Math 754 Chapter III: Fiber bundles. Classifying spaces. Applications

Laurențiu Maxim

Department of Mathematics University of Wisconsin maxim@math.wisc.edu

April 18, 2018

Contents

1	Fiber bundles	2
2	Principle Bundles	9
3	Classification of principal G-bundles	14
4	Exercises	18

1 Fiber bundles

Let G be a topological group (i.e., a topological space endowed with a group structure so that the group multiplication and the inversion map are continuous), acting continuously (on the left) on a topological space F. Concretely, such a continuous action is given by a continuous map $\rho: G \times F \to F$, $(g, m) \mapsto g \cdot m$, which satisfies the conditions $(gh) \cdot m = g \cdot (h \cdot m)$) and $e_G \cdot m = m$, for e_G the identity element of G.

Any continuous group action ρ induces a map

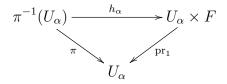
$$\operatorname{Ad}_{\rho}: G \longrightarrow \operatorname{Homeo}(F)$$

given by $g \mapsto (f \mapsto g \cdot f)$, with $g \in G$, $f \in F$. Note that Ad_{ρ} is a group homomorphism since $(\operatorname{Ad}_{\rho})(gh)(f) := (gh) \cdot f = g \cdot (h \cdot f) = \operatorname{Ad}_{\rho}(g)(\operatorname{Ad}_{\rho}(h)(f))$. Note that for nice spaces F (such as CW complexes), if we give $\operatorname{Homeo}(F)$ the compact-open topology, then $\operatorname{Ad}_{\rho}: G \to \operatorname{Homeo}(F)$ is a continuous group homomorphism, and any such continuous group homomorphism $G \to \operatorname{Homeo}(F)$ induces a continuous group action $G \times F \to F$.

We assume from now on that ρ is an *effective* action, i.e., that Ad_{ρ} is injective.

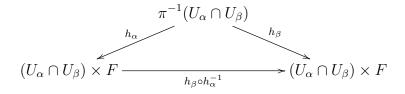
Definition 1.1 (Atlas for a fiber bundle with group G and fiber F). Given a continuous map $\pi: E \to B$, an atlas for the structure of a fiber bundle with group G and fiber F on π consists of the following data:

- a) an open cover $\{U_{\alpha}\}_{\alpha}$ of B,
- b) homeomorphisms (called trivializing charts or local trivializations) $h_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times F$ for each α so that the diagram



commutes,

c) continuous maps (called transition functions) $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to G$ so that the horizontal map in the commutative diagram



is given by

$$(x,m) \mapsto (x,g_{\beta\alpha}(x) \cdot m)$$

(By the effectivity of the action, if such maps $g_{\alpha\beta}$ exist, they are unique.)

Definition 1.2. Two atlases \mathcal{A} and \mathcal{B} on π are compatible if $\mathcal{A} \cup \mathcal{B}$ is an atlas.

Definition 1.3 (Fiber bundle with group G and fiber F). A structure of a fiber bundle with group G and fiber F on $\pi: E \to B$ is a maximal atlas for $\pi: E \to B$.

Example 1.4.

- 1. When $G = \{e_G\}$ is the trivial group, $\pi \colon E \to B$ has the structure of a fiber bundle if and only if it is a trivial fiber bundle. Indeed, the local trivializations h_{α} of the atlas for the fiber bundle have to satisfy $h_{\beta} \circ h_{\alpha}^{-1} \colon (x,m) \mapsto (x,e_G \cdot m) = (x,m)$, which implies $h_{\beta} \circ h_{\alpha}^{-1} = id$, so $h_{\beta} = h_{\alpha}$ on $U_{\alpha} \cap U_{\beta}$. This allows us to glue all the local trivializations h_{α} together to obtain a global trivialization $h \colon \pi^{-1}(B) = E \cong B \times F$.
- 2. When F is discrete, Homeo(F) is also discrete, so G is discrete by the effectiveness assumption. So for the atlas of $\pi: E \to B$ we have $\pi^{-1}(U_{\alpha}) \cong U_{\alpha} \times F = \bigcup_{m \in F} U_{\alpha} \times \{m\}$, so π is in this case a covering map.
- 3. A locally trivial fiber bundle, as introduced in earlier chapters, is just a fiber bundle with structure group Homeo(F).

Lemma 1.5. The transition functions $g_{\alpha\beta}$ satisfy the following properties:

- (a) $g_{\alpha\beta}(x)g_{\beta\gamma}(x) = g_{\alpha\gamma}(x)$, for all $x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$.
- (b) $g_{\beta\alpha}(x) = g_{\alpha\beta}^{-1}(x)$, for all $x \in U_{\alpha} \cap U_{\beta}$.

(c)
$$g_{\alpha\alpha}(x) = e_G$$

Proof. On $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$, we have: $(h_{\alpha} \circ h_{\beta}^{-1}) \circ (h_{\beta} \circ h_{\gamma}^{-1}) = h_{\alpha} \circ h_{\gamma}^{-1}$. Therefore, since Ad_{ρ} is injective (i.e., ρ is effective), we get that $g_{\alpha\beta}(x)g_{\beta\gamma}(x) = g_{\alpha\gamma}(x)$ for all $x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$. Note that $(h_{\alpha} \circ h_{\beta}^{-1}) \circ (h_{\beta} \circ h_{\alpha}^{-1}) = id$, which translates into

$$(x, g_{\alpha\beta}(x)g_{\beta\alpha}(x) \cdot m) = (x, m)$$

So, by effectiveness, $g_{\alpha\beta}(x)g_{\beta\alpha}(x) = e_G$ for all $x \in U_{\alpha} \cap U_{\beta}$, whence $g_{\beta\alpha}(x) = g_{\alpha\beta}^{-1}(x)$.

Take $\gamma = \alpha$ in Property (a) to get $g_{\alpha\beta}(x)g_{\beta\alpha}(x) = g_{\alpha\alpha}(x)$. So by Property (b), we have $g_{\alpha\alpha}(x) = e_G$.

