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1 Chern classes of complex vector bundles

2 Chern classes of complex vector bundles
We begin with the following

Proposition 2.1.
H∗ (BU(n);Z) ∼= Z [c1, · · · , cn] ,

with deg ci = 2i

Proof. Recall that H∗(U(n);Z) is a free Z-algebra on odd degree generators x1, · · · , x2n−1,
with deg(xi) = i, i.e.,

H∗(U(n);Z) ∼= ΛZ[x1, · · · , x2n−1].

Then using the Leray-Serre spectral sequence for the universal U(n)-bundle, and using the
fact that EU(n) is contractible, yields the desired result.

Alternatively, the functoriality of the universal bundle construction yields that for any
subgroup H < G of a topological group G, there is a fibration G/H ↪→ BH → BG. In our

case, consider U(n− 1) as a subgroup of U(n) via the identification A 7→
(
A 0
0 1

)
. Hence,

there exists fibration

U(n)/U(n− 1) ∼= S2n−1 ↪→ BU(n− 1)→ BU(n).

Then the Leray-Serre spectral sequence and induction on n gives the desired result, where
we use the fact that BU(1) ' CP∞ and H∗(CP∞;Z) ∼= Z[c] with deg c = 2.

Definition 2.2. The generators c1, · · · , cn of H∗ (BU(n);Z) are called the universal Chern
classes of U(n)-bundles.

Recall from the classification theorem that, given π : E → X a principal U(n)-bundle,
there exists a “classifying map” fπ : X → BU(n) such that π ∼= f ∗ππU(n).

Definition 2.3. The i-th Chern class of the U(n)-bundle π : E → X with classifying map
fπ : X → BU(n) is defined as

ci(π) := f ∗π(ci) ∈ H2i(X;Z).

Remark 2.4. Note that if π is a U(n)-bundle, then by definition we have that ci(π) = 0, if
i > n.

Let us now discuss important properties of Chern classes.

Proposition 2.5. If E denotes the trivial U(n)-bundle on a space X, then ci(E) = 0 for all
i > 0.
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Proof. Indeed, the trivial bundle is classified by the constant map ct : X → BU(n), which
induces trivial homomorphisms in positive degree cohomology.

Proposition 2.6 (Functoriality of Chern classes). If f : Y → X is a continuous map, and
π : E → X is a U(n)-bundle, then ci(f ∗π) = f ∗ci(π), for any i.

Proof. We have a commutative diagram

f ∗E
f̂ //

f∗π

��

E //

π

��

EU (n)

πU(n)

��
Y

f // X
fπ // BU (n)

which shows that fπ ◦ f classifies the U(n)-bundle f ∗π on Y . Therefore,

ci(f
∗π) = (fπ ◦ f)∗ci

= f ∗ (f ∗πci)

= f ∗ci (π) .

Definition 2.7. The total Chern class of a U(n)-bundle π : E → X is defined by

c(π) = c0(π) + c1(π) + · · · cn(π) = 1 + c1(π) + · · · cn(π) ∈ H∗(X;Z),

as an element in the cohomology ring of the base space.

Definition 2.8 (Whitney sum). Let π1 ∈ P(X,U(n)), π2 ∈ P(X,U(m)). Consider the
product bundle π1 × π2 ∈ P(X × X,U(n) × U(m)), which can be regarded as a U(n + m)-

bundle via the canonical inclusion U(n) × U(m) ↪→ U(n + m), (A,B) 7→
(
A 0
0 B

)
. The

Whitney sum of the bundles π1 and π2 is defined as:

π1 ⊕ π2 := ∆∗(π1 × π2),

where ∆ : X → X ×X is the diagonal map given by x 7→ (x, x).

Remark 2.9. The Whitney sum π1 ⊕ π2 of π and πs is the U(n + m)-bundle on X with
transition functions (in a common refinement of the trvialization atlases for π1 and π2) given

by
(
g1
αβ 0

0 g2
αβ

)
where giαβ are the transition function of πi, i = 1, 2.

Proposition 2.10 (Whitney sum formula). If π1 ∈ P(X,U(n)) and π2 ∈ P(X,U(m)), then

c(π1 ⊕ π2) = c(π1) ∪ c(π2).

Equivalently, ck(π1 ⊕ π2) =
∑

i+j=k ci(π1) ∪ cj(π2)
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Proof. First note that
B(U(n)× U(m)) ' BU(n)×BU(m). (2.1)

Indeed, by taking the product of the universal bundles for U(n) and U(m), we get a U(n)×
U(m)-bundle over BU(n)×BU(m), with total space EU(n)× EU(m):

U(n)× U(m) ↪→ EU(n)× EU(m)→ BU(n)×BU(m). (2.2)

Since πi(EU(n) × EU(m)) ∼= πi(EU(n)) × πi(EU(m)) ∼= 0 for all i, it follows that (2.2) is
the universal bundle for U(n)× U(m), thus proving (2.1).

Next, the inclusion U(n)× U(m) ↪→ U(n+m) yields a map

ω : B(U(n)× U(m)) ' BU(n)×BU(m) −→ BU(n+m).

By using the Künneth formula, one can show (e.g., see Milnor’s book, p.164) that:

ω∗ck =
∑
i+j=k

ci × cj.

