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Milnor fibration

f : Ad+1
C → A1

C non-constant algebraic or analytic morphism

x ∈ f −1{0} singular point.

For 0 < δ << ε < 1

f : f −1(D∗δ) ∩ B(x , ε)→ D∗δ locally trivial C∞-fibration

Ff ,x := f −1{t} ∩ B(x , ε) Milnor fibre of f at the point x .
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Topology of Ff ,x

Betti numbers bi (Ff ,x) := dimCH i (Ff ,x ,C)

Euler characteristic χ(Ff ,x) :=
∑

i≥0(−1)idimCH i (Ff ,x ,C)

If x is an isolated singular point of f −1{0},

bi (Ff ,x) = dimCH i (Ff ,x ,C) =


1 if i = 0,
µ(f , x) if i = d ,
0 if i 6= 0, d

where µ(f , x) = dimC
C[[x1,...,xd+1]]

( ∂f
∂x1

,..., ∂f
∂xd+1

)
is the Milnor number.
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Geometric Monodromy The diffeomorphism of Ff ,x

corresponding to going once around the boundary of Dδ.

Algebraic Monodromy Operator of the cohomology ring induced
by the geometric monodromy

M•f ,x : H•(Ff ,x ,C)→ H•(Ff ,x ,C).

Theorem (Monodromy Theorem)

The endomorphism Mf ,x is quasi-unipotent: ∃A,B ∈ N such that

(MA
f ,x − I )B = 0.

=⇒ The eigenvalues of Mf ,x are roots of unit.

Manuel González Villa Motivic Zeta Functions for Quasi-Ordinary Hypersurface Singularities



Motivation and Motivic Invariants
Zeta functions

Quasi-ordinary Singularities
Computation of the Motivic Zeta Function

Topological Invariants of Singular Points
Motivic Invariants: Idea and Context

Theorem (Steenbrink, Saito, Navarro-Aznar)

H i (Ff ,x ,Q) enjoys a mixed Hodge structure compatible with Mf ,x :

[H i (Ff ,x ,Q)] :=
∑
m

[GrW
m H i (Ff ,x ,Q)] ∈ K0(HSmon).

Hodge-Steenbrink spectrum of f at a singular point

hsp(f , x) :=
∑
α∈Q

nα(f , x)tα,

where nα(f , x) :=
∑

i (−1)idimCGrxd+1−αy
F H̃d+i (Ff ,x ,C)e−2πα
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Example: f = (y 2 − x3)2 − x5y .

-

E1 (4, 2) E2 (6, 3)

E3 (12, 5)

E5 (26, 11)

E4 (13, 6)

E6 (1, 1)

Ff ,0 is a genus 8 surface with a hole (due to the intersection with
the strict transform E6 of f −1{0}).

µ(f , 0) = b1(Ff ,0) = 16 and χ(Ff ,0) = −15
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A’Campo Formula for the Monodromy Zeta Function:

ξMf ,x
(s) =

(1− s4)(1− s6)(1− s13)

(1− s12)(1− s26)

Formulas by Schrauwen, Steenbrink & Stevens (resolution) + Saito
& Nemethi (Puiseux pairs)

hsp(f , x) = t5/12 + t11/12 + t13/12 + t19/12 +
11∑
i=0

t
15+2i

26
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Idea (Denef-Loeser):

Substitute the Milnor fibre Ff ,x and its monodromy operator Mf ,x

by the motivic Milnor fibre Sf ,x ∈ K µ̂
0 (VarC)[L−1].

K µ̂
0 (VarC) is the Grothendieck ring of complex algebraic varieties

endowed with a good µ̂-action, where

µn := SpecC[x ]/(xn − 1) and µ̂ := lim←−µn.

Notation: L := [A1
C] and Mµ̂ := K µ̂

0 (VarC)[L−1].
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Theorem (Deligne)

If X is a complex algebraic variety, H i
c(X ,Q) has a mixed Hodge

structure. Furthermore, if X had a good µ̂-action, then the mixed
Hodge structure is endowed with a quasi-unipotent homomorfism.