Transition functions determine a fiber bundle in a unique way, in the sense of the following theorem.

Theorem 1.6. Given an open cover $\{U_{\alpha}\}$ of B and continuous functions $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to G$ satisfying Properties (a)-(c), there is a unique structure of a fiber bundle over B with group G, given fiber F, and transition functions $\{g_{\alpha\beta}\}$. *Proof Sketch.* Let $\widetilde{E} = \bigsqcup_{\alpha} U_{\alpha} \times F \times \{\alpha\}$, and define an equivalence relation \sim on \widetilde{E} by

$$(x, m, \alpha) \sim (x, g_{\alpha\beta}(x) \cdot m, \beta),$$

for all $x \in U_{\alpha} \cap U_{\beta}$, and $m \in F$. Properties (a)-(c) of $\{g_{\alpha\beta}\}$ are used to show that \sim is indeed an equivalence relation on \widetilde{E} . Specifically, symmetry is implied by property (b), reflexivity follows from (c) and transitivity is a consequence of the cycle property (a).

Let

$$E = \widetilde{E} / \sim$$

be the set of equivalence classes in E, and define $\pi : E \to B$ locally by $[(x, m, \alpha)] \mapsto x$ for $x \in U_{\alpha}$. Then it is clear that π is well-defined and continuos (in the quotient topology), and the fiber of π is F.

It remains to show the local triviality of π . Let $p: \widetilde{E} \to E$ be the quotient map, and let $p_{\alpha} := p|_{U_{\alpha} \times F \times \{\alpha\}} : U_{\alpha} \times F \times \{\alpha\} \to \pi^{-1}(U_{\alpha})$. It is easy to see that p_{α} is a homeomorphism. We define the local trivializations of π by $h_{\alpha} := p_{\alpha}^{-1}$.

Example 1.7.

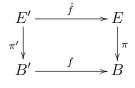
- 1. Fiber bundles with fiber $F = \mathbb{R}^n$ and group $G = GL(n, \mathbb{R})$ are called rank *n* real vector bundles. For example, if *M* is a differentiable real *n*-manifold, and *TM* is the set of all tangent vectors to *M*, then $\pi : TM \to M$ is a real vector bundle on *M* of rank *n*. More precisely, if $\varphi_{\alpha} : U_{\alpha} \xrightarrow{\cong} \mathbb{R}^n$ are trivializing charts on *M*, the transition functions for *TM* are given by $g_{\alpha\beta}(x) = d(\varphi_{\alpha} \circ \varphi_{\beta}^{-1})_{\varphi_{\beta}(x)}$.
- 2. If $F = \mathbb{R}^n$ and G = O(n), we get real vector bundles with a *Riemannian structure*.
- 3. Similarly, one can take $F = \mathbb{C}^n$ and $G = GL(n, \mathbb{C})$ to get rank n complex vector bundles. For example, if M is a complex manifold, the tangent bundle TM is a complex vector bundle.
- 4. If $F = \mathbb{C}^n$ and G = U(n), we get real vector bundles with a hermitian structure.

We also mention here the following fact:

Theorem 1.8. A fiber bundle has the homotopy lifting property with respect to all CW complexes (i.e., it is a Serre fibration). Moreover, fiber bundles over paracompact spaces are fibrations.

Definition 1.9 (Bundle homomorphism). Fix a topological group G acting effectively on a space F. A homomorphism between bundles $E' \xrightarrow{\pi'} B'$ and $E \xrightarrow{\pi} B$ with group G and fiber F is a pair (f, \hat{f}) of continuous maps, with $f: B' \to B$ and $\hat{f}: E' \to E$, such that:

1. the diagram



commutes, i.e., $\pi \circ \hat{f} = f \circ \pi'$.

2. if $\{(U_{\alpha}, h_{\alpha})\}_{\alpha}$ is a trivializing atlas of π and $\{(V_{\beta}, H_{\beta})\}_{\beta}$ is a trivializing atlas of π' , then the following diagram commutes:

$$(V_{\beta} \cap f^{-1}(U_{\alpha})) \times F \stackrel{H_{\beta}}{\longleftarrow} \pi'^{-1}(V_{\beta} \cap f^{-1}(U_{\alpha})) \stackrel{\widehat{f}}{\longrightarrow} \pi^{-1}(U_{\alpha}) \stackrel{h_{\alpha}}{\longrightarrow} U_{\alpha} \times F$$

$$\downarrow^{\pi'}_{V_{\beta}} \cap f^{-1}(U_{\alpha}) \stackrel{f}{\longrightarrow} U_{\alpha}$$

and there exist functions $d_{\alpha\beta}: V_{\beta} \cap f^{-1}(U_{\alpha}) \to G$ such that for $x \in V_{\beta} \cap f^{-1}(U_{\alpha})$ and $m \in F$ we have:

$$h_{\alpha} \circ f_{|} \circ H_{\beta}^{-1}(x,m) = (f(x), d_{\alpha\beta}(x) \cdot m).$$

An isomorphism of fiber bundles is a bundle homomorphism (f, \hat{f}) which admits a map (g, \hat{g}) in the reverse direction so that both composites are the identity.

Remark 1.10. Gauge transformations of a bundle $\pi : E \to B$ are bundle maps from π to itself over the identity of the base, i.e., corresponding to continuous map $g : E \to E$ so that $\pi \circ g = \pi$. By definition, such g restricts to an isomorphism given by the action of an element of the structure group on each fiber. The set of all gauge transformations forms a group.

Proposition 1.11. Given functions $d_{\alpha\beta}: V_{\beta} \cap f^{-1}(U_{\alpha}) \to G$ and $d_{\alpha'\beta'}: V_{\beta'} \cap f^{-1}(U_{\alpha'}) \to G$ as in (2) above for different trivializing charts of π and resp. π' , then for any $x \in V_{\beta} \cap V_{\beta'} \cap f^{-1}(U_{\alpha} \cap U_{\alpha'}) \neq \emptyset$, we have

$$d_{\alpha'\beta'}(x) = g_{\alpha'\alpha}(f(x)) \ d_{\alpha\beta}(x) \ g_{\beta\beta'}(x) \tag{1.1}$$

in G, where $g_{\alpha'\alpha}$ are transition functions for π and $g_{\beta\beta'}$ are transition functions for π' ,

Proof. Exercise.