Therefore,

ck(π1 ⊕ π2) = ck(∆
∗(π1 × π2))

= ∆∗ck(π1 × π2)

= ∆∗(f ∗π1×π2(ck))

= ∆∗(f ∗π1 × f
∗
π2

)(ω∗ck)

=
∑
i+j=k

∆∗(f ∗π1(ci)× f
∗
π2

(cj))

=
∑
i+j=k

∆∗(ci(π1)× cj(π2))

=
∑
i+j=k

ci(π1) ∪ cj(π2).

Here, we use the fact that the classifying map for π1× π2, regarded as a U(n+m)-bundle is
ω ◦ (fπ1 × fπ2).

Since the trivial bundle has trivial Chern classes in positive degrees, we get

Corollary 2.11 (Stability of Chern classes). Let E1 be the trivial U(1)-bundle. Then

c(π ⊕ E1) = c(π).
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3 Stiefel-Whitney classes of real vector bundles
As in Proposition 2.1, one easily obtains the following

Proposition 3.1.
H∗ (BO(n);Z/2) ∼= Z/2 [w1, · · · , wn] ,

with degwi = i.

Proof. This can be easily deduced by induction on n from the Leray-Serre spectral sequence
of the fibration

O(n)/O(n− 1) ∼= Sn−1 ↪→ BO(n− 1)→ BO(n),

by using the fact that BO(1) ' RP∞ and H∗(RP∞;Z/2) ∼= Z/2[w1].

Definition 3.2. The generators w1, · · · , wn of H∗ (BO(n);Z/2) are called the universal
Stiefel-Whitney classes of O(n)-bundles.

Recall from the classification theorem that, given π : E → X a principal O(n)-bundle,
there exists a “classifying map” fπ : X → BO(n) such that π ∼= f ∗ππU(n).

Definition 3.3. The i-th Stiefel-Whitney class of the O(n)-bundle π : E → X with classi-
fying map fπ : X → BO(n) is defined as

wi(π) := f ∗π(wi) ∈ H i(X;Z/2).

The total Stiefel-Whitney class of π is defined by

w(π) = 1 + w1(π) + · · ·wn(π) ∈ H∗(X;Z/2),

as an element in the cohomology ring with Z/2-coefficients.

Remark 3.4. If π is a O(n)-bundle, then by definition we have that wi(π) = 0, if i > n. Also,
since the trivial bundle is classified by the constant map, it follows that the positive-degree
Stiefel-Whitney classes of a trivial O(n)-bundle are all zero.

Stiefel-Whitney classes of O(n)-bundles enjoy similar properties as the Chern classes.

Proposition 3.5. The Stiefel-Whitney classes satisfy the functoriality property and the
Whitney sum formula.

4 Stiefel-Whitney classes of manifolds and applications
If M is a smooth manifold, its tangent bundle TM can be regarded as an O(n)-bundle.

Definition 4.1. The Stiefel-Whitney classes of a smooth manifold M are defined as

wi(M) := wi(TM).
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Theorem 4.2 (Wu). Stiefel-Whitney classes are homotopy invariants, i.e., if h : M1 →M2

is a homotopy equivalence then h∗wi(M2) = wi(M1), for any i ≥ 0.

Characteristic classes are particularly useful for solving a wide range of topological prob-
lems, including the following:

(a) Given an n-dimensional smooth manifold M , find the minimal integer k such that M
can be embedded/immersed in Rn+k.

(b) Given an n-dimensional smooth manifold M , is there an (n + 1)-dimensional smooth
manifold W such that ∂W = M?

(c) Given a topological manifold M , classify/find exotic smooth structures on M .

4.1 The embedding problem

Let f : Mm → Nm+k be an embedding of smooth manifolds. Then

f ∗TN = TM ⊕ ν, (4.1)

where ν is the normal bundle of M in N . In particular, ν is of rank k, hence wi(ν) = 0
for all i > k. The Whitney product formula for Stiefel-Whitney classes, together with (4.1),
yields that

f ∗w(N) = w(M) ∪ w(ν). (4.2)

Note that w(M) = 1 + w1(M) + · · · is invertible in H∗(M ;Z/2), hence

w(ν) = w(M)−1 ∪ f ∗w(N).

In particular, if N = Rm+k, one gets w(ν) = w(M)−1.
The same considerations apply in the case when f : Mm → Nm+k is required to be

only an immersion. In this case, the existence of the normal bundle ν is guaranteed by the
following simple result:

Lemma 4.3. Let
E1

i //

π1   

E2

π2~~
X

be a linear monomorphism of vector bundles, i.e., in local coordinates, i is given by U×Rn →
U × Rm (n ≤ m), (u, v) 7→ (u, `(u)v), where `(u) is a linear map of rank n for all u ∈ U .
Then there exists a vector bundle π⊥1 : E⊥1 → X so that π2

∼= π1 ⊕ π⊥1 .

To summarize, we showed that if f : Mm → Nm+k is an embedding or an immersion of
smooth manifolds, than one can solve for w(ν) in (4.2), where ν is the normal bundle of M
in N . Moreover, since ν has rank k, we must have that wi(ν) = 0 for all i > k.

The following result of Whitney states that one can always solve for w(ν) if the codimen-
sion k is large enough. More precisely, we have:
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Theorem 4.4 (Whitney). Any smooth map f : Mm → Nm+k is homotopic to an embedding
for k ≥ m+ 1.

Let us now consider the problem of embedding (or immersing) RPm into Rm+k. If ν is
the corresponding normal bundle of rank k, we have that w(ν) = w(RPm)−1.

