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Core topic of this talk

New perspective on Poincaré duality for singular spaces

X n: compact, oriented pseudomanifold, singular set Σ, only strata
of even codimension.
L2-cohomology (Cheeger):

I X − Σ equipped with conical Riemannian metric.

I Ω∗
(2)(X − Σ) = {ω |

∫
ω ∧ ∗ω <∞,

∫
dω ∧ ∗dω <∞}.

I H∗
(2)(X ) := H∗(Ω∗

(2)(X − Σ), d).

I H i
(2)(X )⊗ Hn−i

(2) (X )→ R nondegenerate.

I Ω∗
(2)(X − Σ) is no DGA w.r.t. ∧.



Intersection homology (Goresky, MacPherson)

I Perversity p̄: p̄(2) = 0, p̄(k) ≤ p̄(k + 1) ≤ p̄(k) + 1.

I IC p̄
∗ (X ) ⊂ C∗(X ): The larger the codim. k of a stratum, the

more a chain is allowed to deviate from transversality.

I IH p̄
∗ (X ) := H∗(IC p̄

∗ (X ), ∂).

I p̄ + q̄ = (0, 1, 2, . . .): IH p̄
i (X ;Q)⊗ IH q̄

n−i (X ;Q)→ Q
nondegenerate.

I IC ∗
p̄ (X ) has no p̄-internal product.



Chain level → Space level

I E∗ homology theory (Eilenberg-Steenrod.)

I Burdick, Conner, Floyd:
E∗ = homology of a chain functor ⇒ E∗ trivial.

I Exple: Bordism does not come from a chain functor.

I X n compact, oriented pseudomfd., perversity p̄.

I Program:

X  I p̄X  HI p̄∗ (X ) := H∗(I p̄X )
Space Space

I Poincaré Duality: H̃i (I p̄X ;Q)⊗ H̃n−i (I q̄X ;Q)→ Q
nondegenerate.

Call the I p̄X intersection spaces of X . (IX for p̄ = middle.)
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Construction of Intersection Spaces

X n = Mn ∪∂M=L cone(L).

I Def. A stage k Moore approximation of a CW-complex L is a
CW-complex L<k with a map f : L<k → L such that
f∗ : Hr (L<k) ∼= Hr (L) for r < k and Hr (L<k) = 0 for r ≥ k.

I P. Hilton: Exists if L is simply connected.

I Set k = n − 1− p̄(n).

I I p̄X := cone(L<k
f−→ L = ∂M ↪→ M).

I Attempt fiberwise Moore approximation for nonisolated
singularities (→ obstructions).



Present Existence and Duality Results

I Thm. (-) I p̄X with duality exists for X with isolated
singularities and simply connected links.

I Thm. (-) I p̄X with duality exists for depth 1 nonisolated
singularities with trivializable link bundle and simply conn.
links.
Exple. Buoncristiano-Rourke-Sanderson’s framified sets
(Stone stratification, all block bundles trivialized).

I Thm. (Florian Gaisendrees) I p̄X with duality exists for depth
1 twisted link bundles, spherical singular sets, simply conn.
links without odd-dimensional homology, and cellular action of
structure group.

I Thm. (-) HI ∗p̄ (X ;R) exists for depth 1 flat link bundles with
structure group acting isometrically.



Internal Algebraic Structure

I Trivially have DGA (C ∗(I p̄X ), d ,∪).

I For every p̄: HIp̄
i (X )⊗ HIp̄

j(X )→ HIp̄
i+j(X ).

I Consequently: HI ∗ 6∼=IH∗!

I Squaring operations Sqi : HI jp̄(X ;Z/2)→ HI j+i
p̄ (X ;Z/2).

Theorem
For dim X = n ≡ 0(4), the intersection forms on HIn/2(X ) and
IHn/2(X ) agree in the Witt-group W (Q) of the rationals
(symmetr. nondegenerate bilinear forms).