The functions $\{d_{\alpha\beta}\}$ determine bundle maps in the following sense:

Theorem 1.12. Given a map $f : B' \to B$ and bundles $E \xrightarrow{\pi} B$, $E' \xrightarrow{\pi'} B'$, a map of bundles $(f, \hat{f}) : \pi' \to \pi$ exists if and only if there exist continuous maps $\{d_{\alpha\beta}\}$ as above, satisfying (1.1).

Proof. Exercise.

Theorem 1.13. Every bundle map f over $f = id_B$ is an isomorphism. In particular, gauge transformations are automorphisms.

Proof Sketch. Let $d_{\alpha\beta}: V_{\beta} \cap U_{\alpha} \to G$ be the maps given by the bundle map $\hat{f}: E' \to E$. So, if $d_{\alpha'\beta'}: V_{\beta'} \cap U_{\alpha'} \to G$ is given by a different choice of trivializing charts, then (1.1) holds on $V_{\beta} \cap V_{\beta'} \cap U_{\alpha} \cap U_{\alpha'} \neq \emptyset$, i.e.,

$$d_{\alpha'\beta'}(x) = g_{\alpha'\alpha}(x) \ d_{\alpha\beta}(x) \ g_{\beta\beta'}(x) \tag{1.2}$$

in G, where $g_{\alpha'\alpha}$ are transition functions for π and $g_{\beta\beta'}$ are transition functions for π' . Let us now invert (1.2) in G, and set

$$\overline{d_{\beta\alpha}}(x) = d_{\alpha\beta}^{-1}(x)$$

to get:

$$\overline{d_{\beta'\alpha'}}(x) = g_{\beta'\beta}(x) \ \overline{d_{\beta\alpha}}(x) \ g_{\alpha\alpha'}(x).$$

So $\{\overline{d}_{\beta\alpha}\}\$ are as in Definition 1.9 and satisfy (1.1). Theorem 1.12 implies that there exists a bundle map $\hat{g}: E \to E'$ over id_B .

We claim that \hat{g} is the inverse \hat{f}^{-1} of \hat{f} , and this can be checked locally as follows:

$$(x,m) \stackrel{f}{\mapsto} (x, d_{\alpha\beta}(x) \cdot m) \stackrel{\hat{g}}{\mapsto} (x, \overline{d_{\beta\alpha}}(x) \cdot (d_{\alpha\beta}(x) \cdot m)) = (x, \underbrace{\overline{d_{\beta\alpha}}(x)d_{\alpha\beta}(x)}_{e_G} \cdot m) = (x, m).$$

So $\hat{g} \circ \hat{f} = id_{E'}$. Similarly, $\hat{f} \circ \hat{g} = id_E$

One way in which fiber bundle homomorphisms arise is from the pullback (or the induced bundle) construction.

Definition 1.14 (Induced Bundle). Given a bundle $E \xrightarrow{\pi} B$ with group G and fiber F, and a continuous map $f: X \to B$, we define

$$f^*E := \{ (x, e) \in X \times E \mid f(x) = \pi(e) \},\$$

with projections $f^*\pi : f^*E \to X$, $(x, e) \mapsto x$, and $\hat{f} : f^*E \to E$, $(x, e) \mapsto e$, so that the following diagram commutes:

$$\begin{array}{cccc}
f^*E \longrightarrow E & e \\
f^*\pi & & & & & \\
f^*\pi & & & & \\
x \longrightarrow B & & \\
x \longmapsto f(x)
\end{array}$$

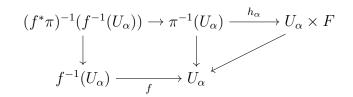
 $f^*\pi$ is called the induced bundle under f or the pullback of π by f, and as we show below it comes equipped with a bundle map $(f, \hat{f}) : f^*\pi \to \pi$.

The above definition is justified by the following result:

Theorem 1.15.

- (a) $f^*\pi : f^*E \to X$ is a fiber bundle with group G and fiber F.
- (b) $(f, \hat{f}) : f^*\pi \to \pi$ is a bundle map.

Proof Sketch. Let $\{(U_{\alpha}, h_{\alpha})\}_{\alpha}$ be a trivializing atlas of π , and consider the following commutative diagram:



We have

$$(f^*\pi)^{-1}(f^{-1}(U_{\alpha})) = \{(x,e) \in f^{-1}(U_{\alpha}) \times \underbrace{\pi^{-1}(U_{\alpha})}_{\cong U_{\alpha} \times F} \mid f(x) = \pi(e)\}.$$

Define

$$k_{\alpha}: (f^*\pi)^{-1}(f^{-1}(U_{\alpha})) \longrightarrow f^{-1}(U_{\alpha}) \times F$$

by

 $(x, e) \mapsto (x, \operatorname{pr}_2(h_\alpha(e))).$

Then it is easy to check that k_{α} is a homeomorphism (with inverse $k_{\alpha}^{-1}(x,m) = (x, h_{\alpha}^{-1}(f(x),m))$, and in fact the following assertions hold:

- (i) $\{(f^{-1}(U_{\alpha}), k_{\alpha})\}_{\alpha}$ is a trivializing atlas of $f^*\pi$.
- (ii) the transition functions of $f^*\pi$ are $f^*g_{\alpha\beta} := g_{\alpha\beta} \circ f$, i.e., $f^*g_{\alpha\beta}(x) = g_{\alpha\beta}(f(x))$ for any $x \in f^{-1}(U_{\alpha} \cap U_{\beta})$.

Remark 1.16. It is easy to see that $(f \circ g)^*\pi = g^*(f^*\pi)$ and $(id_B)^*\pi = \pi$. Moreover, the pullback of a trivial bundle is a trivial bundle.

