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Abstract. In this note we use the deep BBDG decomposition theorem in

order to give a new proof of the so-called “stratified multiplicative property”

for certain intersection cohomology invariants of complex algebraic varieties.

1. Introduction

We study the behavior of intersection cohomology invariants under morphisms
of complex algebraic varieties. The main result described here is classically referred
to as the “stratified multiplicative property” (cf. [CS94, S94]), and it shows how
to compute the invariant of the source of a proper algebraic map from its values
on various varieties that arise from the singularities of the map. For simplicity,
we consider in detail only the case of Euler characteristics, but we will also point
out the additions needed in the arguments in order to make the proof work in the
Hodge-theoretic setting.

While the study of the classical Euler-Poincaré characteristic in complex al-
gebraic geometry relies entirely on its additivity property together with its mul-
tiplicativity under fibrations, the intersection cohomology Euler characteristic is
studied in this note with the aid of a deep theorem of Bernstein, Beilinson, Deligne
and Gabber, namely the BBDG decomposition theorem for the pushforward of
an intersection cohomology complex under a proper algebraic morphism [BBD,
CM05]. By using certain Hodge-theoretic aspects of the decomposition theorem
(cf. [CM05, CM07]), the same arguments extend, with minor additions, to the
study of all Hodge-theoretic intersection cohomology genera (e.g., the Iχy-genus
or, more generally, the intersection cohomology Hodge-Deligne E-polynomials).
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While a functorial approach based on the standard calculus of constructible
functions (and Grothendieck groups of contructible sheaves, resp. mixed Hodge
modules) can be used for proving these results in even greater generality (see
[CMSa, CMSb]), we believe that the proof presented here has its own inter-
est, since for example it can be adapted to the setting of algebraic geometry over a
field of positive characteristic. This aspect will be discussed in detail elsewhere.

Unless otherwise specified, all (co)homology and intersection (co)homology
groups in this paper are those with rational coefficients.

2. Topological Euler-Poincaré characteristic

For a complex algebraic variety X, let χ(X) denote its topological Euler-
Poincaré characteristic. Then χ(X) equals the compactly supported Euler char-
acteristic, χc(X) (see [F93], page 141), and the latter is additive with respect to
open and closed inclusions. More precisely, if Z is a Zariski closed subset of X and
U denotes the complement, then

(2.1) χc(X) = χc(Z) + χc(U),

so the same relation holds for χ. Another important property of the Euler-Poincaré
characteristic is its multiplicativity in fibrations, which asserts that if F ↪→ E → B
is a locally trivial fibration of finite CW complexes then

(2.2) χ(E) = χ(B) · χ(F ).

These two properties can be used for studying the behavior of χ under a proper
algebraic map.

Let f : X → Y be a proper morphism of complex algebraic varieties. Such a
map can be stratified with subvarieties as strata, i.e., there exist finite algebraic
Whitney stratifications X of X and V of Y , such that for any component V of a
stratum of Y , f−1(V ) is a union of connected components of strata of X, each of
which is mapping submersively to V . This implies that f|f−1(V ) : f−1(V ) → V is a
locally trivial map of Whitney stratified spaces. For simplicity, we assume that Y
is irreducible, so that f is smooth over the dense open stratum in Y (with respect
to a Whitney stratification), which we denote by S. For V,W ∈ V we write V ≤ W
if and only if V ⊂ W̄ . We denote by F the general fiber of f , i.e. the fiber over
S, and by FV the fiber of f above the singular stratum V ∈ V \ {S}. Then the
Euler-Poincaré characteristic satisfies the “stratified multiplicative property”, i.e.
the following holds:

Proposition 2.1. ([CMSa], Proposition 2.4) Let f : X → Y be a proper
algebraic morphism of (possibly singular) complex algebraic varieties, with Y irre-
ducible. Let V be the set of components of strata of Y in a stratification of f . For
each V ∈ V \ {S}, define χ̂(V̄ ) inductively by the formula:

χ̂(V̄ ) = χ(V̄ )−
∑

W<V

χ̂(W̄ ).