Generalized homology theories and intersection spaces

E spectrum  EI p̄∗ (X ) := E∗(I p̄X ).

Theorem (J. F. Adams)

Let E be a ring spectrum and M be a closed, E ∗-oriented manifold
with orientation class [M]E ∈ En(M ×M,M ×M −∆). Then

Ei (M) ∼= En−i (M), x 7→ [M]E/x .

Theorem (M. Spiegel)

Let K be complex K-theory and X a compact, K ∗-oriented
pseudomanifold with isolated singularities. If H∗(Links) is
torsion-free, then

KI p̄i (X ) ∼= KI n−i
q̄ (X ) (integrally).

Fails for Tors H∗(Links) 6= 0, and for KO.



De Rham Description

I X ⊃ Σ (2 strata, oriented).

I Assumptions: link bundle Lm → E → Σ flat, L Riemannian,
structure group acts isometrically.

I Flat link bundles arise in:
I Foliated stratified spaces (M. Saralegi-Aranguren, R. A.

Wolak),
I Reductive Borel-Serre compactifications of locally symmetric

spaces (nilmanifold fibrations).

I Codifferential d∗ : Ωk(L)→ Ωk−1(L).

I Cotruncation
τ≥kΩ∗(L) = · · · → 0→ ker d∗ → Ωk+1(L)→ Ωk+2(L)→ · · · .



De Rham Description

I Use fiberwise cotruncation.

I U ⊂ Σ open, small, U
π1← U × L

π2→ L, k = m − p̄(m + 1).

Definition
ΩI ∗p̄ (X ) ⊂ Ω∗(X − Σ): Near the end of X − Σ, ω looks locally in
the boundary direction like∑

π∗1ηi ∧ π∗2γi ,

ηi ∈ Ω∗(U), γi ∈ τ≥kΩ∗(L).

I Invariantly defined by flatness, isometric action.

I Set HI ∗p̄,dR(X ) = H∗(ΩI ∗p̄ (X )).



De Rham Description and DGA structure

Theorem (-)

1. For Σ = pt, HI ∗p̄,dR(X ) ∼= H̃I
∗
p̄(X ;R).

2. Poincaré Duality:

HI ip̄,dR(X )× HI n−i
q̄,dR(X )→ R, (ω, η) 7→

∫
X−Σ

ω ∧ η,

is nondegenerate.

3. (ΩI ∗p̄ (X ), d ,∧) is a DGA.

For 3, observe that (τ≥kΩ∗(L),∧) is a subalgebra of (Ω∗(L),∧),
but τ≤kΩ∗(L) is not.



Application: Leray-Serre Spectral Sequence of Flat Bundles

F → E → B flat, F Riemannian and orientable, structure group
acts isometrically.
Ω∗

MSE ⊂ Ω∗E : multiplicatively structured forms as above, H∗-isom.
ft≥k Ω∗

MSE ⊂ Ω∗
MSE : fiberwise cotruncated forms as above.

E2 : � � �

k �
((PPP

PP� �

� � �

� � �

−→
� � �

�
((PPP

PP� �

� � �

� � �

Theorem (-)

The Leray-Serre spectral sequence with R coefficients of a flat,
smooth, isometrically structured fiber bundle of smooth, closed
manifolds collapses at E2.

Flatness alone does not suffice! (Counterexamples, flat sphere
bundles with nontrivial Euler class, → Milnor).



Milnor: On the Existence of a Connection with Curvature
Zero

As a consequence to the previous theorem, we obtain:

Corollary (Milnor 1958)

The sphere bundle with structure group SO(n) over a smooth,
closed manifold B induced by any homomorphism π1(B)→ SO(n)
has trivial Euler class with real coefficients.

Though these results are of a topological nature, Milnor’s proof
relies on Chern-Weil theory.