We need the following calculation:

Theorem 4.5.
w(RPm) = (1 + x)m+1, (4.3)

where x ∈ H1(RPm;Z/2) is a generator.

Before proving Theorem 4.5, let us discuss some examples.

Example 4.6. Let us investigate constraints on the codimension k of an embedding of RP 9

into R9+k. By Theorem 4.5, we have:

w(RP 9) = (1 + x)10 = (1 + x)8(1 + x)2 = (1 + x8)(1 + x2) = 1 + x2 + x8,

since x10 = 0 in H∗(RP 9;Z/2). Therefore,

w(RP 9)−1 = 1 + x2 + x4 + x6.

If an embedding (or immersion) f of RP 9 into R9+k exists, then w(ν) = w−1(RP 9), where
ν is the corresponding rank k normal bundle. In particular, w6(ν) 6= 0. Since we must have
wi(ν) = 0 for i > k, we conclude that k ≥ 6. For example, this shows that RP 9 cannot be
embedded into R14.

Example 4.7. Similarly, if m = 2r then

w(RP 2r) = (1 + x)2r+1 = (1 + x)2r(1 + x) = 1 + x+ x2r .

If there exists an embedding or immersion RP 2r ↪→ R2r+k with normal bundle ν, then

w(ν) = w(RP 2r)−1 = 1 + x+ x2 + · · ·+ x2r−1,

hence k ≥ 2r − 1 = m − 1. In particular, RP 8 cannot be immersed in R14. In this case,
one can actually construct an immersion of RP 2r into R2r+k for any k ≥ 2r − 1, due to the
following result:

Theorem 4.8 (Whitney). An m-dimensional smooth manifold can be embedded in R2m and
immersed in R2m−1.

Definition 4.9. A smooth manifold is parallelizable if its tanget bundle TM is trivial.

Example 4.10. Lie groups, hence in particular S1, S3 and S7, are parallelizable.

Theorem 4.5 can be used to prove the following:
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Theorem 4.11. w(RPm) = 1 if and only if m + 1 = 2r for some r. In particular, if RPm

is parallelizable, then m+ 1 = 2r for some r.

Proof. Note that if RPm is parallelizable, then w(RPm) = 1 since TRPm is a trivial bundle.
If m + 1 = 2r, then w(RPm) = (1 + x)2r = 1 + x2r = 1 + xm+1 = 1. On the other hand, if
m+ 1 = 2rk, where k > 1 is an odd integer, we have

w(RPm) = [(1 + x)2r ]k = (1 + x2r)k = 1 + kx2r + · · · 6= 1,

since x2r 6= 0 (indeed, 2r < 2rk = m+ 1).

In fact, the following result holds:

Theorem 4.12 (Adams). RPm is parallelizable if and only if m ∈ {1, 3, 7}.

Let us now get back to the proof of Theorem 4.5

Proof of Theorem 4.5. The idea is to find a splitting of (a stabilization of) TRPm into line
bundles, then to apply the Whitney sum formula.

Recall that O(1)-bundles on RPm are classified by

[RPm, BO(1)] = [RPm, K(Z/2, 1)] ∼= H1(RPm;Z/2) ∼= Z/2.

We’ll denote by E1 the trivial O(1)-bundle, and let π be the non-trivial O(1)-bundle on
RPm. Since O(1) ∼= Z/2, O(1)-bundles are regular double coverings. It is then clear that π
corresponds to the 2-fold cover Sm → RPm.

We have w(E1) = 1 ∈ H∗(RP n;Z/2). To calculate w(π), we notice that the inclusion
map i : RP n → RP∞ classifies the bundle π, as the universal bundle S∞ → RP∞ pulls back
under the inclusion to Sm → RPm. In particular,

w1(π) = i∗w1 = i∗x = x,

where x is the generator of H1(RP∞;Z/2) = H1(RPm;Z/2). Therefore,

w(π) = 1 + x.

We next show that
TRPm ⊕ E1 ∼= π ⊕ · · · ⊕ π︸ ︷︷ ︸

m+1 times

, (4.4)

from which the computation of w(RPm) follows by an application of the Whitney sum
formula.

To prove (4.4), start with Sm ↪→ Rm+1 with (rank one) normal bundle denoted by Eν .
Note that Eν is a trivial line bundle on Sm, as it has a global non-zero section (mapping
y ∈ Sm to the normal vector νy at y). We then have

TSm ⊕ Eν ∼= TRm+1|Sm = Em+1 ∼= E1 ⊕ · · · ⊕ E1︸ ︷︷ ︸
m+1 times

,
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with Em+1 the trivial bundle of rank n + 1 on Sm, i.e., the Whitney sum of m + 1 trivial
line bundles E1 on Sm, each of which is generated by the global non-zero section y 7→ d

dxi
|y,

i = 1, · · · ,m+ 1.
Let a : Sm → Sm be the antipodal map, with differential da : TSm → TSm. Let

γ : (−ε, ε) → Sm, γ(0) = y, v = γ′(0) ∈ TySm. Then da(v) = d
dt

(a ◦ γ(t))|t=0 = −γ′(0) =
−v ∈ Ta(y)S

m. Therefore da is an involution on TSm, commuting with a, and hence

TSm/da = TRPm.

Next note that the normal bundle Eν on Sm is invariant under the antipodal action (as
da(νy) = νa(y)), so it descends to the trivial line bundle on RPm, i.e.,

Eν/da ∼= E1.