Hodge Caracteristic

χmon
h : K µ̂

0 (VarC)→ K0(HSmon)

[X , µ̂] 7→
∑

i

(−1)i [H i
c(X ,Q),M]

and there is a notion of spectrum Sp([X , µ̂).
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L(Ad+1
C )0 arcs of Ad+1

C centered at 0

ϕ ≡ (ϕ1(t), ..., ϕd+1(t)) ∈ (C[[t]])d+1 such that
ϕi (0) = 0 for all 1 ≤ i ≤ d + 1

Ln(Ad+1
C )0 n-jets of Ad+1

C centered at 0:

ϕ ≡ (ϕ1(t), ..., ϕd+1(t)) ∈ (C[t]/(tn+1))d+1 such that
ϕi (0) = 0 for all 1 ≤ i ≤ d + 1

Truncation map πn : L(Ad+1
C )0 → Ln(Ad+1

C )0
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f : Ad+1
C → A1

C non-constant morphism with f (0) = 0 and

ϕ ∈ L(Ad+1
C )0

=⇒ f ◦ ϕ = asts + as+1ts+1 + · · · , as 6= 0

ordt f ◦ ϕ := s ac(f ◦ ϕ) := as

Xn := {ϕ ∈ Ln(Ad+1
C )0 | ordt f ◦ ϕ = n}

Xn,1 := {ϕ ∈ Xn | ac(f ◦ ϕ) = 1}

Lemma

The set Xn (resp. Xn,1) is a constructible subset of Ln(Ad+1
C )0

and C∗ (resp. µn) acts on it.
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Denote Zn,(1) the preimage of Xn,(1) in L(Ad+1
C )0.

The motivic measure is given by

µmot(Zn,(1)) := [Xn,(1)] · L−n(d+1) ∈ K
(µ̂)
0 (VarC)[L−1]

Motivic Zeta Function (Denef and Loeser)

Znaive(f ,T ) :=
∑

µmot(Zn)T n,

Z (f ,T ) :=
∑

µmot(Zn,1)T n.
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Rationality result:

Theorem (Denef-Loeser)

These zeta functions are rational functions w.r.t. T . With help of
embedded resolution of the singularity (f −1{0}, 0), there are
expressions like

Z (f ,T ) =
∑
I⊂J

(L− 1)|I |−1[Ẽ ◦I , µ̃]
∏
i∈I

L−νi T Ni

1− L−νi T Ni
.
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Two connections with monodromy:

Monodromy Conjecture (Igusa):

If so = ν
N is a pole of the topological zeta function

χtop(Znaive(f ,Ls)) then e−2πiso is an eigenvalue of the
monodromy of f at some point of f −1{0}.
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The Motivic Milnor Fibre is defined as

Sf ,x := −limT→∞Z (f ,T ) ∈ K µ̂
0 (VarC)[L−1].

Theorem (Denef-Loeser)

χh(Ff ,x) = χh(Sf ,x) ∈ K0(HSmon)

=⇒ Sf ,x recovers cohomological invariants of Ff ,x ; e.g.

hsp(f , x) = Sp((−1)d(Sf ,x − 1))
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Example: f = (y 2 − x3)2 − x5y .

Formulas by Loeser and Veys

χtop(Znaive(f ,Ls)) =
10

5 + 12s
− 1

15
(14

11

11 + 26s
+

1

1 + s
)

Formula by Guibert

Sf ,0 = [{(x , y) ∈ C2 | (y 2 − x3)2 = 1}]

+[{(x , y) ∈ C2 | y 2 − x13 = 1}]− [µ2]L− L + 1
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A germ (S , 0) ⊂ (Ad+1
C , 0) of complex hypersurface is

quasi-ordinary if there exists a proper and finite morphism onto
(Ad

C, 0) whose discriminant lies on x1 · · · xd = 0.

Theorem (Abhyankar-Jung)

Let f ∈ C{x1, ..., xd}[Y ] be an quasi-ordinary polynomial with

n = degf . Then, there exits a root ξ ∈ C{x1/n
1 , ..., x

1/n
d } of f .
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Characteristic Exponents:

ξ(s) − ξ(t) = Xλst Hst with λst ∈
1

n
Zd .

where Xλst := x
λst,1

1 · · · xλst,d

d and Hst(0) 6= 0.

Theorem (Lipman-Gau)

If f is a irreducible quasi-ordinary polynomial, the finite set of
characteristic exponents is totally ordered

λ1 < λ2 < · · · < λg .

Furthermore, the (normalized) characteristic exponents determine
and are determined by the embedded topological type.
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Examples of quasi-ordinary hypersurface singularities

Plane algebraic curve singularities

Whitney Umbrella: z2 − x2y (λ1 = (1, 1/2))

(z2 − xy 3)4 − x4y 13 (λ1 = (1/2, 3/2), λ2 = (1/2, 7/4))

Also generalize some aspects of toric singularities:
The normalization is an affine normal toric variety (González
Pérez).
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Theorem (González-Pérez & —)

The naive and motivic zeta functions Z (f ,T ), the motivic Milnor
fibre Sf ,0 and the spectrum hsp(f , 0) of an irreducible
quasi-ordinary hypersurface singularity are determined by the
embedded topological type.

Explicit formulas for all these invariants in terms of the
characteristic exponents.

