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Soundbite (slightly imprecise):

Theorem

If A ⊆ Pn is a free arrangement, then c(Ω1
Pn(log A)∨) ∩ [Pn] equals the

Chern-Schwartz-MacPherson class of the complement Pn r A.

Question: If X is a free divisor in a nonsingular variety V , does
c(Ω1

V (log X )∨) ∩ [V ] equal cSM(V r X )?

(Work by Xia Liao on this question.)
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A (projective) hyperplane arrangement is a collection of distinct
hyperplanes in Pn. We may view this information ‘geometrically’
(notation: A, a reduced divisor of Pn) or combinatorially (notation: A ).

Ground field: take C throughout

Also, useful to consider corresponding affine, central arrangements
Â, Â in An+1.
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Combinatorics

Â  L(Â ), the poset of intersections, ordered by reverse inclusion
 µ(x , y), Möbius function
 χ

Â
(t), characteristic polynomial.

Möbius: µ(x , x) = 1;
∑

x≤z≤y µ(x , z) = 0 for x < y .

E.g., µ(0, x) :
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 µ(x , y), Möbius function
 χ

Â
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Characteristic polynomial: χ
Â

(t) =
∑

x µ(0, x) tdim x

dim=3

−1

1

−1 −1 −1

1 1 12

−2

1

−4

5

−2dim=0

dim=1

dim=2

Here: t3 − 4t2 + 5t − 2= (t − 1)(t2 − 3t + 2). In general, χ
Â

(1) = 0.

Poincaré polynomial: π
Â

(t) = (−t)n+1 · χ
Â

(−t−1)

Here: 1 + 4t + 5t2 + 2t3 = (1 + t)(1 + 3t + 2t2).
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Small variations:

χ
Â

(t) :=
χ

Â
(t)

t − 1
, π

Â
(t) :=

π
Â

(t)

1 + t

In the example:

χ
Â

(t) = t2 − 3t + 2 , π
Â

(t) = 1 + 3t + 2t2

Fact:
π

Â
(t) always has nonnegative coefficients! Much more is true:

Theorem (Orlik-Solomon ’80)

π
Â

(t) =
∑n

k=0 rk Hk(Pn r A,Q)tk

Plan: sometime during this talk, this should become obvious to everybody
(even algebraic geometers!).
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Algebraic geometry: Grothendieck group

K (Var): free abelian group on iso classes of varieties, modulo relations
Basic relation: if Z ⊆ X closed embedding, then [X ] = [Z ] + [X r Z ].

As a ring: set [X ] · [Y ] = [X × Y ].

. . . important in motivic integration, stable birational geometry, ‘Hirzebruch
classes’ of varieties, ‘polynomial countability’ of graph hypersurfaces, . . .

Universal Euler characteristic: Every invariant of alg. varieties that is
additive on disjoint unions and multiplicative on products factors through
K (Var). In particular: the Hodge-Deligne polynomial (keeping track of
ranks in mixed Hodge structure) may be computed from the Grothendieck
class [X ] ∈ K (Var).
Example: L = [A1], Hodge polynomial: uv .
[Pn] = 1 + L + · · ·+ Ln: Hodge polynomial = 1 + uv + · · ·+ unvn.
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Algebraic geometry: Chern classes of singular varieties

C (X ) = group of constructible functions on (proj, complex) alg. variety X .
C is a functor: f : X → Y  C (f ) : C (X )→ C (Y ),

C (f )(11V )(p) = χ(f −1(p) ∩ V ) .

Theorem (MacPherson, Brasselet-Schwartz)

There is a natural transformation c∗ : C → H∗ s.t. 11X 7→ c(TX ) ∩ [X ] if
X is nonsingular.

cSM(X ) := c∗(11X ) ∈ H∗(X ,Q). Defined for all X !

X ⊂ Pn a proper subset  cSM(Pn r X ) := c∗(11PnrX ) ∈ H∗(Pn,Q)
cSM(Pn r X ) = hn + l.o.t.
a polynomial of degree ≤ n in hyperplane class h.
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Algebraic geometry: singularity subschemes, Segre classes

V : nonsingular variety; X ⊂ V : a hypersurface.
Locally defined by f (x1, . . . , xn) = 0, local parameters xi .
 subscheme of V locally defined by (f , ∂f /∂x1, . . . , ∂f /∂xn)
(Jacobian ideal)
This is the singularity subscheme JX of X . View it as a subscheme of V .

 s(JX ,V ), Segre class.