Finally,

Sm × R/da ∼= Sm × R/(y, t
d

dxi
) ∼ (−y,−t d

dxi
) ∼= Sn ×Z/2 R,

which is the associated bundle of π with fiber R. So,

E1/da ∼= π.

This concludes the proof of (4.4) and of the theorem.

Remark 4.13. Note that RP 3 ∼= SO(3) is a Lie group, so its tangent bundle is trivial. In
this case, once can conclude directly that w(RP 3) = 1, but this fact can also be seen from
formula (4.3).

4.2 Boundary Problem.

For a closed manifoldMn, let µM be the fundamental class in Hn(M,Z/2). We will associate
to M certain Z/2-invariants, called its Stiefel-Whitney numbers.

Definition 4.14. Let α = (α1, . . . , αn) be a tuple of non-negative integers such that
∑n

i=1 iαi =
n. Set

w[α](M) := w1(M)α1 ∪ · · · ∪ wn(M)αn ∈ Hn(M ;Z/2).

The Stiefel-Whitney number of M with index α is defined as

w(α)(M) := 〈w[α](M), µM〉 ∈ Z/2,

where 〈−,−〉 : Hn(M ;Z/2)×Hn(M ;Z/2)→ Z/2 is the Kronecker evaluation pairing.

We have the following result:

Theorem 4.15 (Pontrjagin-Thom). A closed n-dimensional manifold M is the boundary of
a smooth compact (n+1)-dimensional manifold W if and only if all Stiefel-Whitney numbers
of M vanish.
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Proof. We only show here one implication (due to Pontrjagin), namely that ifM = ∂W then
w(α)(M) = 0, for any α = (α1, . . . , αn) with

∑n
i=1 iαi = n.

If i : M ↪→ W denotes the boundary embedding, then

i∗TW ∼= TM ⊕ ν1,

where ν1 is the rank-one normal bundle of M in W .
Assume that TW has a Euclidean metric. Then the normal bundle ν1 is trivialized by

picking the inward unit normal vector at every point in M . Hence

i∗TW ∼= TM ⊕ E1,

where E1 is the trivial line bundle onM . In particular, the Whitney sum formula yields that

wk(M) = i∗wk(W ),

for k = 1, · · · , n, so w[α](M) = i∗w[α](W ) for any α as above.
Let µW be the fundamental class of (W,M) i.e., the generator of Hn+1(W,M ;Z/2), and

let µM be the fundamental class of M as above. From the long exact homology sequence for
the pair (W,M) and Poincaré duality, we have that

∂(µW ) = µM .

Let δ : Hn(M ;Z/2)→ Hn+1(W,M ;Z/2) be the map adjoint to ∂. The naturality of the cap
product yields the identity:

〈y, µM〉 = 〈y, ∂µW 〉 = 〈δy, µW 〉

for any y ∈ Hn(M ;Z/2). Putting it all together we have:

w(α)(M) = 〈w[α](M), µM〉
= 〈i∗w[α](W ), ∂µW 〉
= 〈δ(i∗w[α](W )), µW 〉
= 〈0, µW 〉
= 0,

since δ ◦ i∗ = 0, as can be seen from the long exact cohomology sequence for the pair
(W,M).

Example 4.16. Suppose M = X tX, i.e., M is the disjoint union of two copies of a closed
n-dimensional manifold X. Then for any α, w(α)(M) = 2w(α)(X) = 0. This is consistent
with the fact that X tX is the boundary of the cylinder X × [0, 1].

Example 4.17. Every RP 2k−1 is a boundary. Indeed, the total Stiefel-Whitney class of
RP 2k−1 is (1 + x)2k = (1 + x2)k, with x the generator of H1(RP 2k−1;Z/2). Thus, all the
odd degree Stiefel-Whitney classes of RP 2k−1 are 0. Since every monomial in the Stiefel-
Whitney classes of RP 2k−1 of total degree 2k − 1 must contain a factor wj with j odd, all
Stiefel-Whitney numbers of RP 2k−1 vanish. This implies the claim by the Pontrjagin-Thom
Theorem 4.15.
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Example 4.18. The real projective space RP 2k is not a boundary, for any integer k ≥ 0.
Indeed, the total Stiefel-Whitney class of RP 2k is

w(RP 2k) = (1 + x)2k+1 = 1 +

(
2k + 1

1

)
x+ · · ·+

(
2k + 1

2k

)
x2k

= 1 + x+ · · ·+ x2k

In particular, w2k(RP 2k) = x2k. It follow that for α = (0, 0, . . . , 1) we have

w(α)(RP 2k) = 1 6= 0.

5 Pontrjagin classes
In this section, unless specified, we use the symbol π to denote real vector bundles (or O(n)-
bundles), and use ω for complex vector bundles (or U(n)-bundles) on a topological space
X.

Given a real vector bundle π, we can consider its complexification π⊗C, i.e., the complex
vector bundle with same transition functions as π:

gαβ : Uα ∩ Uβ → O(n) ⊂ U(n),

and fiber Rn ⊗ C ∼= Cn.
Given a complex vector bundle ω, we can consider its realization ωR, obtained by forgeting

the complex structure, i.e., with transition functions

gαβ : Uα ∩ Uβ → U(n) ↪→ O(2n).

Given a complex vector bundle ω, its conjugation ω is defined by transition functions

gαβ : Uα ∩ Uβ
gαβ→ U(n)

·̄→ U(n),

with the second homomorphism given by conjugation. ω has the same underlying real vector
bundle as ω, but the opposite complex structure on its fibers.

