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1 Fiber bundles
Let G be a topological group (i.e., a topological space endowed with a group structure so that
the group multiplication and the inversion map are continuous), acting continuously (on the
left) on a topological space F . Concretely, such a continuous action is given by a continuous
map ρ : G×F → F , (g,m) 7→ g ·m, which satisfies the conditions (gh) ·m = g · (h ·m)) and
eG ·m = m, for eG the identity element of G.

Any continuous group action ρ induces a map

Adρ : G −→ Homeo(F )

given by g 7→ (f 7→ g · f), with g ∈ G, f ∈ F . Note that Adρ is a group homomorphism
since (Ad ρ)(gh)(f) := (gh) · f = g · (h · f) = Adρ(g)(Adρ(h)(f)). Note that for nice
spaces F (such as CW complexes), if we give Homeo(F ) the compact-open topology, then
Adρ : G→ Homeo(F ) is a continuous group homomorphism, and any such continuous group
homomorphism G→ Homeo(F ) induces a continuous group action G× F → F .

We assume from now on that ρ is an effective action, i.e., that Adρ is injective.

Definition 1.1 (Atlas for a fiber bundle with group G and fiber F ). Given a continuous
map π : E → B, an atlas for the structure of a fiber bundle with group G and fiber F on π
consists of the following data:

a) an open cover {Uα}α of B,

b) homeomorphisms (called trivializing charts or local trivializations) hα : π−1(Uα) →
Uα × F for each α so that the diagram

π−1(Uα)
hα //

π
##

Uα × F

pr1{{
Uα

commutes,

c) continuous maps (called transition functions) gαβ : Uα∩Uβ → G so that the horizontal
map in the commutative diagram

π−1(Uα ∩ Uβ)
hα

vv

hβ

((
(Uα ∩ Uβ)× F

hβ◦h−1
α

// (Uα ∩ Uβ)× F

is given by
(x,m) 7→ (x, gβα(x) ·m).

(By the effectivity of the action, if such maps gαβ exist, they are unique.)
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Definition 1.2. Two atlases A and B on π are compatible if A ∪ B is an atlas.

Definition 1.3 (Fiber bundle with group G and fiber F ). A structure of a fiber bundle with
group G and fiber F on π : E → B is a maximal atlas for π : E → B.

Example 1.4.

1. When G = {eG} is the trivial group, π : E → B has the structure of a fiber bundle if
and only if it is a trivial fiber bundle. Indeed, the local trivializations hα of the atlas for
the fiber bundle have to satisfy hβ ◦ h−1α : (x,m) 7→ (x, eG ·m) = (x,m), which implies
hβ ◦h−1α = id, so hβ = hα on Uα∩Uβ. This allows us to glue all the local trivializations
hα together to obtain a global trivialization h : π−1(B) = E ∼= B × F .

2. When F is discrete, Homeo(F ) is also discrete, so G is discrete by the effectiveness
assumption. So for the atlas of π : E → B we have π−1(Uα) ∼= Uα×F =

⋃
m∈F Uα×{m},

so π is in this case a covering map.

3. A locally trivial fiber bundle, as introduced in earlier chapters, is just a fiber bundle
with structure group Homeo(F ).

Lemma 1.5. The transition functions gαβ satisfy the following properties:

(a) gαβ(x)gβγ(x) = gαγ(x), for all x ∈ Uα ∩ Uβ ∩ Uγ.

(b) gβα(x) = g−1αβ (x), for all x ∈ Uα ∩ Uβ.

(c) gαα(x) = eG.

Proof. On Uα ∩ Uβ ∩ Uγ, we have: (hα ◦ h−1β ) ◦ (hβ ◦ h−1γ ) = hα ◦ h−1γ . Therefore, since Adρ
is injective (i.e., ρ is effective), we get that gαβ(x)gβγ(x) = gαγ(x) for all x ∈ Uα ∩ Uβ ∩ Uγ.

Note that (hα ◦ h−1β ) ◦ (hβ ◦ h−1α ) = id, which translates into

(x, gαβ(x)gβα(x) ·m) = (x,m).

So, by effectiveness, gαβ(x)gβα(x) = eG for all x ∈ Uα ∩ Uβ, whence gβα(x) = g−1αβ (x).
Take γ = α in Property (a) to get gαβ(x)gβα(x) = gαα(x). So by Property (b), we have

gαα(x) = eG.

Transition functions determine a fiber bundle in a unique way, in the sense of the following
theorem.

Theorem 1.6. Given an open cover {Uα} of B and continuous functions gαβ : Uα∩Uβ → G
satisfying Properties (a)-(c), there is a unique structure of a fiber bundle over B with group
G, given fiber F , and transition functions {gαβ}.
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Proof Sketch. Let Ẽ =
⊔
α Uα × F × {α}, and define an equivalence relation ∼ on Ẽ by

(x,m, α) ∼ (x, gαβ(x) ·m,β),

for all x ∈ Uα∩Uβ, and m ∈ F . Properties (a)-(c) of {gαβ} are used to show that ∼ is indeed
an equivalence relation on Ẽ. Specifically, symmetry is implied by property (b), reflexivity
follows from (c) and transitivity is a consequence of the cycle property (a).