As we shall see later on, the following important result holds:

Theorem 1.17. Given a fibre bundle $\pi : E \to B$ with group G and fiber F, and two homotopic maps $f \simeq g : X \to B$, there is an isomorphism $f^*\pi \cong g^*\pi$ of bundles over X. (In short, induced bundles under homotopic maps are isomorphic.)

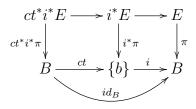
As a consequence, we have:

Corollary 1.18. A fiber bundle over a contractible space B is trivial.

Proof. Since B is contractible, id_B is homotopic to the constant map ct. Let

$$b := \operatorname{Image}(ct) \stackrel{\iota}{\hookrightarrow} B,$$

so $i \circ ct \simeq id_B$. We have a diagram of maps and induced bundles:

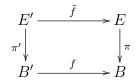


Theorem 1.17 then yields:

$$\pi \cong (id_B)^* \pi \cong ct^* i^* \pi.$$

Since any fiber bundle over a point is trivial, we have that $i^*\pi \cong \{b\} \times F$ is trivial, hence $\pi \cong ct^*i^*\pi \cong B \times F$ is also trivial.

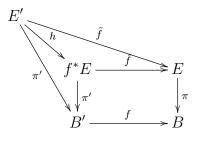
Proposition 1.19. If



is a bundle map, then $\pi' \cong f^*\pi$ as bundles over B'.

Proof. Define $h : E' \to f^*E$ by $e' \mapsto (\pi'(e'), \tilde{f}(e')) \in B' \times E$. This is well-defined, i.e., $h(e') \in f^*E$, since $f(\pi'(e')) = \pi(\tilde{f}(e'))$.

It is easy to check that h provides the desired bundle isomorphism over B'.



Example 1.20. We can now show that the set of isomorphism classes of bundles over S^n with group G and fiber F is isomorphic to $\pi_{n-1}(G)$. Indeed, let us cover S^n with two contractible sets U_+ and U_- obtained by removing the south, resp., north pole of S^n . Let $i_{\pm}: U_{\pm} \hookrightarrow S^n$ be the inclusions. Then any bundle π over S^n is trivial when restricted to U_{\pm} , that is, $i_{\pm}^*\pi \cong U_{\pm} \times F$. In particular, U_{\pm} provides a trivializing cover (atlas) for π , and any such bundle π is completely determined by the transition function $g_{\pm}: U_+ \cap U_- \simeq S^{n-1} \to G$, i.e., by an element in $\pi_{n-1}(G)$.

More generally, we aim to "classify" fiber bundles on a given topological space. Let $\mathcal{B}(X, G, F, \rho)$ denote the isomorphism classes (over id_X) of fiber bundles on X with group G

and fiber F, and G-action on F given by ρ . If $f: X' \to X$ is a continuous map, the pullback construction defines a map

$$f^*: \mathcal{B}(X, G, F, \rho) \longrightarrow \mathcal{B}(X', G, F, \rho)$$

so that $(id_X)^* = id$ and $(f \circ g)^* = g^* \circ f^*$.

2 Principle Bundles

As we will see later on, the fiber F doesn't play any essential role in the classification of fiber bundle, and in fact it is enough to understand the set

$$\mathcal{P}(X,G) := \mathcal{B}(X,G,G,m_G)$$

of fiber bundles with group G and fiber G, where the action of G on itself is given by the multiplication m_G of G. Elements of $\mathcal{P}(X, G)$ are called *principal G-bundles*. Of particular importance in the classification theory of such bundles is the *universal principal G-bundle* $G \hookrightarrow EG \to BG$, with contractible total space EG.

Example 2.1. Any regular cover $p : E \to X$ is a principal *G*-bundle, with group $G = \pi_1(X)/p_*\pi_1(E)$. Here *G* is given the discrete topology. In particular, the universal covering $\widetilde{X} \to X$ is a principal $\pi_1(X)$ -bundle.

Example 2.2. Any free (right) action of a finite group G on a (Hausdorff) space E gives a regular cover and hence a principal G-bundle $E \to E/G$.

More generally, we have the following:

Theorem 2.3. Let $\pi: E \to X$ be a principal *G*-bundle. Then *G* acts freely and transitively on the right of *E* so that $E_{\subset G} \cong X$. In particular, π is the quotient (orbit) map.

Proof. We will define the action locally over a trivializing chart for π . Let U_{α} be a trivializing open in X with trivializing homeomorphism $h_{\alpha} : \pi^{-1}(U_{\alpha}) \xrightarrow{\cong} U_{\alpha} \times G$. We define a right action on G on $\pi^{-1}(U_{\alpha})$ by

$$\pi^{-1}(U_{\alpha}) \times G \to \pi^{-1}(U_{\alpha}) \cong U_{\alpha} \times G$$
$$(e,g) \mapsto e \cdot g := h_{\alpha}^{-1}(\pi(e), \operatorname{pr}_{2}(h_{\alpha}(e)) \cdot g)$$

Let us show that this action can be globalized, i.e., it is independent of the choice of the trivializing open U_{α} . If (U_{β}, h_{β}) is another trivializing chart in X so that $e \in \pi^{-1}(U_{\alpha} \cap U_{\beta})$, we need to show that $e \cdot g = h_{\beta}^{-1}(\pi(e), \operatorname{pr}_{2}(h_{\beta}(e)) \cdot g)$, or equivalently,

$$h_{\alpha}^{-1}(\pi(e), \operatorname{pr}_{2}(h_{\alpha}(e)) \cdot g) = h_{\beta}^{-1}(\pi(e), \operatorname{pr}_{2}(h_{\beta}(e)) \cdot g).$$
(2.1)

After applying h_{α} and using the transition function $g_{\alpha\beta}$ for $\pi(e) \in U_{\alpha} \cap U_{\beta}$, (2.1) becomes

$$(\pi (e), \operatorname{pr}_{2}(h_{\alpha}(e)) \cdot g) = h_{\alpha}h_{\beta}^{-1}(\pi (e), \operatorname{pr}_{2}(h_{\beta}(e)) \cdot g) = (\pi (e), g_{\alpha\beta}(\pi(e)) \cdot (\operatorname{pr}_{2}(h_{\beta}(e)) \cdot g)),$$
(2.2)

which is guaranteed by the definition of an atlas for π .