Lemma 5.1. If ω is a complex vector bundle, then

ωR ⊗ C ∼= ω ⊕ ω.

Proof. Let  be the linear transformation on FR ⊗C given by multiplication by i. Here F is
the fiber of complex vector bundle ω, and FR is the fiber of its realization ωR. Then 2 = −id,
so we have

FR ⊗ C ∼= Eigen(i)⊕ Eigen(−i),
where  acts as multiplication by i on Eigen(i), and it acts as multiplication by −i on
Eigen(−i). Moreover, we have F ⊆ Eigen(i) and F ⊆ Eigen(−i). By a dimension count
we then get that FR ⊗ C ∼= F ⊕ F .
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Lemma 5.2. Let π be a real vector bundle. Then

π ⊗ C ∼= π ⊗ C.

Proof. Indeed, since the transition functions of π ⊗ C are real-values (same as those of π),
they are also the transition functions for π ⊗ C.

Lemma 5.3. If ω is a rank n complex vector bundle, the Chern classes of its conjugate ω
are computed by

ck(ω) = (−1)k · ck(ω),

for any k = 1, · · · , n.

Proof. Recall that one way to define (universal) Chern classes is by induction by using the
fibration

S2k−1 ↪→ BU(k − 1)→ BU(k).

In fact,
ck = d2k(a),

where a is the generator of H2k−1(S2k−1;Z).
The complex conjugation on the fiber S2k−1 of the above fibration is a map of degree

(−1)k (it keeps k out of 2k real basis vectors invariant, and it changes the sign of the other
k; each sign change is a reflection and it has degree −1). In particular, the homomorphism
H2k−1(S2k−1;Z) → H2k−1(S2k−1;Z) induced by conjugation is defined by a 7→ (−1)k · a.
Altogether, this gives ck(ω) = (−1)k · ck(ω).

Combining the results from Lemma 5.2 and Lemma 5.3, we have the following:

Corollary 5.4. For any real vector bundle π,

ck(π ⊗ C) = ck(π ⊗ C) = (−1)kck(π ⊗ C).

In particular, for any odd integer k, ck(π ⊗ C) is an integral cohomology class of order 2.

Definition 5.5 (Pontryagin classes of real vector bundles). Let π : E → X be a real vector
bundle of rank n. The i-th Pontrjagin class of π is defined as:

pi(π) := (−1)ic2i(π ⊗ C) ∈ H4i(X;Z).

If ω a complex vector bundle of rank n, we define its i-th Pontryagin class as

pi(ω) := pi(ωR) = (−1)ic2i(ω ⊕ ω).

Remark 5.6. Note that pi(π) = 0 for all i > n
2
.

Definition 5.7. If π is a real vector bundle on X, its total Pontrjagin class is defined as

p(π) = p0 + p1 + · · · ∈ H∗(X;Z).
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Theorem 5.8 (Product formula). If π1 and π2 are real vector bundles on X, then

p(π1 ⊕ π2) = p(π1) ∪ p(π2) mod 2-torsion.

Proof. We have (π1 ⊕ π2)⊗ C ∼= (π1 ⊗ C)⊕ (π2 ⊗ C). Therefore,

pi(π1 ⊕ π2) = (−1)ic2i((π1 ⊕ π2)⊗ C)

= (−1)i
∑
k+l=2i

ck(π1 ⊗ C) ∪ cl(π2 ⊗ C)

= (−1)i
∑
a+b=i

c2a(π1 ⊗ C) ∪ c2b(π2 ⊗ C) + {elements of order 2}

=
∑
a+b=i

pa(π1) ∪ pb(π2) + {elements of order 2},

thus proving the claim.

Definition 5.9. If M is a real smooth manifold, we define

p(M) := p(TM).

If M is a complex manifold, we define

p(M) := p((TM)R).

Here TM is the tangent bundle of the manifold M .

In order to give applications of Pontrjagin classes, we need the following computational
result:

Theorem 5.10 (Chern and Pontrjagin classes of complex projective space). The total Chern
and Pontrjagin classes of the complex projective space CP n are computed by:

c(CP n) = (1 + c)n+1, (5.1)

p(CP n) = (1 + c2)n+1, (5.2)

where c ∈ H2(CP n;Z) is a generator.

Proof. The arguments involved in the computation of c(CP n) are very similar to those of
Theorem 4.5. Indeed, one first shows that there is a splitting

TCP n ⊕ E1 = γ ⊕ · · · ⊕ γ︸ ︷︷ ︸
n+1 times

,

were E1 is the trivial complex line bundle on CP n and γ is the complex line bundle associated
to the principle S1-bundle S1 ↪→ S2n+1 → CP n. Then γ is classified by the inclusion

S2n+1

��

� � // S∞

��
CP n � � // CP∞ = BU(1)
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and hence c1(γ) = c, the generator of H2(CP∞;Z) = H2(CP n;Z). The Whitney sum
formula for Chern classes then yields:

c(CP n) = c(TCP n) = c(γ)n+1 = (1 + c)n+1.

By conjugation, one gets
c(TCP n) = (1− c)n+1.

Therefore,

c((TCP n)R ⊗ C) = c(TCP n ⊕ TCP n) = c(TCP n) ∪ c(TCP n) = (1− c2)n+1,

from which one can readily deduce that p(CP n) = (1 + c2)n+1.