Then:

(2.3) χ(X) = χ(Y ) · χ(F ) +
∑
V <S

χ̂(V̄ ) · (χ(FV )− χ(F )) .
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Remark 2.2. A Hodge-theoretic analogue of Proposition 2.1 was obtained in
[[CLMSa], Proposition 2.11] for the motivic (additive) Hodge genus χc

y(−), and
more generally, for the Hodge-Deligne E-polynomial Ec(−;u, v) defined by means
of (the Hodge-Deligne numbers of) compactly supported cohomology,

(2.4) Ec(X;u, v) =
∑
p,q

(∑
i

(−1)i · hp,q
(
Hi

c(X; C)
))

· upvq ∈ Z[u, v].

For a complex algebraic variety X we have that

(2.5) χc
y(X) = Ec(X;−y, 1)

and

(2.6) χ(X) = χc(X) = χc
−1(X).

The major difference from χ is that the Hodge-Deligne polynomial Ec is not in
general multiplicative under locally trivial (in the complex topology) fibrations
of complex algebraic varieties (cf. [CLMSa], Example 2.9). However, both the
multiplicativity in fibrations and the stratified multiplicative property for Ec can
be recovered under the assumption of trivial monodromy along strata (e.g., if all
strata V ∈ V are simply-connected)1; for complete details, see [CLMSa], §2.4-5.

3. Intersection homology Euler characteristics

Let X be a complex algebraic variety of pure (complex) dimension n. Denote by
Db

c(X) the bounded derived category of constructible sheaves of Q-vector spaces
on X, endowed with the t-structure associated to the middle-perversity, and let
Perv(X) be the abelian category of perverse sheaves on X; Perv(X) ⊂ Db

c(X) is
the heart of the middle-perversity t-structure. Let

pH
i : Db

c(X) → Perv(X)

denote the associated cohomological functors.
Let ICtop

X be the sheaf complex defined by

(ICtop
X )k(U) := ICBM

−k (U)

for U ⊂ X open (cf. [GM83]), where ICBM
• is the complex of locally-finite chains

with respect to the middle-perversity ([GM80]). Let

ICX := ICtop
X [−n].

If X is non-singular, then ICX = QX [n], where QX denotes the constant sheaf
with stalk Q on X. For a non-negative integer k, the middle-perversity intersection
cohomology group IHk(X; Q) is defined in terms of the hypercohomology groups
of ICX , that is,

IHk(X; Q) := Hk−n(X; ICX).

In general, for a r-dimensional stratified pseudomanifold L (e.g., L can be the
link of a stratum in a Whitney stratification of a complex algebraic variety), the
intersection cohomology groups are defined by IHk(L; Q) := Hk−2r(L; ICtop

L ).

1The special case of weight polynomials was considered in [DL97], where, perhaps for the
first time, it was pointed out the necessity of the trivial monodromy assumption in order to obtain

multiplicative properties for Hodge-theoretic invariants.



4 SYLVAIN E. CAPPELL, LAURENTIU MAXIM, AND JULIUS L. SHANESON

Since complex algebraic varieties are compactifiable, their rational intersec-
tion cohomology groups (with either compact or closed support) are finite di-
mensional (cf. [B84], V.10.13), therefore the intersection homology Euler char-
acteristics of complex algebraic varieties are well-defined. We let Iχ(X) denote
the intersection homology Euler characteristic of X (with closed support), and
Iβk(X) := dimIHk(X) the k-th intersection cohomology Betti number of X.

