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Core topic of this talk

‘ New perspective on Poincaré duality for singular spaces

X" compact, oriented pseudomanifold, singular set ¥, only strata
of even codimension.
L2-cohomology (Cheeger):

» X — X equipped with conical Riemannian metric.
Q) (X Y)={w| [wA*w < o0, [ dwA *dw < co}.
Hizy(X) = H*( Q) (X — X).d).

> (’2)(X) ® H” ’(X) — R nondegenerate.

> *2 (X — Z) is no DGA w.r.t. A.



Intersection homology (Goresky, MacPherson)

» Perversity p: p(2) =0, p(k) < p(k+ 1) < p(k) + 1.

» ICP(X) C C.(X): The larger the codim. k of a stratum, the
more a chain is allowed to deviate from transversality.

» IHP(X) := H,(ICP(X), ).

» p+g=(0,1,2,...): IH(X; Q) ® IH?_,(X;Q) = Q
nondegenerate.

» IC5(X) has no p-internal product.



Chain level — Space level

» E, homology theory (Eilenberg-Steenrod.)

» Burdick, Conner, Floyd:
E, = homology of a chain functor = E, trivial.

» Exple: Bordism does not come from a chain functor.



Chain level — Space level

» E, homology theory (Eilenberg-Steenrod.)

» Burdick, Conner, Floyd:
E, = homology of a chain functor = E, trivial.

» Exple: Bordism does not come from a chain functor.
» X" compact, oriented pseudomfd., perversity p.

» Program:

X ~ IPX  ~ HIP(X) = H,(IPX)
Space Space

» Poincaré Duality: H;(IPX; Q) ® Hn_i(13X;Q) — Q
nondegenerate.

Call the IPX intersection spaces of X. (IX for p = middle.)



Construction of Intersection Spaces

X" = M" Ugpm=( cone(L).

> Def. A stage k Moore approximation of a CW-complex L is a
CW-complex L.y with a map f : Loy — L such that
fi i H(Lek) = H (L) for r < k and H,(L.x) =0 for r > k.

» P. Hilton: Exists if L is simply connected.
» Set k=n—1—p(n).
> IPX = cone(Lox — L = OM — M).

» Attempt fiberwise Moore approximation for nonisolated
singularities (— obstructions).



Present Existence and Duality Results

» Thm. (-) /PX with duality exists for X with isolated
singularities and simply connected links.

» Thm. (-) /PX with duality exists for depth 1 nonisolated
singularities with trivializable link bundle and simply conn.
links.

Exple. Buoncristiano-Rourke-Sanderson's framified sets
(Stone stratification, all block bundles trivialized).

» Thm. (Florian Gaisendrees) IPX with duality exists for depth
1 twisted link bundles, spherical singular sets, simply conn.
links without odd-dimensional homology, and cellular action of
structure group.

» Thm. (-) HI5(X;R) exists for depth 1 flat link bundles with
structure group acting isometrically.



Internal Algebraic Structure

v

Trivially have DGA (C*(1PX), d, ).

For every p: HIz'(X) @ HIz/(X) — HIz' ™ (X).

» Consequently: HI*22IH*!

» Squaring operations Sq' : HI,%(X;Z/z) — Hlll;+i(X;Z/2).

v

Theorem

For dim X = n = 0(4), the intersection forms on Hl,>(X) and
IH,/2(X) agree in the Witt-group W(Q) of the rationals
(symmetr. nondegenerate bilinear forms).



Generalized homology theories and intersection spaces
E spectrum ~ EIP(X) := E.(IPX).

Theorem (J. F. Adams)

Let E be a ring spectrum and M be a closed, E*-oriented manifold
with orientation class [M]g € E"(M x M, M x M — A). Then

Ei(M) = E""/(M), x — [M]g/x.

Theorem (M. Spiegel)
Let K be complex K-theory and X a compact, K*-oriented

pseudomanifold with isolated singularities. If H,(Links) is
torsion-free, then

KIP(X) = KIZ~'(X) (integrally).

1

Fails for Tors H,(Links) # 0, and for KO.



De Rham Description

v

X D X (2 strata, oriented).

Assumptions: link bundle L™ — E — ¥ flat, L Riemannian,
structure group acts isometrically.
Flat link bundles arise in:
» Foliated stratified spaces (M. Saralegi-Aranguren, R. A.
Wolak),
» Reductive Borel-Serre compactifications of locally symmetric
spaces (nilmanifold fibrations).
Codifferential d* : QX(L) — Q<~1(L).
Cotruncation
Tk (L) = -+ — 0 — kerd* — QKFL(L) — QFF2(L) — - ...



De Rham Description

» Use fiberwise cotruncation.
» UcC X open, small, UZ Ux LB L, k=m—p(m+1).