5.1 Applications to the embedding problem

After forgetting the complex structure, CP n is a 2n-dimensional real smooth manifold. Sup-
pose that there is an embedding

CP n ↪→ R2n+k,

and we would like to find contraints on the embedding codimension k by means of Pontrjagin
classes.

Let (TCP n)R be the realization of the tangent bundle for CP n. Then the existence of an
embedding as above implies that there exists a normal (real) bundle νk of rank k such that

(TCP n)R ⊕ νk ∼= TR2n+k|CPn ∼= E2n+k, (5.3)

with E2n+k denoting the trivial real vector bundle of rank 2n+ k.
By applying the Pontrjagin class p to (5.3) and using the product formula of Theorem

5.8 together with the fact that there are no elements of order 2 in H∗(CP n;Z), we have

p(CP n) · p(νk) = 1.

Therefore, we get
p(νk) = p(CP n)−1. (5.4)

And by the definition of the Pontryagin classes, we know that if pi(νk) 6= 0, then i ≤ k
2
.

Example 5.11. In this example, we use Pontrjagin classes to show that CP 2 does not embed
in R5. First,

p(CP 2) = (1 + c2)3 = 1 + 3c2,

with c ∈ H2(CP 2;Z) a generator (hence c3 = 0). If there is an embedding CP 2 ↪→ R4+k with
normal bundle νk, then

p(νk) = p(CP 2)−1 = 1− 3c2.

Hence p1(νk) 6= 0, which implies that k ≥ 2.

14



6 Oriented cobordism and Pontrjagin numbers
If M is a smooth oriented manifold, we denote by −M the same manifold but with the
opposite orientation.

Definition 6.1. Let Mn and Nn be smooth, closed, oriented real manifolds of dimension
n. We say M and N are oriented cobordant if there exists a smooth, compact, oriented
(n+ 1)-dimensional manifold W n+1, such that ∂W = M t (−N).

Remark 6.2. Let us say a word of convention about orienting a boundary. For any x ∈ ∂W ,
there exist an inward normal vector ν+(x) and an outward normal vector ν−(x) to the
boundary at x. By using a partition of unity, one can construct an inward/outward normal
vector field ν± : ∂W → TW |∂W . By convention, a frame {e1, · · · , en} on Tx(∂W ) is positive
if {e1, · · · , en, ν−(x)} is a positive frame for TxW .

Lemma 6.3. Oriented cobordism is an equivalence relation.

Proof. M and −M are clearly oriented cobordant because M t (−M) is diffeomorphic to
the boundary of M × [0, 1]. Hence oriented cobordism is reflexive. The symmetry can be
deduced from the fact that, if M t (−N) ' ∂W , then N t (−M) ' ∂(−W ). Finally,
if M1 t (−M2) ' ∂W , and M2 t (−M3) ' ∂W ′, then we can glue W and W ′ along the
common boundary and get a new manifold with boundary M1 t (−M3). Hence oriented
cobordism is also transitive.

Definition 6.4. Let Ωn be the set of cobordism classes of closed, oriented, smooth n-
manifolds.

Corollary 6.5. The set Ωn is an abelian group with the disjoint union operation.

Proof. This is an immediate consequence of Lemma 6.3. The zero element in Ωn is the class
of ∅, or equivalently, [M ] = 0 ∈ Ωn if and only if M = ∂W , for some compact manifold W .
The inverse of [M ] is [−M ], since M t (−M) is a boundary.

A natural problem to investigate is to describe the group Ωn by generators and relations.
For example, both [CP 4] and [CP 2 × CP 2] are elements of Ω8. Do they represent the same
element, i.e., are CP 4 and CP 2 × CP 2 oriented cobordant? A lot of insight is gained by
using Pontrjagin numbers.

Definition 6.6. Let Mn be a smooth, closed, oriented real n-manifold, with fundamental
class µM ∈ Hn(M ;Z). Let k = [n

4
] and choose a partition α = (α1, · · · , αk) ∈ Zk such that∑k

j=1 4jαj = n. The Pontrjagin number of M associated to the partition α is defined as:

p(α)(M) = 〈p1(M)α1 ∪ · · · ∪ pk(M)αk , µM〉 ∈ Z.

Remark 6.7. If n is not divisible by 4, then p(α)(M) = 0 by definition.
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Theorem 6.8. For n = 4k, each p(α) defines a homomorphism Ωn −→ Z, [M ] 7→ p(α)(M).
Hence oriented cobordant manifolds have the same Pontrjagin numbers. In particular, if
Mn = ∂W n+1, then p(α)(M) = 0 for any partition α.

Proof. If M = M1 tM2, then [M ] = [M1] + [M2] ∈ Ωn and µM = µM1 + µM2 ∈ Hn(M ;Z).
It follows readily that p(α)(M) = p(α)(M1) + p(α)(M2).

If M = ∂N , then it can be shown as in the proof of Theorem 4.15 that p(α)(M) = 0 for
any partition α.

Example 6.9. By Theorem 5.10, we have that p(CP 2n) = (1+c2)2n+1, where c is a generator
ofH2(CP 2n;Z). Hence pi(CP 2n) =

(
2n+1
i

)
c2i. For the partition α = (0, . . . , 0, 1), we find that

p(α)(CP 2n) =
〈(

2n+1
n

)
c2n, µCP 2n

〉
=
(

2n+1
n

)
6= 0. We conclude that CP 2n is not an oriented

boundary.