Corolary (Budur, González-Pérez & —)

The log canonical threshold of an irreducible quasi-ordinary
hypersurface singularity is also determined by the embedded
topological type.
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Previous work:

For plane curve sinsularities (d = 1) by Guibert.

Artal, Cassou-Nogués, Luengo & Melle studied the “poles” of
the naive zeta function of quasi-ordinary singularities with
help of the arc space and Newton transformations.

The computation of the motivic zeta function requires another
approach.
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Our Tools:

Describe the contact of the arcs with the hypersurface with
help of the toric embedded resolution.

Use semi-roots of f to subdivide the space of arcs.

Measure the subsets of arcs with help of change of variables
formula of Kontsevich, Denef & Loeser.
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Embedded resolution of irreducible quasi-ordinary
hypersurfaces (González-Pérez)

π2 π1

W −→ U −→ Ad+1
C

π1 canonical partial resolution, sequence of g toric
morphisms determined by the characteristic exponents.

U singular space (toric singularities)

π2 standard toric embedded resolution of U.
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Canonical partial resolution

The Newton polygon of f is determined by λ1 and n = degy f

f = (Y n1 − xn1λ1)e1 + · · · where xn1λ1 := x
n1λ1,1

1 · · · xn1λ1,d

d

Denote M0 = Zd , M ′0 = M0 × Z
M1 = M0 + λ1Z, n1 = [M1 : M0] and n = n1e1.

-

6

�
�

�
�
��	

�
�
�
�

S
S
S
S
S
S
S

(0, n)

(nλ1, 0)

r

r
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Denote ρ = Rd
≥0 ρ′ = ρ× R≥0

N0 and N ′0 dual lattices to M0 and M ′0.

The Newton polygon induces a dual subdivision
Σ1 = {σ̄+

1 , σ̄
−
1 , ρ̄1} of the cone ρ′. It is rational with respect to N ′0.

-

6

�
�
��	

�
�
�
�
�
�

\
\
\
\
!!
!!
!!
!r

r ρ̄1

σ̄+
1

σ̄−1
It gives a toric morphism
Π1 : Z1 → Z0 = Cd+1
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The affine toric subvariety Zρ̄1,N′0
of Z1 associated to ρ̄1 has a

product structure: Zρ̄1,N′0
≡ Zρ,N1 × C∗

The restriction of the projection Zρ̄1,N′0
≡ Zρ,N1 × C∗ → Zρ,N1 to

the strict transform (S (1), o1) of (S , o) = (f −1{0}, o) is an
unramified finite cover over the torus TN1 of Zρ,N1 .

-

6

�
�
��	

�
�
�
�
�
�

\
\
\
\
!!
!!
!!
!r

r ρ̄1

σ̄+
1

σ̄−1

(S (1), o1) is a toric quasi-ordinary
hypersurface singularity
with g − 1 characteristic exponents
λ2 − λ1, . . . , λg − λ1
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Previous construction gives a first canonical morphism determined
by λ1 and n = degY f .

Iterating we get the canonical partial resolution

π1 : U → Cd+1

The strict transform (S (g), o) of (S , o) is isomorphic to the normal
affine variety Zρ,Ng ; i.e. it is the normalization.
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Semiroots

We associate to f a set of semi-roots

Y = f0, f1, ..., fg = f ∈ C{x}[Y ],

parametrized by truncations of a root ξ(x
1/n
1 , ..., x

1/n
d ) of f .

Example:

f = (Y 2 − x1x3
2 )4 − x4

1 x13
2 (λ1 = (1/2, 3/2), λ2 = (1/2, 7/4))

f0 = Y f1 = Y 2 − x1x3
2 f2 = f
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Classifying arcs

Given an arc ϕ we measure its contact order with the coordinate
hyperplanes and the semi-roots.

ord(x, f)(ϕ) = (ordt(x1 ◦ ϕ), ..., ordt(xd ◦ ϕ), ordt(Y ◦ ϕ),

ordt(f1 ◦ ϕ), ordt(f2 ◦ ϕ), ..., ordt(fg ◦ ϕ)) ∈ Zd+g+1
≥0 .

Rewrite
Z (f ,T ) =

∑
k∈Zd+g+1

>0

µ(Hk,1)T kd+g+1

with

Hk,1 := {ϕ | ord(x, f)(ϕ) = k, ac(f ◦ ϕ) = 1} with k ∈ Zd+g+1
≥0
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The indices k such that Hk,1 6= ∅ are the integer points of the

interior of a d + 1 dimensional fan Θ ⊂ Rd+g+1
≥0 .

Θ =

g+1⊔
j=1

Θj Θj = {σ+
j , σ

−
j , ρj} Θg+1 = σg+1

dimσ•j = d + 1, dimρj = d

Θ is determined by the characteristic exponents.

