(Ffx,C).

Theorem (Monodromy Theorem)

The endomorphism My , is quasi-unipotent: 3A, B € N such that
(M7, — 1B =0.

= The eigenvalues of My , are roots of unit.
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Motivation and Motivic Invariants
Topological Invariants of Singular Points
Motivic Invariants: Idea and Context

Theorem (Steenbrink, Saito, Navarro-Aznar)

H (Fr.x,Q) enjoys a mixed Hodge structure compatible with Mg :

[H'(Frx, Q)] == Z[Gr,"/’VH"(FﬂX,Q)] € Ko(HS™).

Hodge-Steenbrink spectrum of f at a singular point

hsp(f,x) == > nalf, x)t%,

acQ
where n(f,x) := 3;(—1)'dime Gred = {9+ (Ff ,,C) o-2na
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Motivation and Motivic Invariants
Topological Invariants of Singular Points

Motivic Invariants: Idea and Context

Example: f = (y? — x3)2 — x%y.

Ei (4,2) E5(26,11) | E, (6,3)

Es (127 5)

—— £6(1,1)

E4 (13,6)

F¢ o is a genus 8 surface with a hole (due to the intersection with
the strict transform Eg of £f=1{0}).

u(f,0) = b1(Fro) = 16 and x(Fro) = —15
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Motivation and Motivic Invariants

Topological Invariants of Singular Points

Motivic Invariants: Idea and Context

A’Campo Formula for the Monodromy Zeta Function:

1—s%)(1—s%)(1—s13
fo,X(S) = ( (1 _)(512)(1 )_( 526) )

Formulas by Schrauwen, Steenbrink & Stevens (resolution) + Saito
& Nemethi (Puiseux pairs)

11
hsp(f, x) = $5/12 4 411/12 4 413/12 | ,19/12 4 Z t%
i=0
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Motivation and Motivic Invariants

Idea (Denef-Loeser):

Substitute the Milnor fibre F¢ , and its monodromy operator Mr
by the motivic Milnor fibre S¢, € K{'(Varc)[L™1].

Kg(VarC) is the Grothendieck ring of complex algebraic varieties
endowed with a good ji-action, where

pn := SpecC[x]/(x" —=1) and [i:=Ilimpu,.

«—

Notation: L := [AL] and M# := Kél(VarC)[L_l].
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Motivation and Motivic Invariants
Topological Invariants of Singular Points
Motivic Invariants: Idea and Context

Theorem (Deligne)

If X is a complex algebraic variety, H.(X,Q) has a mixed Hodge
structure. Furthermore, if X had a good [i-action, then the mixed
Hodge structure is endowed with a quasi-unipotent homomorfism.

Hodge Caracteristic

xpem Kg(Var(c) — Ko(HS™")

X, il = S (1) THA(X, @), M]

i

and there is a notion of spectrum Sp([X, ii).
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Zeta functions

L(AZTY)o arcs of AZT! centered at 0

C
(01(t), ..., pg+1(t)) € (C[[t]])9*? such that
)=0forall1<i<d+1

90

S
o

L,(AZ)o n-jets of AZ™ centered at 0:

© = (¢1(1), ..., pa41(t)) € (C[t]/(£"1))9+! such that
9i(0)=0forall 1 <i<d+1

Truncation map 7, : E(Ag;+l)0 — ﬁn(Aéﬂ)O
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Arcs and n-jets
Zeta Fu
Motivic

Zeta functions

f: A(‘é‘H — AL non-constant morphism with f(0) = 0 and
v € LIAL)o

= fop=ast’ +as 1t +-- a2, £0
@ ordifop:=s ac(f o) = as
o X, = {p € Ly(AZ)o|ord:f 0 p = n}

o Xp1:={peX,|ac(fop)=1}

The set X, (resp. X,1) is a constructible subset of E,,(Aé“)o
and C* (resp. un) acts on it.
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Arcs and n-jets
Zeta Fu
Motivic

Zeta functions

Denote Z,, (1) the preimage of X}, (1 in E(A(dCH)O.
The motivic measure is given by

pimot(Zn (1)) = [Xn )] - L7 € KB (Vare)[L Y]

Motivic Zeta Function (Denef and Loeser)

Znalve f T Zﬂmot n)T

= Z Hmot(zn,l) T".
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Arcs and n-jets
Zeta Functions

Zeta functions

Motivic Milnor Fibre

Rationality result:

Theorem (Denef-Loeser)

These zeta functions are rational functions w.r.t. T. With help of
embedded resolution of the singularity (f~1{0},0), there are
expressions like

267 = 0" ATl L

1—LvTh
IcJ
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Arcs and n-jets

Zeta functions

Motivic Milnor Fibre

Two connections with monodromy:

Monodromy Conjecture (lgusa):

If s, = is a pole of the topological zeta function
Xtop(Z™Ve(f,1L%)) then e~2™ is an eigenvalue of the
monodromy of f at some point of f~1{0}.
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Zeta functions

Motivic Milnor Fibre

The Motivic Milnor Fibre is defined as

St = —limr oo Z(f, T) € Kl (Varc)[L™Y.