It is easy to check locally that the action is free and transitive. Moreover, E_{G} is locally given as $U_{\alpha} \times G_{G} \cong U_{\alpha}$, and this local quotient globalizes to X.

The converse of the above theorem holds in some important cases.

Theorem 2.4. Let E be a compact Hausdorff space and G a compact Lie group acting freely on E. Then the orbit map $E \to E/G$ is a principal G-bundle.

Corollary 2.5. Let G be a Lie group, and let H < G be a compact subgroup. Then the projection onto the orbit space $\pi : G \to G/H$ is a principal H-bundle.

Let us now fix a G-space F. We define a map

$$\mathcal{P}(X,G) \to \mathcal{B}(X,G,F,\rho)$$

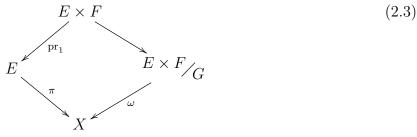
as follows. Start with a principal G bundle $\pi : E \to X$, and recall from the previous theorem that G acts freely on the right on E. Since G acts on the left on F, we have a left G-action on $E \times F$ given by:

$$g \cdot (e, f) \mapsto (e \cdot g^{-1}, g \cdot f).$$

Let

$$E \times_G F := \stackrel{E \times F}{\swarrow_G}$$

be the corresponding orbit space, with projection map $\omega : E \times_G F \to E/_G \cong X$ fitting into a commutative diagram



Definition 2.6. The projection $\omega := \pi \times_G F : E \times_G F \to X$ is called the associated bundle with fiber F.

The terminology in the above definition is justified by the following result.

Theorem 2.7. $\omega : E \times_G F \to X$ is a fiber bundle with group G, fiber F, and having the same transition functions as π . Moreover, the assignment $\pi \mapsto \omega := \pi \times_G F$ defines a one-to-one correspondence $\mathcal{P}(X,G) \to \mathcal{B}(X,G,F,\rho)$.

Proof. Let $h_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times G$ be a trivializing chart for π . Recall that for $e \in \pi^{-1}(U_{\alpha})$, $f \in F$ and $g \in G$, if we set $h_{\alpha}(e) = (\pi(e), h) \in U_{\alpha} \times G$, then G acts on the right on $\pi^{-1}(U_{\alpha})$ by acting on the right on $h = pr_2(h_{\alpha}(e))$. Then we have by the diagram (2.3) that

$$\omega^{-1}(U_{\alpha}) \cong \pi^{-1}(U_{\alpha}) \times F_{(e,f)} \sim (e \cdot g^{-1}, g \cdot f)$$
$$\cong U_{\alpha} \times G \times F_{(u,h,f)} \sim (u, hg^{-1}, g \cdot f)$$

Let us define

$$k_{\alpha}:\omega^{-1}\left(U_{\alpha}\right)\to U_{\alpha}\times F$$

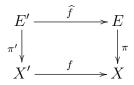
by

$$[(u, h, f)] \mapsto (u, h \cdot f).$$

This is a well-defined map since $[(u, hg^{-1}, g \cdot f)] \mapsto (u, hg^{-1}g \cdot f) = (u, h \cdot f)$. It is easy to check that $k_a l$ is a trivializing chart for ω with inverse induced by $U_\alpha \times F \to U_\alpha \times G \times F$, $(u, f) \mapsto (u, id_G, f)$. It is clear that ω and π have the same transition functions as they have the same trivializing opens.

The associated bundle construction is easily seen to be functorial in the following sense.

Proposition 2.8. If



is a map of principal G-bundles (so \hat{f} is a G-equivariant map, i.e., $\hat{f}(e \cdot g) = \hat{f}(e) \cdot g$), then there is an induced map of associated bundles with fiber F,

$$E' \times_G F \xrightarrow{f \times_G id_F} E \times_G F$$

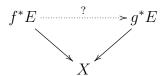
$$\downarrow^{\pi'}_{\chi'} \xrightarrow{f} X$$

Example 2.9. Let $\pi : S^1 \to S^1$, $z \mapsto z^2$ be regarded as a principal $\mathbb{Z}/2$ -bundle, and let F = [-1, 1]. Let $\mathbb{Z}/2 = \{1, -1\}$ act on F by multiplication. Then the bundle associated to π with fiber F = [-1, 1] is the Möbius strip $S^1 \times_{\mathbb{Z}/2} [-1, 1] = S^1 \times [-1, 1]/(x, t) \sim (a(x), -t)$, with $a : S^1 \to S^1$ denoting the antipodal map. Similarly, the bundle associated to π with fiber $F = S^1$ is the Klein bottle.

Let us now get back to proving the following important result.

Theorem 2.10. Let $\pi : E \to Y$ be a fiber bundle with group G and fiber F, and let $f \simeq g : X \to Y$ be two homotopic maps. Then $f^*\pi \cong g^*\pi$ over id_X .

It is of course enough to prove the theorem in the case of principal G-bundles. The idea of proof is to construct a bundle map over id_X between $f^*\pi$ and $g^*\pi$:



So we first need to understand maps of principal G-bundles, i.e., to solve the following problem: given two principal G-bundles bundles $E_1 \xrightarrow{\pi_1} X$ and $E_2 \xrightarrow{\pi_2} Y$, describe the set $maps(\pi_1, \pi_2)$ of bundle maps

Since G acts on the right of E_1 and E_2 , we also get an action on the left of E_2 by $g \cdot e_2 := e_2 \cdot g^{-1}$. Then we get an associated bundle of π_1 with fiber E_2 , namely

$$\omega := \pi_1 \times_G E_2 : E_1 \times_G E_2 \longrightarrow X.$$

We have the following result:

Theorem 2.11. Bundle maps from π_1 to π_2 are in one-to-one correspondence to sections of ω .

Proof. We work locally, so it suffices to consider only trivial bundles.