The main result of this note asserts that Iχ satisfies the stratified multiplicative
property. More precisely:

Theorem 3.1. ([CMSa], Proposition 3.6) Let f : X → Y be a proper map
of complex algebraic varieties, with X pure-dimensional and Y irreducible. Let V

be the set of components of strata of Y in a stratification of f , and assume (for
simplicity) that π1(V ) = 0 for all V ∈ V. For each stratum V ∈ V \ {S} define
inductively

Îχ(V̄ ) = Iχ(V̄ )−
∑

W<V

Îχ(W̄ ) · Iχ(c◦LW,V ),

where, for W < V , c◦LW,V denotes the open cone on the link of W in V̄ . Then:
(3.1)
Iχ(X) = Iχ(Y ) · Iχ(F ) +

∑
V <S

Îχ(V̄ ) ·
(
Iχ(f−1(c◦LV,Y ))− Iχ(F ) · Iχ(c◦LV,Y )

)
.

where F is the generic fiber of f and LV,Y is the link of V in Y .

The present proof of Theorem 3.1 remains valid without simple connectivity
assumptions provided the relevant local coefficient systems extend to the closures of
the strata, see footnote 3. In [CMSa] we gave a different proof, replacing integral
invariants by a functorial approach based on the standard calculus of constructible
functions, which yields Theorem 3.1 with no monodromy assumptions (even for
Chern-MacPherson classes). The proof we give here is a direct consequence of the
BBDG decomposition theorem, which we recall below.

Theorem 3.2. ([BBD], [CM05])
Let f : X → Y be a proper map of complex algebraic varieties. Then:
(1) Decomposition: Rf∗ICX is p-split, i.e. there is a (non-canonical) isomorphism
in Db

c(Y ):

(3.2) φ : ⊕i
pH

i(f∗ICX)[−i] ' Rf∗ICX ,

where pH is the perverse cohomology functor.2

(2) Semi-simplicity: For every i, pHi(f∗ICX) is semisimple; more precisely, if V

is the set of connected components of strata of Y in a stratification of f , there is a
canonical isomorphism in Perv(Y ):

(3.4) pH
i(f∗ICX) ' ⊕V ∈V ICV̄ (Li,V )

where the local systems Li,V := H−dimC(V )(pHi(f∗ICX)|V ) on V ∈ V are semisim-
ple.

2If the morphism f is projective, then (3.2) is a formal consequence of the Relative Hard

Lefschetz Theorem (cf. [De68]). The decomposition (3.2) also implies that the perverse Leray
spectral sequence for the map f , that is,

(3.3) Ei,j
2 = Hi(Y, pHj(f∗ICX)) =⇒ Hi+j(X; ICX),

degenerates at the E2-term.
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Remark 3.3. Let Ur be the disjoint union of strata V ∈ V with dim(V ) ≥ r.
By the condition of (co)support for perverse sheaves on Y , it follows that

pH
i(f∗ICX)|Ur

' τ≥−dim(Y )τ≤−r
pH

i(f∗ICX)|Ur
, for all 0 ≤ r ≤ dim(Y ),

where (τ≤, τ≥) is the natural t-structure on Db
c(Y ) (cf. [CM05], §3.6). Hence,

the support condition implies that the sheaf H−r(pHi(f∗ICX)|Ur
) is supported on

the r-dimensional stratum of Ur and is, by constructibility, a local system on each
connected component V of this bottom stratum of Ur.

Proof. (of Theorem 3.1)
Let n = dim(X), m = dim(Y ). With the notations in the statement of the theorem,
the following sequence of equalities hold:

Iχ(X) =
∑

k

(−1)k · Iβk(X)

=
∑

k

(−1)k · dimHk−n(X, ICX)

= (−1)n · χ(X; ICX)
= (−1)n · χ(Y,Rf∗ICX)
(a)
=

∑
i

(−1)n+i · χ(Y ; pH
i(f∗ICX))

(b)
=

∑
i,V

(−1)n+i · χ(V ; ICV̄ (Li,V ))

=
∑
i,V

(−1)n−dim(V )+i · Iχ(V̄ ;Li,V )

(c)
=

∑
V

Iχ(V̄ ) ·

(∑
i

(−1)n−dim(V )+i · rank(Li,V )

)
where (a) follows from the decomposition isomorphism (3.2), or by using the per-
verse Leray spectral sequence (3.3), (b) is a consequence of the semi-simplicity part
(3.4) of the BBDG theorem, and (c) follows from the fact that if L is a local
coefficient system defined everywhere on a pseudomanifold X, then the intersec-
tion homology Euler characteristic of X with coefficients in L is computed by the
formula 3:

(3.5) Iχ(X;L) = rank(L) · Iχ(X).