Let
E = Ẽ/ ∼

be the set of equivalence classes in E, and define π : E → B locally by [(x,m, α)] 7→ x for
x ∈ Uα. Then it is clear that π is well-defined and continuos (in the quotient topology), and
the fiber of π is F .

It remains to show the local triviality of π. Let p : Ẽ → E be the quotient map, and let
pα := p|Uα×F×{α} : Uα × F × {α} → π−1(Uα). It is easy to see that pα is a homeomorphism.
We define the local trivializations of π by hα := p−1α .

Example 1.7.

1. Fiber bundles with fiber F = Rn and group G = GL(n,R) are called rank n real vector
bundles. For example, if M is a differentiable real n-manifold, and TM is the set of
all tangent vectors to M , then π : TM → M is a real vector bundle on M of rank n.
More precisely, if ϕα : Uα

∼=→ Rn are trivializing charts on M , the transition functions
for TM are given by gαβ(x) = d(ϕα ◦ ϕ−1β )ϕβ(x).

2. If F = Rn and G = O(n), we get real vector bundles with a Riemannian structure.

3. Similarly, one can take F = Cn andG = GL(n,C) to get rank n complex vector bundles.
For example, if M is a complex manifold, the tangent bundle TM is a complex vector
bundle.

4. If F = Cn and G = U(n), we get real vector bundles with a hermitian structure.

We also mention here the following fact:

Theorem 1.8. A fiber bundle has the homotopy lifting property with respect to all CW
complexes (i.e., it is a Serre fibration). Moreover, fiber bundles over paracompact spaces are
fibrations.

Definition 1.9 (Bundle homomorphism). Fix a topological group G acting effectively on a
space F . A homomorphism between bundles E ′ π

′
−→ B′ and E π−→ B with group G and fiber F

is a pair (f, f̂) of continuous maps, with f : B′ → B and f̂ : E ′ → E, such that:

1. the diagram

E ′
f̂ //

π′
��

E

π
��

B′
f // B

commutes, i.e., π ◦ f̂ = f ◦ π′.
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2. if {(Uα, hα)}α is a trivializing atlas of π and {(Vβ, Hβ)}β is a trivializing atlas of π′,
then the following diagram commutes:

(Vβ ∩ f−1(Uα))× F

pr1 **

π′
−1

(Vβ ∩ f−1(Uα))
Hβoo

π′

��

f̂ // π−1(Uα)

π

��

hα // Uα × F

pr1
yy

Vβ ∩ f−1(Uα)
f // Uα

and there exist functions dαβ : Vβ ∩ f−1(Uα)→ G such that for x ∈ Vβ ∩ f−1(Uα) and
m ∈ F we have:

hα ◦ f̂| ◦H−1β (x,m) = (f(x), dαβ(x) ·m).

An isomorphism of fiber bundles is a bundle homomorphism (f, f̂) which admits a map (g, ĝ)
in the reverse direction so that both composites are the identity.

Remark 1.10. Gauge transformations of a bundle π : E → B are bundle maps from π to
itself over the identity of the base, i.e., corresponding to continuous map g : E → E so that
π◦g = π. By definition, such g restricts to an isomorphism given by the action of an element
of the structure group on each fiber. The set of all gauge transformations forms a group.

Proposition 1.11. Given functions dαβ : Vβ ∩ f−1(Uα)→ G and dα′β′ : Vβ′ ∩ f−1(Uα′)→ G
as in (2) above for different trivializing charts of π and resp. π′, then for any x ∈ Vβ ∩Vβ′ ∩
f−1(Uα ∩ Uα′) 6= ∅, we have

dα′β′(x) = gα′α(f(x)) dαβ(x) gββ′(x) (1.1)

in G, where gα′α are transition functions for π and gββ′ are transition functions for π′,

Proof. Exercise.

The functions {dαβ} determine bundle maps in the following sense:

Theorem 1.12. Given a map f : B′ → B and bundles E π−→ B, E ′ π
′
−→ B′, a map of bundles

(f, f̂) : π′ → π exists if and only if there exist continuous maps {dαβ} as above, satisfying
(1.1).

Proof. Exercise.

Theorem 1.13. Every bundle map f̂ over f = idB is an isomorphism. In particular, gauge
transformations are automorphisms.