Definition
QI5(X) C Q*(X — X): Near the end of X — %, w looks locally in

the boundary direction like
> wini AT,
ni € Q*(U), vi € 7>*(L).

» Invariantly defined by flatness, isometric action.

> Set HIZ 4o(X) = H*(QU3(X)).



De Rham Description and DGA structure

Theorem (-)
1. For ¥ = pt, HIZ 4e(X) = HI5(X:R).
2. Poincaré Duality:
HI§ gr(X) X HIZ 4R (X) = R, (w,n) = /X Y AT,

is nondegenerate.
3. (Q5(X),d,N) is a DGA.

For 3, observe that (7>4Q*(L), A) is a subalgebra of (Q2*(L), A),
but 7<,Q*(L) is not.



Application: Leray-Serre Spectral Sequence of Flat Bundles

F — E — B flat, F Riemannian and orientable, structure group
acts isometrically.

QusE C Q*E: multiplicatively structured forms as above, H*-isom.
ft> i QusE C QysE: fiberwise cotruncated forms as above.

E> -
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Theorem (-)

The Leray-Serre spectral sequence with R coefficients of a flat,
smooth, isometrically structured fiber bundle of smooth, closed
manifolds collapses at E,.

Flatness alone does not suffice! (Counterexamples, flat sphere
bundles with nontrivial Euler class, — Milnor).



Milnor: On the Existence of a Connection with Curvature
Zero

As a consequence to the previous theorem, we obtain:

Corollary (Milnor 1958)

The sphere bundle with structure group SO(n) over a smooth,
closed manifold B induced by any homomorphism m1(B) — SO(n)
has trivial Euler class with real coefficients.

Though these results are of a topological nature, Milnor's proof
relies on Chern-Weil theory.



Application: Equivariant Cohomology
Theorem (-)

» M be an oriented, closed, Riemannian manifold,

» G a discrete group, whose K(G,1) may be taken to be a
closed, smooth manifold,

» jsometric action of G on M,

» Then:
HEM;R) = 5 HP(G;HI(M;R)).
p+q=k

Exples. G = Z", w1 of closed manifolds with non-positive sectional
curvature, surfaces other than RP?, infinite 7 of irreducible,
closed, orientable 3-manifolds, torsionfree discrete subgroups of
almost connected Lie groups, certain groups arising from Gromov's
hyperbolization technique.

Rem. Action need not be proper, M is usually not a
G-CW-complex.



Analytic Description

An analytic description of HI* remains to be found. Shall indicate
a partial result.

» X" = M" Ugp cone(OM).
» x a boundary-defining function on M, h a metric on M.

» A Riemannian metric g on the interior N of M is a scattering
metric if near M it has the form

» L?>H*(N, g) := Hodge cohomology space of L?-harmonic
forms on N.



Analytic Description

Theorem (Melrose, Hausel-Hunsicker-Mazzeo)
If g is a scattering metric, then there are natural isomorphisms

H5(M, M), k < nj2,
LPHN(N, g) — < Im(HK(M,dM) — HX(M)), k = n/2,
HX(M), k> n/2.

Proposition (-, Hunsicker)
If N is endowed with a scattering metric g and the restriction map
H"2(M) — H"/2(OM) is zero (a “Witt-type” condition), then

HI*(X) = LPH*(N, g).



Algebraic Geometry

» Consider the Calabi-Yau quintic
Ve={z3+...+2; =51 +5)z---2z4 =0} C P*

depending on a complex structure parameter s.

v

Vs is smooth for small s # 0.

» V = Vf has 125 isolated singularities.
>
] i \ rk H;(Vs) \ rk H;i(V) \ rk IH;(V) \
2 1 1 25
3 204 103 2
4 1 25 25
> The table shows that neither ordinary homology nor

intersection homology are stable under the smoothing of V.
» But:

rk H(V) =1, rk His(V) = 204, rk HIg(V) = 1.



The Stability Theorem

Theorem (-, L. Maxim)

» V a complex algebraic projective hypersurface, n = dim¢ # 2,
one isolated singularity.

» V; a nearby smooth deformation of V.

> Then:
1. Foralli<2n,i#n, H(V;;Q) = HI'(V;Q).
2. There is an isomorphism

H"(Vs; Q) = HI"(V; Q)

iff the monodromy operator acting on H* of the Milnor fiber is
trivial.
3. Regardless of monodromy,

max{rk IH"(V),rk H"(Vieg), rk H"(V)} < rk HI"(V) < rk H"( V)

and these bounds are sharp.



Mixed Hodge Structure

At least if H,_1(L;Z) is torsionfree, there is a map IV — V; such
that

canon
reg I IV

\ A:uallzatlon

commutes. Induces the stability. = Ring-isomorphism.