It remains to identify the (dimension of) stalks of the local systems appearing in
the statement of the semi-simplicity part of the BBDG theorem.

Let us fix for each stratum V ∈ V a point v ∈ V with inclusion iv : {v} ↪→ V .
The stalk of Li,V at the point v can be found by applying the stalk cohomology
functor H•(−)v to the isomorphism of the BBDG theorem obtained by putting
together the decomposition and resp. the semi-simplicity statements, that is,

(3.6) Rf∗ICX ' ⊕i,V ICV̄ (Li,V )[−i].

3The proof of Theorem 3.1 relies in fact only on the assumption that the local systems

appearing in the BBDG theorem extend to the closures of strata on which they are defined (this
is of course the case if π1(V ) = 0 for all V ∈ V). Formula (3.5) is not true in general for local

systems that are only partially defined.
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We first compute the stalk cohomologies on the left-hand side of the isomor-
phism (3.6). The (generic) fiber of f over the top dimensional stratum S is (locally)
normally nonsingular embedded in X, so there is a quasi-isomorphism (cf. [GM83],
§5.4.1):

ICX |F ' ICF [codimCF ].
Thus, for s ∈ S, by proper base change we have that

(3.7) Hj(Rf∗ICX)s
∼= Hj(i∗sRf∗ICX) ∼= Hj(F, ICX |F ) ∼= IHn+j(F ; Q).

Next, as in [[CMSa], Proposition 3.6], by using the fact that the inverse image
of a normal slice to a stratum of Y in a stratification of f is (locally) normally
non-singular embedded in X, it follows that for a point v in a stratum V ∈ V \ {S}
we have that

(3.8) Hj(Rf∗ICX)v
∼= IHn+j(f−1(c◦LV,Y ); Q),

where c◦LV,Y is the open cone on the link LV,Y of V in Y .
For any integer r so that 0 ≤ r ≤ m, let Ur be the disjoint union of strata V ∈ V

with dim(V ) ≥ r, and let fr : U ′
r = f−1(Ur) → Ur be the corresponding maps. In

particular, Um = S, so {Ur}r is an open cover that exhausts Y . Recall that the
operation of taking perverse cohomology commutes with restriction to open subsets,
and the same is true for the operation of forming intersection cohomology complexes
associated with local systems. Now, for a point v in a connected component V of
the r-dimensional stratum in Y , we can identify the stalk (Li,V )v as follows: first
replace f by fr, i.e. by assuming that V is a closed stratum of f , then calculate the
stalk cohomology at v for both terms in the isomorphism (3.6) of the decomposition
theorem.

First, by restricting the isomorphism (3.6) over the open set S, and by using
(3.7), we obtain immediately that for a point s ∈ S,

(3.9) (Li,S)s
∼= IHn−m+i(F ; Q),

for F the general fiber of f . In particular, under our assumptions we have that

(3.10) Iχ(X) = Iχ(Y ) · Iχ(F )+
∑
V <S

Iχ(V̄ ) ·

(∑
i

(−1)n−dim(V )+i · rank(Li,V )

)
.

Next, recall that for strata V,W ∈ V and a point w ∈ W , we may have the non-
vanishing of stalk cohomologies Hk(ICV̄ (L))w 6= 0 only if W ≤ V , and if this is
the case then:

(3.11) Hk(ICW̄ (L))w
∼=

{
Lw, if k = −dim(W );
0, otherwise,

and

(3.12) Hk(ICV̄ (L))w
∼= IHk+dim(V )(c◦LW,V ;L), if W < V.