Remark 6.10. If we reverse the orientation of a manifold M of real dimension n = 4k, the
Pontrjagin classes remain unchanged, but the fundamental class µM changes sign. Therefore,
all Pontrjagin numbers p(α)(M) change sign. This shows that, if some Pontrjagin number
p(α)(M) is nonzero, then M cannot have any orientation-reversing diffeomorphism.

Example 6.11. The above remark and Example 6.9 show that CP 2n does not have any
orientation-reversing diffeomorphism. However, CP 2n+1 has an orientation-reversing diffeo-
morphism induced by complex conjugation.

Example 6.12. Let us consider Ω4. As CP 2 is not an oriented boundary by Example 6.9,
we have [CP 2] 6= 0 ∈ Ωn. Recall that p(CP 2) = 1 + 3c2, so p1(CP 2) = 3c2. For the partition
α = (1), we then get that p(1)(CP 2) = 3. So

Ω4

p(1)−→ 3Z −→ 0

is exact, thus rank(Ω4) ≥ 1.

Example 6.13. We next consider Ω8. The partitions to work with in this case are α1 = (2, 0)
and α2 = (0, 1), and Theorem 6.8 yields a homomorphism

Ω8

(p(α1),p(α2))−−−−−−−→ Z⊕ Z.

We aim to show that
rank(Ω8) = dimQ(Ω8 ⊗Q) ≥ 2.

We start by noting that both CP 4 and CP 2 ×CP 2 are compact oriented 8-manifolds which
are not boundaries. We calculate the Pontrjagin numbers of these two spaces. First,

p(CP 4) = (1 + c2)5 = 1 + 5c2 + 10c4,

where c is a generator of H2(CP 4;Z). Hence, p1(CP 4) = 5c2 and p2(CP 4) = 10c4. The
Pontrjagin numbers of CP 4 corresponding to the partitions α1 = (2, 0) and α2 = (0, 1) are
given as:

p(α1)(CP 4) = 〈p1(CP 4)2, µCP 4〉 = 25, p(α2)(CP 4) = 〈p2(CP 4), µCP 4〉 = 10.
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In order to compute the corresponding Pontrjagin numbers for CP 2 × CP 2, let pri : CP 2 ×
CP 2 → CP 2, i = 1, 2, be the projections on factors. Then

T (CP 2 × CP 2) ∼= pr∗1T (CP 2)⊕ pr∗2T (CP 2),

so Theorem 5.8 yields that

p(CP 2 × CP 2) = pr∗1p(CP 2) ∪ pr∗2p(CP 2) = p(CP 2)× p(CP 2),

where × denotes the external product. Let c1 and c2 denote the generators of the second
integral cohomology of the two CP 2 factors. Then:

p(CP 2 × CP 2) = (1 + c2
1)3 · (1 + c2

2)3 = (1 + 3c2
1) · (1 + 3c2

2) = 1 + 3c2
1 + 3c2

2 + 9c2
1c

2
2.

Hence, p1(CP 2 × CP 2) = 3(c2
1 + c2

2) and p2(CP 2 × CP 2) = 9c2
1c

2
2. Therefore, the Pontrjagin

numbers of CP 2×CP 2 corresponding to the partitions α1 and α2 are computed by (here we
use the fact that c4

1 = 0 = c4
2):

p(α1)(CP 2 × CP 2) = 18, p(α2)(CP 2 × CP 2) = 9.

The values of the homomorphism (p(α1), p(α2)) : Ω8 −→ Z ⊕ Z on CP 4 and CP 2 × CP 2 fit

into the 2× 2 matrix
[
25 18
10 9

]
with nonzero determinant. Hence rank(Ω8) ≥ 2.

More generally, we the following qualitative description of Ωn, which we mention here
without proof.

Theorem 6.14 (Thom). The oriented cobordism group Ωn is finitely generated of rank |I|,
where I is the collection of partitions α satisfying

∑
j 4jαj = n. In fact, modulo torsion, Ωn

is generated by products of even complex projective spaces. Moreover,
⊕
α∈I

p(α) : Ωn → Z|I| is

an injective homomorphism onto a subgroup of the same rank.

Example 6.15. Our computations from Examples 6.12 and 6.13 together with Theorem
6.14 yield that in fact we have: rank(Ω4) = 1 and rank(Ω8) = 2.

7 Signature as an oriented cobordism invariant
Recall that ifM4k is a closed, oriented manifold of real dimension n = 4k, then we can define
its signature σ(M) as the signature of the bilinear symmetric pairing

H2k(M ;Q)×H2k(M ;Q)→ Q,

which is non-degenerate by Poincaré duality. Recall also that if M is an oriented boundary
then σ(M) = 0. This suffices to deduce the folowing result:
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Theorem 7.1 (Thom). σ : Ω4k → Z is a homomorphism.

It follows from Theorems 6.14 and 7.1 that the signature is a rational combination of
Pontrjagin numbers, i.e.,

σ =
∑
α∈I

aαp(α) (7.1)

for some coefficients aα ∈ Q. The Hirzebruch signature theorem provides an explicit formula
for these coefficients aα. In what follows we compute by hand the coefficients aα in the cases
of Ω4 and Ω8.