Theorem (-,L. Maxim)

For trivial local monodromy, HI*(V; Q) can be endowed with
mixed Hodge structures, so that IV — V' induces homomorphisms
of mixed Hodge structures H*(V; Q) — HI*(V; Q).



Universality of Monodromy Condition

> C a collection of pseudomanifolds containing all manifolds and
cones on closed manifolds, closed under taking boundary.

» H :C — R-MOD, any deformation stable homology theory
satisfying

dim H;(cone X) < dimH;(X), X € C a closed manifold.

> Then: If X € C is a complex algebraic projective hypersurface
of dimension at least 2 with one isolated singularity, then the
monodromy operator of the singularity of X is trivial.



String theory

v

World sheet — target space = M* x X6.

v

X should be a Calabi-Yau space. But which one?

v

Conifold Transition is a means of navigating between
Calabi-Yau mfds.

» “It appears that all Calabi-Yau vacua may be connected by
conifold transitions.”
[J. Polchinski]

Definition
A conifold is (topologically) a compact oriented 6-dim. pseudomfd.
S, that has only isolated singularities with link S2 x S3.



Conifold Transition

1. Deformation of the complex structure:

e X. CY 3-fold, whose complex structure depends on a small
complex parameter e.

e For small € # 0 : X, smooth.

e ¢ — 0 : singular conifold S.

e All singularities are nodes; links =2 52 x S3.

e Topologically: S3-shaped cycles in X, are collapsed.



Conifold Transition

1. Deformation of the complex structure:

e X. CY 3-fold, whose complex structure depends on a small
complex parameter e.

e For small € # 0 : X, smooth.

e ¢ — 0 : singular conifold S.

e All singularities are nodes; links =2 52 x S3.

e Topologically: S3-shaped cycles in X, are collapsed.

2. Small resolution:
e Y — S replaces each node in S by CP?.
e Y is a Calabi-Yau mfd.

Conifold Transition:
X.~S~Y.



Massless D-Branes.

v

Z : 3-cycle in X, which collapses to a node in S.

> In type IIB string theory: exists a charged 3-Brane that wraps
around Z.

» Mass (3-Brane) x Vol(Z).

» = 3-Brane becomes massless in S.



Massless D-Branes.

v

Z : 3-cycle in X, which collapses to a node in S.

In type IIB string theory: exists a charged 3-Brane that wraps
around Z.

Mass (3-Brane)  Vol(Z).

= 3-Brane becomes massless in S.

CP! : 2-cycle in Y, which collapses to a node in S.

In type llA string theory: exists a charged 2-Brane that wraps
around CP!.

Mass (2-Brane) o Vol(CP?).

= 2-Brane becomes massless in S.



Cohomology and massless states

Rule: Cohomology classes on X are manifested in 4 dimensions as
massless particles.

» w differential form on T = M* x X.

> Necessary condition for w to be physically realistic:
d*dw = 0 ("Maxwell equation”),

d*w = 0 (“Lorentz gauge condition").
> In particular, Arw =0, At = dd* + d*d Hodge-de Rham
Laplace operator on T.

» Decomposition
AT =Apm+ Ax.



Cohomology and massless states

v

Wave equation
(Apy + Ax)w =0.

v

Interpretation: Ax ist a kind of “mass”-operator for
4-dimensional fields, whose eigenvalues are masses in 4D.

v

(Klein-Gordon equation ((Jp + m?)w = 0 for a free particle.)

v

For the zero-modes of Ax (the harmonic forms on X), one
sees in the 4-dim. reduction massless fields.



Physical Requirements for Cohomology Theories

» 1A string theory: H;jA(—)
» Should contain the aforementioned massless 2-Branes as
cycles,
» Poincaré Duality.
» 1IB string theory: H;ig(—)
» Should contain the aforementioned massless 3-Branes as
cycles,
» Poincaré Duality.

Theorem (-)
Hia(—=) = IH* and H;\g(—) = HI* are solutions.



Mirror Symmetry

Mirror-map: Calabi-Yau S > Calabi-Yau S°.
[IB string theory on R* x S < lIA string theory onf R* x S°.
For nonsingular S, S°,

b3(S°) = (b2 + ba)(S) +2, b3(S) = (b2 + bs)(5°) + 2.

v

v

v

v

Conjecture [Morrison|: The mirror of a conifold transition is
again a conifold transition.

Theorem

If a singular Calabi-Yau 3-fold S arises in the course of a conifold
transition X ~~ S ~» Y and if its mirror S° sits in the reverse
conifold transition Y° ~» S5° ~» X°, then

tk IH3(S) = rk HIb(S°) + rk HIs(S°) + 2,

rk IH3(S°) = rk Hio(S) + rk HIy(S) + 2,

tk HI3(S) = rk IHy(S°) + rk IHy(S°) + 2, and
rk HI3(S°) = rk IH(S) + rk IHa(S) + 2.