Z (f ,T )0 =

g+1∑
j=1

∑
θ∈Θj

∑
k∈
◦
θ∩Zd+g+1

µ(Hk,1)T η(k).
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ε1 ε2

ε3

(2, 0, 1, 2, 8) (0, 2, 3, 6, 24)

σ−1

σ+
1

σ−2

σ+
2

ε5ε4

(0, 4, 6, 13, 52)

Projectivization of the fan Θ ⊂ Z5
≥0 of f = (z2 − xy 3)4 + x4y 13.
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With help of the toric resolution π2 and the Change of Variable
Theorem of Kontsevitch and Denef & Loeser compute the
motivic measure of Hk,1

µmot(Hk,1) = c1(σ) · L−ξσ(k)

where σ is the unique cone of Θ such that k belongs to its interior.

c1(σ) ∈ K µ̂
0 (VarC).

ξσ(k) is a linear function on k.

Both c1(σ) and ξσ depend only on σ ⊂ Θ and can be
expressed in terms of the characteristic exponents.
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Fixed k there are uniques j and θ ∈ Θj with k ∈ int(θ) ∩ Zd+g+1.

k determines a unique element k(i) ∈ ρ̄i ∩ N ′i−1 for all i < j .

Take a regular subdivision Σ′i of Σi with a cone τi as in the figure

dimτi ∩ ρ̄i = d

H
(i)
k,1 := {ϕ | (πτi ◦ · · · ◦ πτ1)(ϕ) ∈ Hk,1}

-

6

�
�
��	

ρ̄i

,
,
,
,
,
,
,

���
���

���
��

c
c
c
c

r
r r

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

τi

k(i)

By Change of variables
µmot(Hk,1) =

∫
H

(i)
k,1

L−ordtJac(πτi ◦···◦πτ1 )dµmot =

c1(θ)(L− 1)dimθ−1L−ξj (k)
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Finally

Z (f ,T ) =
∑

k∈Zd+g+1
>0

µ(Hk,1)T kd+g+1 =
∑
σ∈Θ

c1(σ) · Sσ

where Sσ are rational functions of degree 0 w.r.t. T

Sσ are calculated with help of the generating functions Φσ of the
cone σ ∈ Θ and the linear form ξσ(k).
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Example:
f = (z2 − xy 3)4 − x4y 13

λ1 = (1/2, 3/2), λ2 = (1/2, 7/4)

The motivic Milnor fibre is

Sf ,0 = c1(ρ1)(1−L)+[µ8]L+c1(ρ2)(1−L)−[µ4]L(1−L)+(1−L)2.

with
c1(ρ1) = [{(x , y) ∈ (C∗)2|(y 2 − x)4 = 1}]

and
c1(ρ2) = [{(x , y) ∈ (C∗)2|y 4 − x = 1}].

The Hodge-Steenbrink spectrum is

hsp(f , 0) =
1− t

1− t1/8
t − t = t

9
8 + · · ·+ t

15
8
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Log canonical threshold

µ : Y → U ⊂ Cd+1 a log resolution of f
Ei for i ∈ J be the irreducible components of µ−1(0).
ai the order of vanishing of f ◦ µ along Ei ,
ki the order of vanishing of det(Jac)µ along Ei

The log canonical threshold of f at the origin is defined as

lct0(f ) := min

{
ki + 1

ai
| i ∈ J

}
.

f is log canonical at 0 iff lct0(f ) = 1.
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Theorem (Budur, González-Pérez & —)

Let f ∈ C{x1, ..., xd}[y ] be a quasi-ordinary irreducible polynomial.

The number lct0(f ) is determined by the embedded
topological type of the germ defined by f = 0 at the origin.

f is log canonical if and only if g = 1 and either λ1,i ∈ {1, 1
2}

or λ1,1 = 1
n1

.

lct0(f ) =

{
min{1,A1} if λ1,1 6= 1

n1
, or if g = 1,

min{A2,A3} if λ1,1 = 1
n1
, g > 1.

where

A1 =
1 + λ1,1

e0λ1,1
, A2 =

n1(1 + λ2,1)

e1(n1(1 + λ2,1)− 1)
and A3 =

1 + λ2,`

e1λ2,`
.
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Computation of lct0(f )

Theorem (Halle and Nicaise / Veys and Zuñiga-Galindo)

The biggest pole of Zmot,f (L−s)0 is equal to −lct0(f ).

Proposition (González-Pérez & —)

If f ∈ C{x1, . . . , xd}[y ] is an irreducible quasi-ordinary polynomial
then the poles of Zmot,f (L−s)0 are contained in the set

{− ξσ(k)
kd+g+1

| k is generating vector of σ, σ ∈ Θ}.
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Thank you for your attention!!
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