Example 7.2. On closed oriented 4-manifolds, the signature is computed by

σ = ap(1), (7.2)

with a ∈ Q to be determined. Since a is the same for any [M ] ∈ Ω4, we will determine it by
performing our calculations on M = CP 2. Recall that σ(CP 2) = 1, and if c ∈ H2(CP 2;Z)
is a generator then p1(CP 2) = 3c2. Hence p(1)(CP 2) = 3, and (7.2) implies that 1 = 3a, or
a = 1

3
. Therefore, for any closed oriented 4-manifold M4 we have that

σ(M) = 〈1
3
p1(M), µM〉 =

1

3
p(1)(M) ∈ Z.

Example 7.3. On closed oriented 8-manifolds, the signature is computed by (7.1) as

σ = a(2,0)p(2,0) + a(0,1)p(0,1), (7.3)

with a(2,0), a(0,1) ∈ Q to be determined. Since Ω8 is generated rationally by CP 4 and CP 2 ×
CP 2, we can calculate a(2,0) and a(0,1) by evaluating (7.3) on CP 4 and CP 2 × CP 2. Using
our computations from Example 6.13, we have:

1 = σ(CP 4) = 25a(2,0) + 10a(0,1), (7.4)

and
1 = σ(CP 2 × CP 2) = 18a(2,0) + 9a(0,1). (7.5)

Solving for a(2,0) and a(0,1) in (7.4) and (7.5), we get:

a(2,0) = − 1

45
, a(0,1) =

7

45
.

Altogether, the signature of a closed oriented manifold M8 is computed by the following
formula:

σ(M8) =
1

45
〈7p2(M)− p1(M)2, µM〉. (7.6)
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8 Exotic 7-spheres
Now we turn to the construction of exotic 7-spheres. Start with M a smooth, 3-connected
orientable 8-manifold. Up to homotopy, M ' (S4 ∨ · · · ∨ S4) ∪f e8. Assume further that
β4(M) = 1, i.e., M ' S4 ∪f e8, for some map f : S7 → S4. By Whitney’s embedding
theorem, there is a smooth embedding S4 ↪→ M . Let E be a tubular neighborhood of this
embedded S4 in M ; in other words, E is a D4-bundle on S4 inside M . Such D4-bundles on
S4 are classified by

π3(SO(4)) ∼= π3(S3 × S3) ∼= Z⊕ Z.

(Here we use the fact that S3 × S3 is a 2-fold covering of SO(4).) That means that E
corresponds to a pair of integers (i, j).

Let X7 be the boundary of E, so X is a S3-bundle over S4. If X is diffeomorphic to a
7-sphere, one can recover M from E by attaching an 8-cell to X = ∂E. So the question to
investigate is: for which pairs of integers (i, j) is X diffeomorphic to S7?

One can show the following:

Lemma 8.1. X is homotopy equivalent to S7 if and only if i+ j = ±1.

Suppose i + j = 1. Then for each choice of i, we get an S3-bundle over S4, namely
X = ∂E, which has the homotopy type of S7. If X is in fact diffeomorphic to S7, then we
can recover M by attaching an 8-cell to X, and in this case the signature of M is computed
by

σ(M) =
1

45

(
7p(0,1)(M)− p(2,0)(M)

)
.

Moreover, one can show that:

Lemma 8.2. p(2,0)(M) = 4(i− j)2 = 4(2i− 1)2.

Note that σ(M) = ±1 since H4(M ;Z) = Z, and let us fix the orientation according
to which σ(M) = 1. Our assumption that X was diffeomorphic to S7 leads now to a
contradiction, since

p(0,1)(M) =
4(2i− 1)2 + 45

7

is by definition an integer for all i, which is contradicted e.g., for i = 2.
So far (for i = 2 and j = −1), we constructed a space X which is homotopy equivalent

to S7, but which is not diffeomorphic to S7. In fact, one can further show the following:

Lemma 8.3. X is homeomorphic to S7, so in fact X is an exotic 7-sphere.

This latest fact can be shown by constructing a Morse function g : X → R with only
two nondegenerate critical points (a maximum and a minimum). An application of Reeb’s
theorem then yields that X is homeomorphic to S7.
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9 Exercises
1. Construct explicitly the bounding manifold for RP 3.

2. Let ω be a rank n complex vector bundle on a topological space X, and let ci(ω) ∈
H2i(X;Z) be its i-th Chern class. Via Z → Z/2, ci(ω) determines a cohomology class
c̄i(ω) ∈ H2i(X;Z/2). By forgetting the complex structure on the fibers of ω, we obtain the
realization ωR of ω, as a rank 2n real vector bundle on X.

Show that the Stiefel-Whitney classes of ωR are computed as follows:

(a) w2i(ωR) = c̄i(ω), for 0 ≤ i ≤ n.

(b) w2i+1(ωR) = 0 for any integer i.

3. Let M be a 2n-dimensional smooth manifold with tangent bundle TM . Show that, if
M admits a complex structure, then w2i(M) is the mod 2 reduction of an integral class for
any 0 ≤ i ≤ n, and w2i+1(M) = 0 for any integer i. In particular, Stiefel-Whitney classes
give obstructions to the existence of a complex structure on an even-dimensional real smooth
manifold.

4. Show that a real smooth manifold M is orientable if and only if w1(M) = 0.

5. Show that CP 3 does not embed in R7.

6. Show that CP 4 does not embed in R11.

7. Example 6.9 shows that CP 2 is not the boundary on an oriented compact 5-manifold.
Can CP 2 be the boundary on some non-orientable compact 5-manifold?

8. Show that CP 2n+1 is the boundary of a compact manifold.
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