Theorem (Denef-Loeser)

Xh(Frx) = Xh(sf,x) € Ko(HS™")

= 5S¢  recovers cohomological invariants of F¢ ,; e.g.

hsp(f,x) = Sp((—1)?(S¢x — 1))

Manuel Gonzilez Villa Motivic Zeta Functions for Quasi-Ordinary Hypersurface Singula



Arcs and n-jets

Zeta functions Zeta Functions

Motivic Milnor Fibre

Example: f = (y2 — x3)? — x5y.

Formulas by Loeser and Veys

10 1 11 1
14
( 11+265+1+s

Xtop(Znaive(fa ]LS)) _

T 5+12s 15 )

Formula by Guibert

Sro=[{(xy) € C?|(y* =) = 1}]
+{(x,y) € C?y? =xP =1}] = [po]L — L +1
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Quasi-ordinary Singularities

A germ (S,0) C (A(‘éﬂ, 0) of complex hypersurface is
quasi-ordinary if there exists a proper and finite morphism onto
(AZ,0) whose discriminant lies on x7 - - - x4 = 0.

Theorem (Abhyankar-Jung)

Let f € C{xy,...,xq4}[Y] be an quasi-ordinary polynomial with
n = degf. Then, there exits a root £ € (C{xll/" ...,xcl/"} of f.

)

Manuel Gonzilez Villa Motivic Zeta Functions for Quasi-Ordinary Hypersurface Singula



Quasi-ordinary Singularities

Characteristic Exponents:
1
€6 — ¢l = XAt H, with Ay € Ezd.

where XAst = xl)‘“’1 - -x:/\“‘d and Hg(0) # 0.

Theorem (Lipman-Gau)

If f is a irreducible quasi-ordinary polynomial, the finite set of
characteristic exponents is totally ordered

AL < A2 << Ay

Furthermore, the (normalized) characteristic exponents determine
and are determined by the embedded topological type.
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Quasi-ordinary Singularities

Examples of quasi-ordinary hypersurface singularities

@ Plane algebraic curve singularities

e Whitney Umbrella: z2 — x%y (A1 = (1,1/2))

o (22— xy3)t —x*13 (A1 =(1/2,3/2), )2 = (1/2,7/4))
@ Also generalize some aspects of toric singularities:

The normalization is an affine normal toric variety (Gonzilez
Pérez).
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Result and tools
Embedded Resolution for Quasi-ordinary Singularities
Subdivision of the arc space

Computation of the Motivic Zeta Function Motivic measure of Hy 1

Theorem (Gonzalez-Pérez & —)

The naive and motivic zeta functions Z(f, T), the motivic Milnor
fibre S¢ o and the spectrum hsp(f,0) of an irreducible
quasi-ordinary hypersurface singularity are determined by the
embedded topological type.

Explicit formulas for all these invariants in terms of the
characteristic exponents.

Corolary (Budur, Gonzélez-Pérez & —)

The log canonical threshold of an irreducible quasi-ordinary
hypersurface singularity is also determined by the embedded
topological type.
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Result and tools
Embedded Res: ion for Quasi-ordinary Singularities

Subdivision of rc space
Computation of the Motivic Zeta Function Motivic measure of Hy 1

Previous work:
e For plane curve sinsularities (d = 1) by Guibert.
@ Artal, Cassou-Nogués, Luengo & Melle studied the “poles” of

the naive zeta function of quasi-ordinary singularities with
help of the arc space and Newton transformations.

The computation of the motivic zeta function requires another
approach.
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Result and tools
Embedded Res: ion for Quasi-ordinary Singularities

Subdivision of rc space
Computation of the Motivic Zeta Function Motivic measure of Hy 1

Our Tools:

@ Describe the contact of the arcs with the hypersurface with
help of the toric embedded resolution.

@ Use semi-roots of f to subdivide the space of arcs.