W ⊆ V complete intersection  s(W ,V ) = c(NW V )−1 ∩ [W ].
Segre classes generalize this to all subschemes. Ref.: Fulton IT, Ch. 4.

Key property: birational invariance. E.g., ‘preserved’ through blow-ups.

X ⊂ Pn  s(JX ,Pn)∈ H∗(Pn,Q).
Another polynomial in hyperplane class h, deg≤ n. . .

Example: X with isolated singularities  
∫

s(JX ,V ) =sum of Milnor
numbers.
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Theorem (Wakefield-Yoshinaga ’08)

Any (essential) projective hyperplane arrangement A may be
reconstructed from the singularity subscheme of A ⊆ Pn.

Beautiful observation!

What about s(JA,P2)?

In this case:
∫

s(JA,P2) = sum of Milnor numbers = 7.
This is the only information left! What can we do with it?
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A : projective arrangement, d hyperplanes; A ⊆ Pn: support

JA

Wakefield-Yoshinaga
��

// s(JA,Pn)

��
A // ???

Theorem (—)

For any A , χ
Â

(t) may be reconstructed from (n, d, and) s(JA,Pn).

Essentially equivalent result also obtained by J. Huh

Consequence: For a hyperplane arrangement, degree + Segre numbers
determine ranks of homology of complement.
(Proof: above, and Orlik-Solomon)
Question: For what hypersurfaces in what nonsingular varieties and in
what sense does something like this hold?
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Theorem (—)

For any A , χ
Â
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More precise version of the theorem:

Write [Pn]− s(JA,Pn) =
∑n

i=0 σih
i ∩ [Pn]; then

π
Â

(t) =
n∑

k=0

(
k∑

i=0

(
k

i

)
(d − 1)k−iσi

)
tk

Example:

so σ0 = 2, σ1 = 0, σ2 = −7; and n = 2, d = 4.

n∑
k=0

(
k∑

i=0

(
k

i

)
(d − 1)k−iσi

)
tk = 1 + ((4− 1) + 0)t + ((4− 1)2 + 0− 7)t2

= 1 + 3t + 2t2 .

Paolo Aluffi (Florida State University) Chern classes of hyperplane arrangements Hefei—July 25th, 2011 15 / 31



More precise version of the theorem:

Write [Pn]− s(JA,Pn) =
∑n

i=0 σih
i ∩ [Pn]; then

π
Â
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Proof of theorem?

Theorem (— ’95)

X ⊂ V hypersurface in nonsingular variety. Then

cSM(X ) = c(TV ) ∩
(

[X ]

1 + X
+ c(O(X ))−1 ∩

(
s(JX ,V )∨ ⊗ O(X )

))
Never mind the notation.
For X = A, d hyperplanes in Pn:

cSM(A) = c(TPn) ∩
(

dh

1 + dh
∩ [Pn−1] +

1

1 + dh
∩
(
(s(S ,Pn))∨ ⊗Pn O(dh)

))
Therefore: easy to get cSM(A) from the σi ’s.

But how to get the characteristic polynomial from cSM(A)?
That’s the next topic.
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Theorem (—, Marcolli ’08)

Let X ⊆ Pn be obtained by fin. many set theoretic operations on linear
subspaces. Then cSM(X ) ∈ H∗(Pn,Q) and [X ] ∈ K (Var) carry the same
information.

More precise statement:

Write [X ] =
∑n

i=0 aiTi , where T = L− 1 = [C∗].

Then cSM(X ) =
∑n

i=0 ai [Pi ].

Example:

4T + 3 in K (Var), hence cSM(A) = 4[P1] + 3[P0].
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Therefore: enough to compute one or the other.

Focus on K (Var).
Also, expect ‘nicer’ formulas for the complement of A.

Example:

[P2 − A] = (L2 + L + 1)− (4L− 1)

= L2 − 3L + 2

In general?
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Theorem (—)

[Pn r A] = χ
Â

(L)

Proof
Trivial!

For x in the poset of Â , write x◦ = x r ∪y>xy .

So [y ] =
∑

x≥y [x◦] in K (Var).