Given a bundle map $(f, \hat{f}) : \pi_1 \mapsto \pi_2$, let $U \subset Y$ open, and $V \subset f^{-1}(U)$ open, so that the following diagram commutes (this is the bundle maps in trivializing charts)

$$V \times G \xrightarrow{\widehat{f}} U \times G$$
$$\downarrow^{\pi_1} \qquad \qquad \downarrow^{\pi_2} U$$
$$V \xrightarrow{f} U$$

We define a section σ in

$$(V \times G) \times_G (U \times G)$$

$$\sigma \bigwedge^{\wedge} \bigcup_{\omega} \bigcup_{V}$$

as follows. For $e_1 \in V \times G$, with $x = \pi_1(e_1) \in V$, we set

$$\sigma(x) = [e_1, \widehat{f}(e_1)].$$

This map is well-defined, since for any $g \in G$ we have:

 $[e_1 \cdot g, \hat{f}(e_1 \cdot g)] = [e_1 \cdot g, \hat{f}(e_1) \cdot g] = [e_1 \cdot g, g^{-1} \cdot \hat{f}(e_1)] = [e_1, \hat{f}(e_1)].$

Now, it is an exercise in point-set topology (using the local definition of a bundle map) to show that σ is continuous.

Conversely, given a section of $E_1 \times_G E_2 \xrightarrow{\omega} X$, we define a bundle by (f, \widehat{f}) by

$$\widehat{f}(e_1) = e_2$$

where $\sigma(\pi_1(e_1)) = [(e_1, e_2)]$. Note that this is an equivariant map because

$$[e_1 \cdot g, e_2 \cdot g] = [e_1 \cdot g, g^{-1} \cdot e_2] = [e_1, e_2],$$

hence $\widehat{f}(e_1 \cdot g) = e_2 \cdot g = \widehat{f}(e_1) \cdot g$. Thus \widehat{f} descends to a map $f : X \to Y$ on the orbit spaces. We leave it as an exercise to check that (f, \widehat{f}) is indeed a bundle map, i.e., to show that locally $\widehat{f}(v, g) = (f(v), d(v)g)$ with $d(v) \in G$ and $d : V \to G$ a continuous function. \Box

The following result will be needed in the proof of Theorem 2.10.

Lemma 2.12. Let $\pi : E \to X \times I$ be a bundle, and let $\pi_0 := i_0^* \pi : E_0 \to X$ be the pullback of π under $i_0 : X \to X \times I$, $x \mapsto (x, 0)$. Then $\pi \cong (pr_1)^* \pi_0 \cong \pi_0 \times id_I$, where $pr_1 : X \times I \to X$ is the projection map.

Proof. It suffices to find a bundle map (pr_1, \hat{pr}_1) so that the following diagram commutes

$$E_{0} \xrightarrow{\widehat{i}_{0}} E \xrightarrow{\widehat{pr}_{1}} E_{0}$$

$$\pi_{0} \downarrow \qquad \qquad \downarrow \pi \qquad \qquad \downarrow \pi_{0}$$

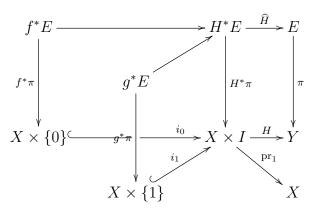
$$X \xrightarrow{i_{0}} X \times I \xrightarrow{\mathrm{pr}_{1}} X$$

By Theorem 2.11, this is equivilant to the existence of a section σ of $\omega : E \times_G E_0 \to X \times I$. Note that there exists a section σ_0 of $\omega_0 : E_0 \times_G E_0 \to X = X \times \{0\}$, corresponding to the bundle map $(id_X, id_{E_0}) : \pi_0 \to \pi_0$. Then composing σ_0 with the top inclusion arrow, we get the following diagram

Since ω is a fibration, by the homotopy lifting property one can extend $s\sigma_0$ to a section σ of ω .

We can now finish the proof of Theorem 2.10.

Proof of Theorem 2.10. Let $H: X \times I \to Y$ be a homotopy between f and g, with H(x, 0) = f(x) and H(x, 1) = g(x). Consider the induced bundle $H^*\pi$ over $X \times I$. Then we have the following diagram.

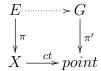


Since f = H(-,0), we get $f^*\pi = i_0^* H^*\pi$. By Lemma 2.12, $H^*\pi \cong pr_1^*(f^*\pi) \cong pr_1^*(g^*\pi)$, and thus $f^*\pi = i_0^* H^*\pi = i_0^* \operatorname{pr}_1^* g^*\pi = g^*\pi$.

We conclude this section with the following important consequence of Theorem 2.11

Corollary 2.13. A principle G-bundle $\pi: E \to X$ is trivial if and only if π has a section.

Proof. The bundle π is trivial if and only if $\pi = ct^*\pi'$, with $ct : X \to point$ the constant map, and $\pi' : G \to point$ the trivial bundle over a point space. This is equivalent to saying that there is a bundle map



or, by Theorem 2.11, to the existence of a section of the bundle $\omega : E \times_G G \to X$. On the other hand, $\omega \cong \pi$, since $E \times_G G \to X$ looks locally like

$$\pi^{-1}(U_{\alpha}) \times G_{\nearrow} \cong U_{\alpha} \times G \times G_{\swarrow}(u, g_1, g_2) \sim (u, g_1g^{-1}, gg_2) \cong U\alpha \times G,$$

with the last homeomorphism defined by $[(u, g_1, g_2)] \mapsto (u, g_1g_2)$.

Altogether, π is trivial if and only if $\pi: E \mapsto X$ has a section.

3 Classification of principal *G*-bundles

Let us assume for now that there exists a principal G-bundle $\pi_G : EG \to BG$, with contractible total space EG. As we will see below, such a bundle plays an essential role in the classification theory of principal G-bundles. Its base space BG turns out to be unique up to homotopy, and it is called the *classifying space for principal G-bundles* due to the following fundamental result: **Theorem 3.1.** If X is a CW-complex, there exists a bijective correspondence

$$\Phi: \mathcal{P}(X,G) \xrightarrow{\cong} [X,BG]$$
$$f^*\pi_G \longleftrightarrow f$$

Proof. By Theorem 2.10, Φ is well-defined.