Application: Equivariant Cohomology

Theorem (-)

I M be an oriented, closed, Riemannian manifold,

I G a discrete group, whose K (G , 1) may be taken to be a
closed, smooth manifold,

I isometric action of G on M,

I Then:
Hk
G (M;R) ∼=

⊕
p+q=k

Hp(G ; Hq(M;R)).

Exples. G = Zn, π1 of closed manifolds with non-positive sectional
curvature, surfaces other than RP2, infinite π1 of irreducible,
closed, orientable 3-manifolds, torsionfree discrete subgroups of
almost connected Lie groups, certain groups arising from Gromov’s
hyperbolization technique.
Rem. Action need not be proper, M is usually not a
G -CW-complex.



Analytic Description

An analytic description of HI ∗ remains to be found. Shall indicate
a partial result.

I X n = Mn ∪∂M cone(∂M).

I x a boundary-defining function on M, h a metric on ∂M.

I A Riemannian metric g on the interior N of M is a scattering
metric if near ∂M it has the form

g =
dx2

x4
+

h

x2
.

I L2H∗(N, g) := Hodge cohomology space of L2-harmonic
forms on N.



Analytic Description

Theorem (Melrose, Hausel-Hunsicker-Mazzeo)
If g is a scattering metric, then there are natural isomorphisms

L2Hk(N, g) −→


Hk(M, ∂M), k < n/2,

Im(Hk(M, ∂M)→ Hk(M)), k = n/2,

Hk(M), k > n/2.

Proposition (-, Hunsicker)
If N is endowed with a scattering metric g and the restriction map
Hn/2(M)→ Hn/2(∂M) is zero (a “Witt-type” condition), then

HI ∗(X ) ∼= L2H∗(N, g).



Algebraic Geometry

I Consider the Calabi-Yau quintic

Vs = {z5
0 + . . .+ z5

4 − 5(1 + s)z0 · · · z4 = 0} ⊂ P4,

depending on a complex structure parameter s.

I Vs is smooth for small s 6= 0.

I V = V0 has 125 isolated singularities.

I

i rk Hi (Vs) rk Hi (V ) rk IHi (V )

2 1 1 25

3 204 103 2

4 1 25 25

I The table shows that neither ordinary homology nor
intersection homology are stable under the smoothing of V .

I But:

rk HI2(V ) = 1, rk HI3(V ) = 204, rk HI4(V ) = 1.



The Stability Theorem

Theorem (-, L. Maxim)

I V a complex algebraic projective hypersurface, n = dimC 6= 2,
one isolated singularity.

I Vs a nearby smooth deformation of V .
I Then:

1. For all i < 2n, i 6= n, H i (Vs ;Q) ∼= HI i (V ;Q).
2. There is an isomorphism

Hn(Vs ;Q) ∼= HI n(V ;Q)

iff the monodromy operator acting on H∗ of the Milnor fiber is
trivial.

3. Regardless of monodromy,

max{rk IHn(V ), rk Hn(Vreg), rk Hn(V )} ≤ rk HI n(V ) ≤ rk Hn(Vs)

and these bounds are sharp.



Mixed Hodge Structure

At least if Hn−1(L;Z) is torsionfree, there is a map IV → Vs such
that

Vreg //

!!C
CC

CC
CC

C IV
canon //

��

V

Vs

specialization

??��������

commutes. Induces the stability. ⇒ Ring-isomorphism.

Theorem (-,L. Maxim)

For trivial local monodromy, HI ∗(V ;Q) can be endowed with
mixed Hodge structures, so that IV → V induces homomorphisms
of mixed Hodge structures H∗(V ;Q)→ HI ∗(V ;Q).



Universality of Monodromy Condition

I C a collection of pseudomanifolds containing all manifolds and
cones on closed manifolds, closed under taking boundary.

I H : C → R- MOD∗ any deformation stable homology theory
satisfying

dimHi (cone X ) ≤ dimHi (X ), X ∈ C a closed manifold.

I Then: If X ∈ C is a complex algebraic projective hypersurface
of dimension at least 2 with one isolated singularity, then the
monodromy operator of the singularity of X is trivial.