Möbius inversion: [y◦] =
∑

x≥y µ(y , x)[x ].

Therefore
[An+1 r Â] = [0◦] =

∑
x µ(0, x)[x ] =

∑
x µ(x)Ldim x = χ

Â
(L).

(An+1 r Â)→ (Pn r A), C∗-fibration.

Therefore (L− 1)[Pn r A] = χ
Â

(L).

The result follows.
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Möbius inversion: [y◦] =
∑

x≥y µ(y , x)[x ].

Therefore
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Â

(L)

Proof
Trivial!
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(An+1 r Â)→ (Pn r A), C∗-fibration.

Therefore (L− 1)[Pn r A] = χ
Â
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For x in the poset of Â , write x◦ = x r ∪y>xy .

So [y ] =
∑

x≥y [x◦] in K (Var).
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Corollary

cSM(Pn r A) = χ
Â

(t + 1)

where tk ↔ [Pk ].

This follows from the relation between cSM and Grothendieck class, for
configurations of linear spaces. So it is just as trivial!
Example:

χ
Â

(t + 1) = (t + 1)2 − 3(t + 1) + 2 = t2 − t ↔ [P2]− [P1] ∈ H∗(P2,Q)

cSM(A) = ([P2] + 3[P1] + 3[P0])− ([P2]− [P1]) = 4[P1] + 3[P0]
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Â

(t + 1) = (t + 1)2 − 3(t + 1) + 2 = t2 − t ↔ [P2]− [P1] ∈ H∗(P2,Q)

cSM(A) = ([P2] + 3[P1] + 3[P0])− ([P2]− [P1]) = 4[P1] + 3[P0]

Paolo Aluffi (Florida State University) Chern classes of hyperplane arrangements Hefei—July 25th, 2011 20 / 31



Corollary

cSM(Pn r A) = χ
Â
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Â

(t + 1) = (t + 1)2 − 3(t + 1) + 2 = t2 − t ↔ [P2]− [P1] ∈ H∗(P2,Q)

cSM(A) = ([P2] + 3[P1] + 3[P0])− ([P2]− [P1]) = 4[P1] + 3[P0]

Paolo Aluffi (Florida State University) Chern classes of hyperplane arrangements Hefei—July 25th, 2011 20 / 31



Corollary

Formula for π
Â

(t) in terms of Segre class of JA stated earlier.

Proof: modulo previous results, a straightforward computation.

Directly from [Pn r A] = χ
Â

(t):

Corollary

χ
Â

(uv) = Deligne-Hodge polynomial of Pn r A

Deligne-Hodge polynomial of X :
∑

p,q ep,q(X )upvq, where

ep,q(X ) =
∑

k(−1)khp,q(Hk
c (X ,Q)

Fact: The mixed Hodge structure of Pn r A is pure (Shapiro).
Therefore. . .
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Â

(uv) = Deligne-Hodge polynomial of Pn r A

Deligne-Hodge polynomial of X :
∑

p,q ep,q(X )upvq, where

ep,q(X ) =
∑

k(−1)khp,q(Hk
c (X ,Q)

Fact: The mixed Hodge structure of Pn r A is pure (Shapiro).
Therefore. . .

Paolo Aluffi (Florida State University) Chern classes of hyperplane arrangements Hefei—July 25th, 2011 21 / 31



Corollary

Formula for π
Â
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Corollary

χ
Â

(t) =
∑n

k=0(−1)n+k rk Hn+k
c (Pn r A,Q) tk

and therefore

Corollary

π
Â

(t) =
∑n

k=0 rk Hk(Pn r A,Q) tk

and therefore ((An+1 r Â)→ (Pn r A), C∗-fibration)

Corollary

π
Â

(t) =
∑n+1

k=0 rk Hk(An+1 r Â,Q) tk

This is Orlik-Solomon ’80.
As promised, it is now (nearly) obvious.
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Â

(t) =
∑n

k=0 rk Hk(Pn r A,Q) tk
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and therefore ((An+1 r Â)→ (Pn r A), C∗-fibration)

Corollary

π
Â
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Something different:

X ⊂ V hypersurface of nonsingular variety.
Ω1
V (log X ): sheaf of differential 1-forms with logarithmic poles along X .

Locally: ω s.t. f ω and f dω are both regular, where f = 0 is an equation
for X . (Saito)
X is a free divisor if Ω1

V (log X ) is locally free.