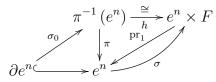
Let us next show that Φ is onto. Let $\pi \in \mathcal{P}(X,G)$, $\pi : E \to X$. We need to show that $\pi \cong f^*\pi_G$ for some map $f : X \to BG$, or equivalently, that there is a bundle map $(f, \widehat{f}) : \pi \to \pi_G$. By Theorem 2.11, this is equivalent to the existence of a section of the bundle $E \times_G EG \to X$ with fiber EG. Since EG is contractible, such a section exists by the following:

Lemma 3.2. Let X be a CW complex, and $\pi : E \to X \in \mathcal{B}(X, G, F, \rho)$ with $\pi_i(F) = 0$ for all $i \geq 0$. If $A \subseteq X$ is a subcomplex, then every section of π over A extends to a section defined on all of X. In particular, π has a section. Moreover, any two sections of π are homotopic.

Proof. Given a section $\sigma_0 : A \to E$ of π over A, we extend it to a section $\sigma : X \to E$ of π over X by using induction on the dimension of cells in X - A. So it suffices to assume that X has the form

$$X = A \cup_{\phi} e^n,$$

where e^n is an *n*-cell in X - A, with attaching map $\phi : \partial e^n \to A$. Since e^n is contractible, π is trivial over e^n , so we have a commutative diagram



with $h: \pi^{-1}(e^n) \to e^n \times F$ the trivializing chart for π over e^n , and σ to be defined. After composing with h, we regard the restriction of σ_0 over ∂e^n as given by

$$\sigma_0(x) = (x, \tau_0(x)) \in e^n \times F,$$

with $\tau_0: \partial e^n \cong S^{n-1} \to F$. Since $\pi_{n-1}(F) = 0$, τ_0 extends to a map $\tau: e^n \to F$ which can be used to extend σ_0 over e^n by setting

$$\sigma(x) = (x, \tau(x)).$$

After composing with h^{-1} , we get the desired extension of σ_0 over e^n .

Let us now assume that σ and σ' are two sections of π . To find a homotopy between σ and σ' , it suffices to construct a section Σ of $\pi \times id_I : E \times I \to X \times I$. Indeed, if such Σ exists, then $\Sigma(x,t) = (\sigma_t(x),t)$, and σ_t provides the desired homotopy. Now, by regarding σ as a section of $\pi \times id_I$ over $X \times \{0\}$, and σ' as a section of $\pi \times id_I$ over $X \times \{1\}$, the question reduces to constructing a section of $\pi \times id_I$, which extends the section over $X \times \{0,1\}$ defined by (σ, σ') . This can be done as in the first part of the proof. In order to finish the proof of Theorem 3.1, it remains to show that Φ is a one-to-one map. If $\pi_0 = f^* \pi_G \cong g^* \pi_G = \pi_1$, we will show that $f \simeq g$. Note that we have the following commutative diagrams:

$$E_{0} = f^{*}E_{G} \xrightarrow{\widehat{f}} E_{G}$$

$$\downarrow^{\pi_{0}} \qquad \downarrow^{\pi_{G}}$$

$$X = X \times \{0\} \xrightarrow{f} B_{G}$$

$$E_{0} \cong E_{1} = g^{*}E_{G} \xrightarrow{\widehat{g}} E_{G}$$

$$\downarrow^{\pi_{0}} \qquad \downarrow^{\pi_{G}}$$

$$X = X \times \{1\} \xrightarrow{g} B_{G}$$

where we regard \hat{g} as defined on E_0 via the isomorphism $\pi_0 \cong \pi_1$. By putting together the above diagrams, we have a commutative diagram

Therefore, it suffices to extend $(\alpha, \widehat{\alpha})$ to a bundle map $(H, \widehat{H}) : \pi_0 \times Id \to \pi_G$, and then H will provide the desired homotopy $f \simeq g$.

By Theorem 2.11, such a bundle map (H, \hat{H}) corresponds to a section σ of the fiber bundle

$$\omega: (E_0 \times I) \times_G E_G \to X \times I.$$

On the other hand, the bundle map $(\alpha, \hat{\alpha})$ already gives a section σ_0 of the fiber bundle

$$\omega_0 : (E_0 \times \{0, 1\}) \times_G E_G \to X \times \{0, 1\},\$$

which under the obvious inclusion $(E_0 \times \{0, 1\}) \times_G E_G \subseteq (E_0 \times I) \times_G E_G$ can be regarded as a section of ω over the subcomplex $X \times \{0, 1\}$. Since EG is contractible, Lemma 3.2 allows us to extend σ_0 to a section σ of ω defined on $X \times I$, as desired.

Example 3.3. We give here a more conceptual reasoning for the assertion of Example 1.20. By Theorem 3.1, we have

$$\mathcal{B}(S^n, G, F, \rho) \cong \mathcal{P}(S^n, G) \cong [S^n, BG] = \pi_n(BG) \cong \pi_{n-1}(G),$$

where the last isomorphism follows from the homotopy long exact sequence for π_G , since EG is contractible.

Back to the universal principal G-bundle, we have the following

Theorem 3.4. Let G be a locally compact topological group. Then a universal principal Gbundle $\pi_G : EG \to BG$ exists (i.e., satisfying $\pi_i(EG) = 0$ for all $i \ge 0$), and the construction is functorial in the sense that a continuous group homomorphism $\mu : G \to H$ induces a bundle map $(B\mu, E\mu) : \pi_G \to \pi_H$. Moreover, the classifying space B_G is unique up to homotopy.