Proof Sketch. Let dαβ : Vβ ∩Uα → G be the maps given by the bundle map f̂ : E ′ → E. So,
if dα′β′ : Vβ′ ∩ Uα′ → G is given by a different choice of trivializing charts, then (1.1) holds
on Vβ ∩ Vβ′ ∩ Uα ∩ Uα′ 6= ∅, i.e.,

dα′β′(x) = gα′α(x) dαβ(x) gββ′(x) (1.2)
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in G, where gα′α are transition functions for π and gββ′ are transition functions for π′. Let
us now invert (1.2) in G, and set

dβα(x) = d−1αβ(x)

to get:
dβ′α′(x) = gβ′β(x) dβα(x) gαα′(x).

So {dβα} are as in Definition 1.9 and satisfy (1.1). Theorem 1.12 implies that there exists a
bundle map ĝ : E → E ′ over idB.

We claim that ĝ is the inverse f̂−1 of f̂ , and this can be checked locally as follows:

(x,m)
f̂7→ (x, dαβ(x) ·m)

ĝ7→ (x, dβα(x) · (dαβ(x) ·m)) = (x, dβα(x)dαβ(x)︸ ︷︷ ︸
eG

·m) = (x,m).

So ĝ ◦ f̂ = idE′ . Similarly, f̂ ◦ ĝ = idE

One way in which fiber bundle homomorphisms arise is from the pullback (or the induced
bundle) construction.

Definition 1.14 (Induced Bundle). Given a bundle E π−→ B with group G and fiber F , and
a continuous map f : X → B, we define

f ∗E := {(x, e) ∈ X × E | f(x) = π(e)},

with projections f ∗π : f ∗E → X, (x, e) 7→ x, and f̂ : f ∗E → E, (x, e) 7→ e, so that the
following diagram commutes:

f ∗E

X

x

E

B

f(x)

e

f∗π

f

π

f ∗π is called the induced bundle under f or the pullback of π by f , and as we show below
it comes equipped with a bundle map (f, f̂) : f ∗π → π.

The above definition is justified by the following result:

Theorem 1.15.

(a) f ∗π : f ∗E → X is a fiber bundle with group G and fiber F .

(b) (f, f̂) : f ∗π → π is a bundle map.
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Proof Sketch. Let {(Uα, hα)}α be a trivializing atlas of π, and consider the following com-
mutative diagram:

(f ∗π)−1(f−1(Uα)) π−1(Uα) Uα × F

f−1(Uα) Uα

hα

f

We have
(f ∗π)−1(f−1(Uα)) = {(x, e) ∈ f−1(Uα)× π−1(Uα)︸ ︷︷ ︸

∼=Uα×F

| f(x) = π(e)}.

Define
kα : (f ∗π)−1(f−1(Uα)) −→ f−1(Uα)× F

by
(x, e) 7→ (x, pr2(hα(e))).

Then it is easy to check that kα is a homeomorphism (with inverse k−1α (x,m) = (x, h−1α (f(x),m)),
and in fact the following assertions hold:

(i) {(f−1(Uα), kα)}α is a trivializing atlas of f ∗π.

(ii) the transition functions of f ∗π are f ∗gαβ := gαβ ◦ f , i.e., f ∗gαβ(x) = gαβ(f(x)) for any
x ∈ f−1(Uα ∩ Uβ).

Remark 1.16. It is easy to see that (f ◦ g)∗π = g∗(f ∗π) and (idB)∗π = π. Moreover, the
pullback of a trivial bundle is a trivial bundle.

As we shall see later on, the following important result holds:

Theorem 1.17. Given a fibre bundle π : E → B with group G and fiber F , and two
homotopic maps f ' g : X → B, there is an isomorphism f ∗π ∼= g∗π of bundles over X.
(In short, induced bundles under homotopic maps are isomorphic.)

As a consequence, we have:

Corollary 1.18. A fiber bundle over a contractible space B is trivial.

Proof. Since B is contractible, idB is homotopic to the constant map ct. Let

b := Image(ct)
i
↪→ B,
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so i ◦ ct ' idB. We have a diagram of maps and induced bundles:

ct∗i∗E

ct∗i∗π
��

// i∗E

i∗π
��

// E

π

��
B

ct //

idB

<<{b} i // B

Theorem 1.17 then yields:
π ∼= (idB)∗π ∼= ct∗i∗π.

Since any fiber bundle over a point is trivial, we have that i∗π ∼= {b} × F is trivial, hence
π ∼= ct∗i∗π ∼= B × F is also trivial.

Proposition 1.19. If

E ′
f̃ //

π′
��

E

π
��

B′
f // B

is a bundle map, then π′ ∼= f ∗π as bundles over B′.

Proof. Define h : E ′ → f ∗E by e′ 7→ (π′(e′), f̃(e′)) ∈ B′ × E. This is well-defined, i.e.,
h(e′) ∈ f ∗E, since f(π′(e′)) = π(f̃(e′)).

It is easy to check that h provides the desired bundle isomorphism over B′.

E ′

f̃

**

h

!!