Therefore, for a stratum W ∈ V \ {S} and an integer j, by applying to (3.6) the
stalk cohomology functor Hj(−)w at the point w ∈ W , the equations (3.8), (3.11)
and (3.12) yield the following isomorphism of Q-vector spaces:

(3.13) IHn+j(f−1(c◦LW,Y )) ∼= ⊕i ⊕W≤V Hj−i(ICV̄ (Li,V ))w

∼= (Lj+dim(W ),W )w ⊕
(
⊕i ⊕W<V IHj−i+dim(V )(c◦LW,V ;Li,V )

)
.
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After reindexing, the latter formula becomes:

(3.14) IHn−dim(W )+i(f−1(c◦LW,Y )) ∼=
∼= (Li,W )w ⊕

(
⊕r ⊕W<V IHi−dim(W )−r+dim(V )(c◦LW,V ;Lr,V )

)
.

Therefore, the summands of the right-hand side of equation (3.10) can be computed
inductively by the formula:∑

i

(−1)n−dim(W )+i · rank(Li,W ) =
(
Iχ(f−1(c◦LW,Y ))− Iχ(F ) · Iχ(c◦LW,Y )

)
−

−
∑

W<V <S

Iχ(c◦LW,V ) ·

(∑
i

(−1)n−dim(V )+i · rank(Li,V )

)
.

This finishes the proof of the theorem. �

Example 3.4. Let X be obtained from Y by blowing-up a point y, and denote
by f : X → Y the blow-up map. Let D = f−1(y) be the exceptional divisor. Then
(3.1) becomes

Iχ(X)− Iχ(f−1(c◦Ly)) = Iχ(Y )− Iχ(c◦Ly)

for Ly the link of y in Y . Moreover, if X is smooth, the formula yields:

Iχ(Y )− Iχ(c◦Ly) = χ(X)− χ(D) = χ(Y \ {y}).

These are additivity-type properties for the intersection homology Euler character-
istic, similar to those for the usual topological Euler characteristic.

Remark 3.5. We conclude this note with a discussion on the Hodge-theoretic
aspects of the stratified multiplicative property.

By taking advantage on the canonical mixed Hodge structure on the intersection
cohomology groups of a pure-dimensional complex algebraic variety X ([CM05,
Sa89, Sa90]), one can define intersection homology Hodge genera, Iχy(X), that
encode the intersection cohomology (mixed) Hodge numbers, and provide an ex-
tension of Hirzebruch’s χy-genus to the singular setting:

(3.15) Iχy(X) :=
∑

p

∑
i,q

(−1)ihp,q(IHi(X; C))

 · (−y)p,

where hp,q(IHi(X; C)) = dimCGrp
F (GrW

p+qIHi(X)⊗C), with F • and W• the Hodge
and respectively the weight filtration of the mixed Hodge structure on IHi(X).
For example, Iχ−1(X) = Iχ(X), and if X is projective then Iχ1(X) = σ(X) is
the Goresky-MacPherson signature of X. Similarly, if L underlies an admissible
variation of mixed Hodge structures on a smooth Zariski open and dense subset U
of X, then the intersection cohomology groups IH∗(X;L) carry canonical mixed
Hodge structures, and the associated Hodge genus Iχy(X;L) can be regarded as a
Hodge-theoretic generalization of the twisted signature of a Poincaré local system
[BCS].

In order to avoid “canonicity” issues (which disappear if one works at the level
of Grothendieck groups, as in [CMSb]), let us assume that f is projective, and let
η be a fixed f -ample line bundle on X. The claim is that Theorem 3.1 remains true
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if we replace Iχ by Iχy, as long as we assume trivial monodromy along all strata
of f (e.g., if π1(V ) = 0, for all V ∈ V) 4.

Before justifying the claim, let us first note that the isomorphisms (3.7), (3.8)
and (3.12) induce, via Saito’s theory of algebraic mixed Hodge modules [Sa89,
Sa90], canonical mixed Hodge structures on the intersection cohomology groups
of all spaces involved in formula (3.1). Secondly, the Hodge-theoretic analogue of
formula (3.5) holds provided that L underlies a constant variation of mixed Hodge
structures (e.g., if π1(U) = 0), so in this case we have that

(3.16) Iχy(X;L) = Iχy(X) · χy(Lx),

where Lx is the stalk of L at a point x ∈ X, and χy(Lx) is the Hodge genus
of the underlied mixed Hodge structure. However, in general (for non-constant
variations, even if defined on all of X), one has to take into account the monodromy
contributions in order to compute these twisted Hodge-genera (e.g., see [CLMSa,
CLMSb], and also [[MS07], Theorem 4.9]).