@ Measure the subsets of arcs with help of change of variables
formula of Kontsevich, Denef & Loeser.
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Result and tools
Embedded Resolution for Quasi-ordinary Singularities

Subdivision of the arc space
Motivic measure of Hy ;

Computation of the Motivic Zeta Function

Embedded resolution of irreducible quasi-ordinary
hypersurfaces (Gonzalez-Pérez)

2 S
w — U — A

@ m; canonical partial resolution, sequence of g toric
morphisms determined by the characteristic exponents.
e U singular space (toric singularities)

@ 7> standard toric embedded resolution of U.
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Result and tools
Embedded Resolution for Quasi-ordinary Singularities

Subdivision of the arc space
Computation of the Motivic Zeta Function Motivic measure of Hy 1

Canonical partial resolution
The Newton polygon of f is determined by A1 and n = deg, f

A A
f=(Ym—xmA)a ... where xmM = x0T

Denote My = Z¢, My = Mo x Z
My = My + M7Z, ny = [Ml : M()] and n = nye;.

(0, n)

(nA1,0)
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Result and tools
Embedded Resolution for Quasi-ordinary Singularities

Subdivision of the arc space
Computation of the Motivic Zeta Function Motivic measure of Hy 1

Denote p = Rdzo p=pxRxg
No and Nj dual lattices to My and M.

The Newton polygon induces a dual subdivision
Y1 = {5,,5,,p1} of the cone p'. It is rational with respect to N{.

It gives a toric morphism
|_|1 . Z]_ — Z() = Cd+1

Manuel Gonzilez Villa Motivic Zeta Functions for Quasi-Ordinary Hypersurface Singula



Result and tools
Embedded Resolution for Quasi-ordinary Singularities

Subdivision of the arc space
Computation of the Motivic Zeta Function Motivic measure of Hy 1

The affine toric subvariety ZF_)LN(/) of Z; associated to p; has a
product structure: ZﬁLN(I) =Z,n X C*

The restriction of the projection Zﬁ1,Né =Z,n X C"— Z, N, to
the strict transform (S(), 0;) of (S, 0) = (f~1{0}, 0) is an
unramified finite cover over the torus Ty, of Z, y,.

(51, 01) is a toric quasi-ordinary
hypersurface singularity

with g — 1 characteristic exponents
A2 — Ay Ag — A1
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Result and tools
Embedded Resolution for Quasi-ordinary Singularities

Subdivision of the arc space
Computation of the Motivic Zeta Function Motivic measure of Hy 1

Previous construction gives a first canonical morphism determined
by A1 and n = degyf.

Iterating we get the canonical partial resolution

m U — cdtl

The strict transform (S(&),0) of (S, o) is isomorphic to the normal
affine variety Z, p,; i.e. it is the normalization.
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Result and tools
Embedded Resolution for Quasi-ordinary Singularities

Subdivision of the arc space
Computation of the Motivic Zeta Function Motivic measure of Hy 1

Semiroots
We associate to f a set of semi-roots

Y =fy, fi, ..., fg =f € C{x}[Y],
parametrized by truncations of a root £(x; 1/n ...,x;/") of f.

Example:
f= (Y%= x3)* — x}xd3 (A = (1/2,3/2), A2 = (1/2,7/4))

fo=Y A=Y>—x13 h=f
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Result and tools
Embedded Resolution for Quasi-ordinary Singularities

Subdivision of the arc space
Computation of the Motivic Zeta Function Motivic measure of Hy 1

Classifying arcs

Given an arc ¢ we measure its contact order with the coordinate
hyperplanes and the semi-roots.

ord(x, f)(¢) = (ord¢(x1 0 ), ..., ord¢(xq © @), 0ord¢(Y o ¢),

ord:(fi o ¢),orde(fo 0 ¢),...,orde(fg 0 @) € Z‘;agﬂ'
Rewrite
Z(F.T)= Y wl(Hea)THore
kezd gt
with

Hi1 == {@]ord(x,f) () = k, ac(f o ) = 1} with k € Zggg“
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Result and tools
Embedded Resolution for Quasi-ordinary Singularities

Subdivision of the arc space
Computation of the Motivic Zeta Function Motivic measure of Hy 1

The indices k such that Hy 1 # ) are the integer points of the

interior of a d + 1 dimensional fan © C Rd+g+1

g+1
© = |_| e_l e,l = {Uf’o-j_vpj} @g-i-l = Og+1

dlma =d+1, dimp; = d

© is determined by the characteristic exponents.

g+1
Z(E,To=>.5 3 u(Hiy) T
j=10€06; ke;mzd+g+1
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Result and to
Embedded R tion for Quasi-ordinary Singularities

Subdivision of the arc space
Computation of the Motivic Zeta Function Motivic measure of Hy 1

€3 €4 €5

(0,4,6,13,52)

(0,2,3,6,24)

€1 €2

Projectivization of the fan © C 2520 of f = (2% — xy3)* + x*y13.
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Result and tools
Emb d Resolution for Quasi-ordinary Singularities

Subdivision of the arc space
Computation of the Motivic Zeta Function Motivic measure of Hy ;