π′

��

f ∗E
f̂ //

π′

��

E

π

��
B′

f // B

Example 1.20. We can now show that the set of isomorphism classes of bundles over Sn
with group G and fiber F is isomorphic to πn−1(G). Indeed, let us cover Sn with two
contractible sets U+ and U− obtained by removing the south, resp., north pole of Sn. Let
i± : U± ↪→ Sn be the inclusions. Then any bundle π over Sn is trivial when restricted to U±,
that is, i∗±π ∼= U± × F . In particular, U± provides a trivializing cover (atlas) for π, and any
such bundle π is completely determined by the transition function g± : U+∩U− ' Sn−1 → G,
i.e., by an element in πn−1(G).

More generally, we aim to “classify” fiber bundles on a given topological space. Let
B (X,G, F, ρ) denote the isomorphism classes (over idX) of fiber bundles on X with group G
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and fiber F , and G-action on F given by ρ. If f : X ′ → X is a continuous map, the pullback
construction defines a map

f ∗ : B (X,G, F, ρ) −→ B (X ′, G, F, ρ)

so that (idX)∗ = id and (f ◦ g)∗ = g∗ ◦ f ∗.

2 Principle Bundles
As we will see later on, the fiber F doesn’t play any essential role in the classification of fiber
bundle, and in fact it is enough to understand the set

P (X,G) := B (X,G,G,mG)

of fiber bundles with group G and fiber G, where the action of G on itself is given by the
multiplication mG of G. Elements of P (X,G) are called principal G-bundles. Of particular
importance in the classification theory of such bundles is the universal principal G-bundle
G ↪→ EG→ BG, with contractible total space EG.

Example 2.1. Any regular cover p : E → X is a principal G-bundle, with group G =
π1(X)�p∗π1(E). Here G is given the discrete topology. In particular, the universal covering

X̃ → X is a principal π1(X)-bundle.

Example 2.2. Any free (right) action of a finite group G on a (Hausdorff) space E gives a
regular cover and hence a principal G-bundle E → E/G.

More generally, we have the following:

Theorem 2.3. Let π : E → X be a principal G-bundle. Then G acts freely and transitively
on the right of E so that E�G ∼= X. In particular, π is the quotient (orbit) map.

Proof. We will define the action locally over a trivializing chart for π. Let Uα be a trvializing
open in X with trivializing homeomorphism hα : π−1 (Uα)

∼=→ Uα × G. We define a right
action on G on π−1 (Uα) by

π−1 (Uα)×G→ π−1 (Uα) ∼= Uα ×G
(e, g) 7→ e · g := h−1α (π (e) , pr2 (hα (e)) · g)

Let us show that this action can be globalized, i.e., it is independent of the choice of the
trivializing open Uα. If (Uβ, hβ) is another trivializing chart in X so that e ∈ π−1(Uα ∩ Uβ),
we need to show that e · g = h−1β (π (e) , pr2 (hβ (e)) · g), or equivalently,

h−1α (π (e) , pr2 (hα (e)) · g) = h−1β (π (e) , pr2 (hβ (e)) · g) . (2.1)
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After applying hα and using the transition function gαβ for π(e) ∈ Uα ∩ Uβ, (2.1) becomes

(π (e) , pr2 (hα (e)) · g) = hαh
−1
β (π (e) , pr2 (hβ (e)) · g) = (π (e) , gαβ(π(e)) · (pr2 (hβ (e)) · g)) ,

(2.2)
which is guaranteed by the definition of an atlas for π.

It is easy to check locally that the action is free and transitive. Moreover, E�G is locally
given as Uα ×G�G ∼= Uα, and this local quotient globalizes to X.

The converse of the above theorem holds in some important cases.

Theorem 2.4. Let E be a compact Hausdorff space and G a compact Lie group acting freely
on E. Then the orbit map E → E/G is a principal G-bundle.

Corollary 2.5. Let G be a Lie group, and let H < G be a compact subgroup. Then the
projection onto the orbit space π : G→ G/H is a principal H-bundle.

Let us now fix a G-space F . We define a map

P (X,G)→ B (X,G, F, ρ)

as follows. Start with a principal G bundle π : E → X, and recall from the previous theorem
that G acts freely on the right on E. Since G acts on the left on F , we have a left G-action
on E × F given by:

g · (e, f) 7→ (e · g−1, g · f).

Let
E ×G F := E × F�G

be the corresponding orbit space, with projection map ω : E ×G F → E�G ∼= X fitting into
a commutative diagram

E × F

%%pr1
||

E

π

""

E × F�G

ω
yy

X

(2.3)

Definition 2.6. The projection ω := π ×G F : E ×G F → X is called the associated bundle
with fiber F .

The terminology in the above definition is justified by the following result.