String theory

I World sheet → target space = M4 × X 6.

I X should be a Calabi-Yau space. But which one?

I Conifold Transition is a means of navigating between
Calabi-Yau mfds.

I “It appears that all Calabi-Yau vacua may be connected by
conifold transitions.”
[J. Polchinski]

Definition
A conifold is (topologically) a compact oriented 6-dim. pseudomfd.
S , that has only isolated singularities with link S2 × S3.



Conifold Transition

1. Deformation of the complex structure:
• Xε CY 3-fold, whose complex structure depends on a small
complex parameter ε.
• For small ε 6= 0 : Xε smooth.
• ε→ 0 : singular conifold S .
• All singularities are nodes; links ∼= S2 × S3.
• Topologically: S3-shaped cycles in Xε are collapsed.

2. Small resolution:
• Y → S replaces each node in S by CP1.
• Y is a Calabi-Yau mfd.

Conifold Transition:
Xε  S  Y .
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Massless D-Branes.

I Z : 3-cycle in Xε, which collapses to a node in S .

I In type IIB string theory: exists a charged 3-Brane that wraps
around Z .

I Mass (3-Brane) ∝ Vol(Z ).

I ⇒ 3-Brane becomes massless in S .

I CP1 : 2-cycle in Y , which collapses to a node in S .

I In type IIA string theory: exists a charged 2-Brane that wraps
around CP1.

I Mass (2-Brane) ∝ Vol(CP1).

I ⇒ 2-Brane becomes massless in S .
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Cohomology and massless states

Rule: Cohomology classes on X are manifested in 4 dimensions as
massless particles.

I ω differential form on T = M4 × X .

I Necessary condition for ω to be physically realistic:

d∗dω = 0 (“Maxwell equation”),

d∗ω = 0 (“Lorentz gauge condition”).

I In particular, ∆Tω = 0, ∆T = dd∗ + d∗d Hodge-de Rham
Laplace operator on T .

I Decomposition
∆T = ∆M + ∆X .



Cohomology and massless states

I Wave equation
(∆M + ∆X )ω = 0.

I Interpretation: ∆X ist a kind of “mass”-operator for
4-dimensional fields, whose eigenvalues are masses in 4D.

I (Klein-Gordon equation (�M + m2)ω = 0 for a free particle.)

I For the zero-modes of ∆X (the harmonic forms on X ), one
sees in the 4-dim. reduction massless fields.



Physical Requirements for Cohomology Theories

I IIA string theory: H∗
IIA(−)

I Should contain the aforementioned massless 2-Branes as
cycles,

I Poincaré Duality.

I IIB string theory: H∗
IIB(−)

I Should contain the aforementioned massless 3-Branes as
cycles,

I Poincaré Duality.

Theorem (-)

H∗
IIA(−) = IH∗ and H∗

IIB(−) = HI ∗ are solutions.



Mirror Symmetry
I Mirror-map: Calabi-Yau S 7→ Calabi-Yau S◦.
I IIB string theory on R4 × S ↔ IIA string theory onf R4 × S◦.
I For nonsingular S , S◦,

b3(S◦) = (b2 + b4)(S) + 2, b3(S) = (b2 + b4)(S◦) + 2.

I Conjecture [Morrison]: The mirror of a conifold transition is
again a conifold transition.

Theorem
If a singular Calabi-Yau 3-fold S arises in the course of a conifold
transition X  S  Y and if its mirror S◦ sits in the reverse
conifold transition Y ◦  S◦  X ◦, then

rk IH3(S) = rk HI2(S◦) + rk HI4(S◦) + 2,
rk IH3(S◦) = rk HI2(S) + rk HI4(S) + 2,
rk HI3(S) = rk IH2(S◦) + rk IH4(S◦) + 2, and
rk HI3(S◦) = rk IH2(S) + rk IH4(S) + 2.