With help of the toric resolution 7 and the Change of Variable
Theorem of Kontsevitch and Denef & Loeser compute the
motivic measure of Hj ;

ftmot(Hi1) = c1(o) - L8

where o is the unique cone of © such that k belongs to its interior.
o ci(0) € Kl (Varg).
e {,(k) is a linear function on k.

e Both c;(0) and &, depend only on ¢ C © and can be
expressed in terms of the characteristic exponents.
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Result and tools
Emb d R ion for Quasi-ordinary Singularities

Subdivision of the arc space
Computation of the Motivic Zeta Function Motivic measure of Hy ;

Fixed k there are uniques j and 0 € ©; with k € int(¢) N Z+e+1,
k determines a unique element k() € piNNI_, forall i <.

Take a regular subdivision X’ of X; with a cone 7; as in the figure
dimm;Np;=d
H) = (| (0 - 0 ) (9) € Hha}

By Change of variables
Nmot(Hk,l) = leEi)1 L_ordtjac(miomow”)d,U«mot =

a1 (0)(L — 1)dim971Lf§j(k)
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Result and
Embedded ution for Quasi-ordinary Singularities

Subdivision of the arc space
Computation of the Motivic Zeta Function Motivic measure of Hy ;

Finally
Z(F,T)= Y n(Ha) T =3 a(o)- S,

d+g+1
kezlte o0
where S, are rational functions of degree 0 w.r.t. T

S, are calculated with help of the generating functions ®, of the
cone o € © and the linear form &, (k).
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uasi-ordinary Singularities

Computation of the Motivic Zeta Function

Example:
f= (22 _ Xy3)4 _ X4y13

A1 =(1/2,3/2), Ao = (1/2,7/4)

The motivic Milnor fibre is
Sro = ci(p1)(1—L) +[us]L+ci(p2)(1 — L) — [ma]L(1 - L)+ (1 -L)*.
with

alp) = [{(x,y) € (CP|(y* —x)* =1}]
and

a(p2) = [{(x,¥) € (C*P|y* —x=1}].

The Hodge-Steenbrink spectrum is

1—1¢
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Result and tools
Emb d Resolution for Quasi-ordinary Singularities

Subdivision of the arc space
Computation of the Motivic Zeta Function Motivic measure of Hy ;

Log canonical threshold

p:Y — U c C1 alog resolution of f
E; for i € J be the irreducible components of 1 ~1(0).
a; the order of vanishing of f o u along E;,
ki the order of vanishing of det(Jac),, along E;

The log canonical threshold of 7 at the origin is defined as
ki+1 .
Icto(f) := min {:_ | ie J} .

f is log canonical at 0 iff Icto(f) = 1.
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Result and tools
Embedded Resolution for Quasi-ordinary S
Subdivision of the arc space

Computation of the Motivic Zeta Function Motivic measure of Hy ;

Theorem (Budur, Gonzalez-Pérez & —)
Let f € C{xi,...,x4}[y] be a quasi-ordinary irreducible polynomial.

@ The number Icty(f) is determined by the embedded
topological type of the germ defined by f = 0 at the origin.

o f is log canonical if and only if g =1 and either \1 ; € {1, %}

or A171 = nil
_f min{L A1} if Ma# g, orif g=1,
° lCtO(f) o { min{Ag,A3} if )\171 = n%’ 8 > 1.
where
1+)\11 n1(1+)\21) 1+)\Qg
Al = —— A= ’ and A3 = ————.
YT e Y a(m(+ A1) —1) > SRy
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Result and tools
Emb d R ion for Quasi-ordinary Singularities

Subdivision of the arc space
Computation of the Motivic Zeta Function Motivic measure of Hy ;

Computation of Icty(f)

Theorem (Halle and Nicaise / Veys and Zuiiiga-Galindo)

The biggest pole of Zp0r f(L7°)o is equal to —lcto(f).

Proposition (Gonzélez-Pérez & —)

If f € C{x1,...,xq}[y] is an irreducible quasi-ordinary polynomial

then the poles of Zpnor (L 7°)o are contained in the set

{—éii(kjl | k is generating vector of 0,0 € ©}.
&
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Result and tools
Emb d Resolution for Quasi-ordinary Singularities
Subdivision of the arc space

Computation of the Motivic Zeta Function Motivic measure of Hy ;

References:

P.D. Gonzilez-Pérez & —, Motivic Milnor fiber of a
Quasi-Ordinary Hypersurface, arXiv:1105.2480

N. Budur, P.D. Gonzélez-Pérez & —, Log Canonical Thresholds of
Quasi-Ordinary Hypersurface Singularities, arXiv:1105.2794

Thank you for your attention!!
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