Theorem 2.7. ω : E×GF → X is a fiber bundle with group G, fiber F , and having the same
transition functions as π. Moreover, the assignment π 7→ ω := π ×G F defines a one-to-one
correspondence P (X,G)→ B (X,G, F, ρ).
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Proof. Let hα : π−1 (Uα)→ Uα×G be a trivializing chart for π. Recall that for e ∈ π−1 (Uα),
f ∈ F and g ∈ G, if we set hα(e) = (π(e), h) ∈ Uα×G, then G acts on the right on π−1 (Uα)
by acting on the right on h = pr2(hα(e)). Then we have by the diagram (2.3) that

ω−1 (Uα) ∼= π−1 (Uα)× F�(e, f) ∼ (e · g−1, g · f)

∼= Uα ×G× F�(u, h, f) ∼ (u, hg−1, g · f).

Let us define
kα : ω−1 (Uα)→ Uα × F

by
[(u, h, f)] 7→ (u, h · f).

This is a well-defined map since [(u, hg−1, g · f)] 7→ (u, hg−1g · f) = (u, h · f). It is easy to
check that kal is a trivializing chart for ω with inverse induced by Uα × F → Uα × G × F ,
(u, f) 7→ (u, idG, f). It is clear that ω and π have the same transition functions as they have
the same trivializing opens.

The associated bundle construction is easily seen to be functorial in the following sense.

Proposition 2.8. If

E ′
f̂ //

π′
��

E

π
��

X ′
f // X

is a map of principal G-bundles (so f̂ is a G-equivariant map, i.e., f̂(e · g) = f̂(e) · g), then
there is an induced map of associated bundles with fiber F ,

E ′ ×G F
f̂×GidF //

π′

��

E ×G F
π

��
X ′

f // X

Example 2.9. Let π : S1 → S1, z 7→ z2 be regarded as a principal Z/2-bundle, and let
F = [−1, 1]. Let Z/2 = {1,−1} act on F by multiplication. Then the bundle associated to π
with fiber F = [−1, 1] is the Möbius strip S1 ×Z/2 [−1, 1] = S1 × [−1, 1]�(x, t) ∼ (a(x),−t),
with a : S1 → S1 denoting the antipodal map. Similarly, the bundle associated to π with
fiber F = S1 is the Klein bottle.

Let us now get back to proving the following important result.

Theorem 2.10. Let π : E → Y be a fiber bundle with group G and fiber F , and let f ' g :
X → Y be two homotopic maps. Then f ∗π ∼= g∗π over idX .

11



It is of course enough to prove the theorem in the case of principal G-bundles. The idea
of proof is to construct a bundle map over idX between f ∗π and g∗π:

f ∗E ? //

!!

g∗E

}}
X

So we first need to understand maps of principal G-bundles, i.e., to solve the following
problem: given two principal G-bundles bundles E1

π1−→ X and E2
π2−→ Y , describe the set

maps(π1, π2) of bundle maps

E1
f̂ //

π1
��

E2

π2
��

X
f // Y

SinceG acts on the right of E1 and E2, we also get an action on the left of E2 by g·e2 := e2·g−1.
Then we get an associated bundle of π1 with fiber E2, namely

ω := π1 ×G E2 : E1 ×G E2 −→ X.

We have the following result:

Theorem 2.11. Bundle maps from π1 to π2 are in one-to-one correspondence to sections of
ω.

Proof. We work locally, so it suffices to consider only trivial bundles.
Given a bundle map (f, f̂) : π1 7→ π2, let U ⊂ Y open, and V ⊂ f−1(U) open, so that

the following diagram commutes (this is the bundle maps in trivializing charts)

V ×G U ×G

V U

f̂

π1 π2

f

We define a section σ in
(V ×G)×G (U ×G)

V

ωσ

as follows. For e1 ∈ V ×G, with x = π1(e1) ∈ V , we set

σ(x) = [e1, f̂(e1)].
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This map is well-defined, since for any g ∈ G we have:

[e1 · g, f̂(e1 · g)] = [e1 · g, f̂(e1) · g] = [e1 · g, g−1 · f̂(e1)] = [e1, f̂(e1)].

Now, it is an exercise in point-set topology (using the local definition of a bundle map) to
show that σ is continuous.

Conversely, given a section of E1 ×G E2
ω7→ X, we define a bundle by (f, f̂) by

f̂(e1) = e2,

where σ(π1(e1)) = [(e1, e2)]. Note that this is an equivariant map because

[e1 · g, e2 · g] = [e1 · g, g−1 · e2] = [e1, e2],

hence f̂(e1 · g) = e2 · g = f̂(e1) · g. Thus f̂ descends to a map f : X → Y on the orbit spaces.
We leave it as an exercise to check that (f, f̂) is indeed a bundle map, i.e., to show that
locally f̂(v, g) = (f(v), d(v)g) with d(v) ∈ G and d : V → G a continuous function.

The following result will be needed in the proof of Theorem 2.10.