The next ingredient for proving our claim is that the perverse Leray spectral
sequence (3.3) for f is a spectral sequence in the category of mixed Hodge struc-
tures, e.g., see [[CLMSa], §2.3]. Lastly, the operation of taking stalk cohomologies
in (3.6) yields an isomorphism of mixed Hodge structures. This can be seen as fol-
lows. It was shown by M. Saito [Sa89, Sa90] that the BBDG theorem can be lifted
to DbMHM(Y ), the bounded derived category of mixed Hodge modules on Y 5,
and then Theorem 3.2 can be obtained by simply taking the underlying rational
complexes (e.g., the semi-simplicity isomorphism (3.4) follows from the decompo-
sition by strict support of a pure Hodge module). Moreover, if f is projective and
η is a f -ample line bundle on X, then the Relative Hard Lefschetz theorem holds
at the level on mixed Hodge modules (cf. [[Sa88], Theorem 5.3.1 and Remark
5.3.12]). Thus, following [De94] or as in [CM07], the decomposition isomorphism
can be chosen “canonically” (it depends only on η) in DbMHM(Y ). It follows
that by taking stalk cohomologies on the underlying rational complexes we obtain
an isomorphism of mixed Hodge structures (3.14), where we use the fact that over
a point mixed Hodge modules are just (graded) polarizable rational mixed Hodge
structures.

Therefore all arguments used in the proof of Theorem 3.1 extend to Hodge
theory, and the claim follows.

Similar considerations apply to the study of characteristic classes. In [BSY],
the authors defined a natural transformation MHTy on the Grothendieck group
of algebraic mixed Hodge modules, which, when evaluated at the intersection
complex ICX , yields a homology (total) characteristic class ITy∗(X) (with coef-
ficients in a localized Laurent polynomial ring), whose associated genus for com-
pact X is Iχy(X). The definition of the transformation MHTy uses Saito’s the-
ory of algebraic mixed Hodge modules (for complete details on the construction
see [CMSb, CLMSb, MS07]). If X is non-singular, then ITy∗(X) is just the
Poincaré dual of the modified Todd class that appears in the generalized Hirzebruch-
Riemann-Roch theorem. Similarly, for L an admissible variation of mixed Hodge

4This claim was proved in [CMSb] by using the calculus of Grothendieck groups of Saito’s

mixed Hodge modules.
5For a quick overview of the basics of Saito’s theory of mixed Hodge modules, the reader is

advised to consult [Sa89], but see also [[CMSb], §3.1] and [[CLMSa], §2.2].
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structures on a smooth Zariski open and dense subset U of X, one defines twisted
characteristic classes ITy∗(X;L) by evaluating MHTy at the twisted chain complex
ICX(L), regarded as a mixed Hodge module.

These characteristic classes also satisfy the stratified multiplicative property6,
in the sense that for a proper algebraic map f : X → Y satisfying the trivial
monodromy assumption along all the strata, one can express the push-forward
f∗ITy∗(X) in terms of the corresponding characteristic classes of closures of strata
V ∈ V of Y . Indeed, the BBDG theorem can be used again in order to show that
f∗ITy∗(X) is a linear combination of twisted characteristic classes ITy∗(V̄ ; V) cor-
responding to closures of strata V ∈ V and with coefficients in certain admissible
variations of mixed Hodge structures. And under the trivial monodromy assump-
tion along each V ∈ V, the variation V on V is constant, and we obtain the following
characteristic class version of formula (3.16):

(3.17) ITy∗(V̄ ; V) = ITy∗(V̄ ) · χy(Vv), for v ∈ V.

The rest follows as in the case of genera.
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