Examples:

X normal crossings, nonsingular components.

dim V = 2.

Conjecture

If X is free, then c(Ω1
V (log X )∨) ∩ [V ] = cSM(V r X )

Evidence?
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Conjecture

If X is free, then c(Ω1
V (log X )∨) ∩ [V ] = cSM(V r X )
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Next natural test-case:

dim V = 2
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Proof in the case of hyperplane arrangements:

Mustaţǎ-Schenck ’01 =⇒ for free arrangements,
c(Ω1

Pn(log A)⊗ OPn(1)) = π
Â

(h).

undo twisting, dualize, sort through notation:
c(Ω1

Pn(log A)∨) = hnχ
Â

(
1 + 1

h

)
cap against [Pn], switch [Pk ]↔ tk :
c(Ω1

Pn(log A)∨) ∩ [Pn] = χ
Â

(t + 1)

done, as χ
Â

(t + 1) = cSM(Pn r A) as we saw earlier.

Details in arXiv:1103.2777
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Â

(t + 1)

done, as χ
Â
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Remark: Ω1
V (log X ) is coherent on V for any divisor X .

So it has Chern classes.
Why not guess c(Ω1

V (log X )∨) ∩ [V ] = cSM(V r X ) for all X ?

Fact: Mustaţǎ-Schenck acquires a correction term if the arrangement is
not free (Denham-Schulze, 1004.4237); while cSM(Pn r A) = χ

Â
(t + 1)

for all hyperplane arrangements.

So there are counterexamples to this more general statement, already for
arrangements. Freeness is likely necessary.

Maybe this should be taken as counter-evidence for the conjecture?
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Â
(t + 1)

for all hyperplane arrangements.

So there are counterexamples to this more general statement, already for
arrangements. Freeness is likely necessary.

Maybe this should be taken as counter-evidence for the conjecture?

Paolo Aluffi (Florida State University) Chern classes of hyperplane arrangements Hefei—July 25th, 2011 26 / 31



C nonsingular curve of genus g =⇒ c(TC ) ∩ [C ] = [C ] + (2− 2g)[pt].

In particular: cSM(C ) not effective for g > 1.

cSM(X ) is not effective for ‘most’ varieties.

Several exceptions:

cSM(Pn), cSM(Grassmannians) are effective

cSM(toric varieties) are effective (Ehlers)

cSM(Schubert varieties) conjectured to be effective

. . . Certainly a question worth studying.

Challenge: Characterize hyperplane arrangements with effective
Chern-Schwartz-MacPherson class.
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Combinatorial translation:

Proposition

A: projective arrangement; µ: corresponding Möbius function. Then
cSM(A) is effective ⇐⇒ all coefficients of −

∑
x 6=0 µ(x)(t + 1)dim x

are ≥ 0.

Example (smallest non-effective generic)

−
∑

x 6=0 µ(x)(t + 1)dim x = −(6 · (−1) · (t + 1)2 + 15 · 1 · (t + 1)− 10)

= 6t2 − 3t + 1.
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Proposition =⇒ Generic arrangements of ≤ n hyperplanes in Pn have
positive CSM class.

What about free arrangements?

Proposition

For n ≤ 8, every free arrangement A of d ≤ n hyperplanes in Pn has
effective CSM class.

If only I were a physicist. . .
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A = cone in P9 over this projective arrangement.

It is free

d ≤ n

cSM(A) is not effective!

Paolo Aluffi (Florida State University) Chern classes of hyperplane arrangements Hefei—July 25th, 2011 30 / 31



A = cone in P9 over this projective arrangement.

It is free

d ≤ n

cSM(A) is not effective!

Paolo Aluffi (Florida State University) Chern classes of hyperplane arrangements Hefei—July 25th, 2011 30 / 31



A = cone in P9 over this projective arrangement.

It is free

d ≤ n

cSM(A) is not effective!

Paolo Aluffi (Florida State University) Chern classes of hyperplane arrangements Hefei—July 25th, 2011 30 / 31



A = cone in P9 over this projective arrangement.

It is free

d ≤ n

cSM(A) is not effective!

Paolo Aluffi (Florida State University) Chern classes of hyperplane arrangements Hefei—July 25th, 2011 30 / 31



Thanks for your attention!
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