Lemma 2.12. Let π : E → X× I be a bundle, and let π0 := i∗0π : E0 → X be the pullback of
π under i0 : X → X × I, x 7→ (x, 0). Then π ∼= (pr1)

∗π0 ∼= π0× idI , where pr1 : X × I → X
is the projection map.

Proof. It suffices to find a bundle map (pr1, p̂r1) so that the following diagram commutes

E0
î0 //

π0
��

E
p̂r1 //

π
��

E0

π0
��

X �
� i0 // X × I pr1 // X

By Theorem 2.11, this is equivilant to the existence of a section σ of ω : E ×G E0 → X × I.
Note that there exists a section σ0 of ω0 : E0 ×G E0 → X = X × {0}, corresponding to the
bundle map (idX , idE0) : π0 → π0. Then composing σ0 with the top inclusion arrow, we get
the following diagram

X × {0} σ0 //
� _

��

E ×G E0

ω

��
X × I

s
88

id // X × I
Since ω is a fibration, by the homotopy lifting property one can extend sσ0 to a section σ of
ω.

We can now finish the proof of Theorem 2.10.
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Proof of Theorem 2.10. Let H : X×I → Y be a homotopy between f and g, with H(x, 0) =
f(x) and H(x, 1) = g(x). Consider the induced bundle H∗π over X × I. Then we have the
following diagram.

f ∗E //

f∗π

��

H∗E Ĥ //

H∗π

��

E

π

��

g∗E

99

g∗π

��

X × {0} � � i0 // X × I H //

pr1

""

Y

X × {1}
+ �

i1

99

X

Since f = H (−, 0), we get f ∗π = i∗0H
∗π. By Lemma 2.12, H∗π ∼= pr∗1 (f ∗π) ∼= pr∗1 (g∗π),

and thus f ∗π = i∗0H
∗π = i∗0 pr∗1 g

∗π = g∗π.

We conclude this section with the following important consequence of Theorem 2.11

Corollary 2.13. A principle G-bundle π : E → X is trivial if and only if π has a section.

Proof. The bundle π is trivial if and only if π = ct∗π′, with ct : X → point the constant
map, and π′ : G → point the trvial bundle over a point space. This is equivalent to saying
that there is a bundle map

E //

π
��

G

π′

��
X ct // point

or, by Theorem 2.11, to the existence of a section of the bundle ω : E ×G G → X. On the
other hand, ω ∼= π, since E ×G G→ X looks locally like

π−1(Uα)×G�∼ ∼= Uα ×G×G�(u, g1, g2) ∼ (u, g1g
−1, gg2)

∼= Uα×G,

with the last homeomorphism defined by [(u, g1, g2)] 7→ (u, g1g2).
Altogether, π is trivial if and only if π : E 7→ X has a section.

3 Classification of principal G-bundles
Let us assume for now that there exists a principal G-bundle πG : EG → BG, with con-
tractible total space EG. As we will see below, such a bundle plays an essential role in the
classification theory of principal G-bundles. Its base space BG turns out to be unique up to
homotopy, and it is called the classifying space for principal G-bundles due to the following
fundamental result:
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Theorem 3.1. If X is a CW-complex, there exists a bijective correspondence

Φ : P(X,G)
∼=−→ [X,BG]

f ∗πG ←[ f

Proof. By Theorem 2.10, Φ is well-defined.
Let us next show that Φ is onto. Let π ∈ P(X,G), π : E → X. We need to show

that π ∼= f ∗πG for some map f : X → BG, or equivalently, that there is a bundle map
(f, f̂) : π → πG. By Theorem 2.11, this is equivalent to the existence of a section of the
bundle E×GEG→ X with fiber EG. Since EG is contractible, such a section exists by the
following:

Lemma 3.2. Let X be a CW complex, and π : E → X ∈ B (X,G, F, ρ) with πi(F ) = 0 for
all i ≥ 0. If A ⊆ X is a subcomplex, then every section of π over A extends to a section
defined on all of X. In particular, π has a section. Moreover, any two sections of π are
homotopic.

Proof. Given a section σ0 : A → E of π over A, we extend it to a section σ : X → E of π
over X by using induction on the dimension of cells in X −A. So it suffices to assume that
X has the form

X = A ∪φ en,
where en is an n-cell in X −A, with attaching map φ : ∂en → A. Since en is contractible, π
is trivial over en, so we have a commutative diagram

π−1 (en)

π

��

h

∼= // en × F
pr1

yy
∂en �

� //

σ0
::

en
σ

EE

with h : π−1 (en) → en × F the trivializing chart for π over en, and σ to be defined. After
composing with h, we regard the restriction of σ0 over ∂en as given by

σ0(x) = (x, τ0(x)) ∈ en × F,

with τ0 : ∂en ∼= Sn−1 → F . Since πn−1(F ) = 0, τ0 extends to a map τ : en → F which can
be used to extend σ0 over en by setting

σ(x) = (x, τ(x)).

After composing with h−1, we get the desired extension of σ0 over en.
Let us now assume that σ and σ′ are two sections of π. To find a homotopy between σ

and σ′, it suffices to construct a section Σ of π × idI : E × I → X × I. Indeed, if such Σ
exists, then Σ(x, t) = (σt(x), t), and σt provides the desired homotopy. Now, by regarding σ
as a section of π× idI over X×{0}, and σ′ as a section of π× idI over X×{1}, the question
reduces to constructing a section of π×idI , which extends the section over X×{0, 1} defined
by (σ, σ′). This can be done as in the first part of the proof.
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In order to finish the proof of Theorem 3.1, it remains to show that Φ is a one-to-one
map. If π0 = f ∗πG ∼= g∗πG = π1, we will show that f ' g. Note that we have the following
commutative diagrams:

E0 = f ∗EG
f̂−−−→ EGyπ0 yπG

X = X × {0} f−−−→ BG

E0
∼= E1 = g∗EG

ĝ−−−→ EGyπ0 yπG
X = X × {1} g−−−→ BG

where we regard ĝ as defined on E0 via the isomorphism π0 ∼= π1. By putting together the
above diagrams, we have a commutative diagram

E0 × I
←↩←−−− E0 × {0, 1}

α̂=(f̂ ,0)∪(ĝ,1)−−−−−−−−→ EGyπ0×Id yπ0×{0,1} yπG
X × I ←↩←−−− X × {0, 1} α=(f,0)∪(g,1)−−−−−−−−→ BG

Therefore, it suffices to extend (α, α̂) to a bundle map (H, Ĥ) : π0 × Id → πG, and then H
will provide the desired homotopy f ' g.

By Theorem 2.11, such a bundle map (H, Ĥ) corresponds to a section σ of the fiber
bundle

ω : (E0 × I)×G EG→X × I.

On the other hand, the bundle map (α, α̂) already gives a section σ0 of the fiber bundle

ω0 : (E0 × {0, 1})×G EG → X × {0, 1},

which under the obvious inclusion (E0×{0, 1})×GEG ⊆ (E0× I)×GEG can be regarded as
a section of ω over the subcomplex X × {0, 1}. Since EG is contractible, Lemma 3.2 allows
us to extend σ0 to a section σ of ω defined on X × I, as desired.

Example 3.3. We give here a more conceptual reasoning for the assertion of Example 1.20.
By Theorem 3.1, we have

B(Sn, G, F, ρ) ∼= P(Sn, G) ∼= [Sn, BG] = πn(BG) ∼= πn−1(G),

where the last isomorphism follows from the homotopy long exact sequence for πG, since EG
is contractible.

Back to the universal principal G-bundle, we have the following
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Theorem 3.4. Let G be a locally compact topological group. Then a universal principal G-
bundle πG : EG→ BG exists (i.e., satisfying πi(EG) = 0 for all i ≥ 0), and the construction
is functorial in the sense that a continuous group homomorphism µ : G→ H induces a bundle
map (Bµ,Eµ) : πG → πH . Moreover, the classifying space BG is unique up to homotopy.

Proof. To show that BG is unique up to homotopy, let us assume that πG : EG → BG and
π′G : E ′G → B′G are universal principal G-bundles. By regarding πG as the universal principal
G-bundle for π′G, we get a map f : B′G → BG such that π′G = f ∗πG, i.e., a bundle map:

E ′G
f̂−−−→ EGyπ′G yπG

B′G
f−−−→ BG

Similarly, y regarding π′G as the universal principal G-bundle for πG, there exists a map
g : BG → B′G such that πG = g∗π′G. Therefore,

πG = g∗π′G = g∗f ∗πG = (f ◦ g)∗πG.

On the other hand, we have πG = (idBG)∗πG, so by Theorem 3.1 we get that f ◦ g ' idBG .
Similarly, we get g ◦ f ' idB′G , and hence f : B′G → BG is a homotopy equivalence.

We will not discuss the existence of the universal bundle here, instead we will indicate
the universal G-bundle, as needed, in specific examples.

Example 3.5. Recall that we have a fiber bundle

O(n) �
� // Vn(R∞) // Gn(R∞), (3.1)

with Vn(R∞) contractible. In particular, the uniqueness part of Theorem 3.4 tells us that
BO(n) ' Gn(R∞) is the classifying space for rank n real vector bundles. Similarly, there is
a fiber bundle

U(n) �
� // Vn(C∞) // Gn(C∞), (3.2)

with Vn(C∞) contractible. Therefore, BU(n) ' Gn(C∞) is the classifying space for rank n
complex vector bundles.

Before moving to the next example, let us mention here without proof the following useful
result:

Theorem 3.6. Let G be an abelian group, and let X be a CW complex. There is a natural
bijection

T : [X,K(G, n)] −→ Hn(X,G)

[f ] 7→ f ∗(α)

where α ∈ Hn(K(G, n), G) ∼= Hom(Hn(K(G, n),Z), G) is given by the inverse of the Hurewicz
isomorphism G = πn(K(G, n))→ Hn(K(G, n),Z).
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Example 3.7 (Classification of real line bundles). Let G = Z/2 and consider the principal
Z/2-bundle Z/2 ↪→ S∞ → RP∞. Since S∞ is contractible, the uniqueness of the universal
bundle yields that BZ/2 ∼= RP∞. In particular, we see that RP∞ classifies the real line (i.e.,
rank-one) bundles. Since we also have that RP∞ = K(Z/2, 1), we get:

P(X,Z/2) = [X,BZ/2] = [X,K(Z/2, 1)] ∼= H1(X,Z/2)

for any CW complex X, where the last identification follows from Theorem 3.6. Let now
π be a real line bundle on a CW complex X, with classifying map fπ : X → RP∞. Since
H∗(RP∞,Z/2) ∼= Z/2[w], with w a generator of H1(RP∞,Z/2), we get a well-defined degree
one cohomology class

w1(π) := f ∗π(w)

called the first Stiefel-Whitney class of π. The bijection P(X,Z/2)
∼=−→ H1(X,Z/2) is then

given by π 7→ w1(π), so real line bundles on X are classified by their first Stiefel-Whitney
classes.

Example 3.8 (Classification of complex line bundles). LetG = S1 and consider the principal
S1-bundle S1 ↪→ S∞ → CP∞. Since S∞ is contractible, the uniqueness of the universal
bundle yields that BS1 ∼= CP∞. In particular, as S1 = GL(1,C), we see that CP∞ classifies
the complex line (i.e., rank-one) bundles. Since we also have that CP∞ = K(Z, 2), we get:

P(X,S1) = [X,BS1] = [X,K(Z, 2)] ∼= H2(X,Z)

for any CW complex X, where the last identification follows from Theorem 3.6. Let now π
be a complex line bundle on a CW complex X, with classifying map fπ : X → CP∞. Since
H∗(CP∞,Z) ∼= Z[c], with c a generator of H2(CP∞,Z), we get a well-defined degree two
cohomology class

c1(π) := f ∗π(c)

called the first Chern class of π. The bijection P(X,S1)
∼=−→ H2(X,Z) is then given by

π 7→ c1(π), so complex line bundles on X are classified by their first Chern classes.

Remark 3.9. If X is any orientable closed oriented surface, then H2(X,Z) ∼= Z, so Example
3.8 shows that isomorphism classes of complex line bundles on X are in bijective correspon-
dence with the set of integers. On the other hand, if X is a non-orientable closed surface,
then H2(X,Z) ∼= Z/2, so there are only two isomorphism classes of complex line bundles on
such a surface.

4 Exercises
1. Let p : S2 → RP 2 be the (oriented) double cover of RP 2. Since RP 2 is a non-orientable
surface, we know by Remark 3.9 that there are only two isomorphism classes of complex line
bundles on RP 2: the trivial one, and a non-trivial complex line bundle which we denote by
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π : E → RP 2. On the other hand, since S2 is a closed orientable surface, the isomorphism
classes of complex line bundles on S2 are in bijection with Z. Which integer corresponds to
complex line bundle p∗π : p∗E → S2 on S2?

2. Consider a locally trivial fiber bundle S2 ↪→ E
π→ S2. Recall that such π can be regarded

as a fiber bundle with structure group G = Homeo(S2) ∼= SO(3). By the classification
Theorem 3.1, SO(3)-bundles over S2 correspond to elements in

[S2, BSO(3)] = π2(BSO(3)) ∼= π1(SO(3)).

(a) Show that π1(SO(3)) ∼= Z/2. (Hint: Show that SO(3) is homeomorphic to RP 3.)

(b) What is the non-trivial SO(3)-bundle over S2?

3. Let π : E → X be a principal S1-bundle over the simply-connected space X. Let
a ∈ H1(S1,Z) be a generator. Show that

c1(π) = d2(a),

where d2 is the differential on the E2-page of the Leray-Serre spectral sequence associated
to π, i.e., Ep,q

2 = Hp(X,Hq(S1)) V Hp+q(E,Z).

4. By the classification Theorem 3.1, (isomorphism classes of) S1-bundles over S2 are given
by

[S2, BS1] = π2(BS
1) ∼= π1(S

1) ∼= Z

and this correspondence is realized by the first Chern class, i.e., π 7→ c1(π).

(a) What is the first Chern class of the Hopf bundle S1 ↪→ S3 → S2?

(b) What is the first Chern class of the sphere (or unit) bundle of the tangent bundle TS2?

(c) Construct explicitely the S1-bundle over S2 corresponding to n ∈ Z. (Hint: Think of
lens spaces, and use the above Exercise 3.)
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