Proof. To show that BG is unique up to homotopy, let us assume that $\pi_G : E_G \to B_G$ and $\pi'_G : E'_G \to B'_G$ are universal principal G-bundles. By regarding π_G as the universal principal G-bundle for π'_G , we get a map $f : B'_G \to B_G$ such that $\pi'_G = f^*\pi_G$, i.e., a bundle map:

$$E'_G \xrightarrow{\hat{f}} E_G$$

$$\downarrow \pi'_G \qquad \qquad \downarrow \pi_G$$

$$B'_G \xrightarrow{f} B_G$$

Similarly, y regarding π'_G as the universal principal *G*-bundle for π_G , there exists a map $g: B_G \to B'_G$ such that $\pi_G = g^* \pi'_G$. Therefore,

$$\pi_G = g^* \pi'_G = g^* f^* \pi_G = (f \circ g)^* \pi_G.$$

On the other hand, we have $\pi_G = (id_{B_G})^* \pi_G$, so by Theorem 3.1 we get that $f \circ g \simeq id_{B_G}$. Similarly, we get $g \circ f \simeq id_{B'_G}$, and hence $f : B'_G \to B_G$ is a homotopy equivalence.

We will not discuss the existence of the universal bundle here, instead we will indicate the universal G-bundle, as needed, in specific examples.

Example 3.5. Recall that we have a fiber bundle

$$O(n) \longrightarrow V_n(\mathbb{R}^\infty) \longrightarrow G_n(\mathbb{R}^\infty), \tag{3.1}$$

with $V_n(\mathbb{R}^\infty)$ contractible. In particular, the uniqueness part of Theorem 3.4 tells us that $BO(n) \simeq G_n(\mathbb{R}^\infty)$ is the classifying space for rank *n* real vector bundles. Similarly, there is a fiber bundle

$$U(n) \longrightarrow V_n(\mathbb{C}^\infty) \longrightarrow G_n(\mathbb{C}^\infty), \tag{3.2}$$

with $V_n(\mathbb{C}^{\infty})$ contractible. Therefore, $BU(n) \simeq G_n(\mathbb{C}^{\infty})$ is the classifying space for rank n complex vector bundles.

Before moving to the next example, let us mention here without proof the following useful result:

Theorem 3.6. Let G be an abelian group, and let X be a CW complex. There is a natural bijection

$$T : [X, K(G, n)] \longrightarrow H^n(X, G)$$
$$[f] \mapsto f^*(\alpha)$$

where $\alpha \in H^n(K(G, n), G) \cong \operatorname{Hom}(H_n(K(G, n), \mathbb{Z}), G)$ is given by the inverse of the Hurewicz isomorphism $G = \pi_n(K(G, n)) \to H_n(K(G, n), \mathbb{Z}).$

Example 3.7 (Classification of real line bundles). Let $G = \mathbb{Z}/2$ and consider the principal $\mathbb{Z}/2$ -bundle $\mathbb{Z}/2 \hookrightarrow S^{\infty} \to \mathbb{R}P^{\infty}$. Since S^{∞} is contractible, the uniqueness of the universal bundle yields that $B\mathbb{Z}/2 \cong \mathbb{R}P^{\infty}$. In particular, we see that $\mathbb{R}P^{\infty}$ classifies the real line (i.e., rank-one) bundles. Since we also have that $\mathbb{R}P^{\infty} = K(\mathbb{Z}/2, 1)$, we get:

$$\mathcal{P}(X,\mathbb{Z}/2) = [X, B\mathbb{Z}/2] = [X, K(\mathbb{Z}/2, 1)] \cong H^1(X, \mathbb{Z}/2)$$

for any CW complex X, where the last identification follows from Theorem 3.6. Let now π be a real line bundle on a CW complex X, with classifying map $f_{\pi} : X \to \mathbb{R}P^{\infty}$. Since $H^*(\mathbb{R}P^{\infty}, \mathbb{Z}/2) \cong \mathbb{Z}/2[w]$, with w a generator of $H^1(\mathbb{R}P^{\infty}, \mathbb{Z}/2)$, we get a well-defined degree one cohomology class

$$w_1(\pi) := f_{\pi}^*(w)$$

called the first Stiefel-Whitney class of π . The bijection $\mathcal{P}(X,\mathbb{Z}/2) \xrightarrow{\cong} H^1(X,\mathbb{Z}/2)$ is then given by $\pi \mapsto w_1(\pi)$, so real line bundles on X are classified by their first Stiefel-Whitney classes.

Example 3.8 (Classification of complex line bundles). Let $G = S^1$ and consider the principal S^1 -bundle $S^1 \hookrightarrow S^{\infty} \to \mathbb{C}P^{\infty}$. Since S^{∞} is contractible, the uniqueness of the universal bundle yields that $BS^1 \cong \mathbb{C}P^{\infty}$. In particular, as $S^1 = GL(1, \mathbb{C})$, we see that $\mathbb{C}P^{\infty}$ classifies the complex line (i.e., rank-one) bundles. Since we also have that $\mathbb{C}P^{\infty} = K(\mathbb{Z}, 2)$, we get:

$$\mathcal{P}(X, S^1) = [X, BS^1] = [X, K(\mathbb{Z}, 2)] \cong H^2(X, \mathbb{Z})$$

for any CW complex X, where the last identification follows from Theorem 3.6. Let now π be a complex line bundle on a CW complex X, with classifying map $f_{\pi} : X \to \mathbb{C}P^{\infty}$. Since $H^*(\mathbb{C}P^{\infty},\mathbb{Z}) \cong \mathbb{Z}[c]$, with c a generator of $H^2(\mathbb{C}P^{\infty},\mathbb{Z})$, we get a well-defined degree two cohomology class

$$c_1(\pi) := f_{\pi}^*(c)$$

called the first Chern class of π . The bijection $\mathcal{P}(X, S^1) \xrightarrow{\cong} H^2(X, \mathbb{Z})$ is then given by $\pi \mapsto c_1(\pi)$, so complex line bundles on X are classified by their first Chern classes.

Remark 3.9. If X is any orientable closed oriented surface, then $H^2(X, \mathbb{Z}) \cong \mathbb{Z}$, so Example 3.8 shows that isomorphism classes of complex line bundles on X are in bijective correspondence with the set of integers. On the other hand, if X is a non-orientable closed surface, then $H^2(X, \mathbb{Z}) \cong \mathbb{Z}/2$, so there are only two isomorphism classes of complex line bundles on such a surface.

4 Exercises

1. Let $p: S^2 \to \mathbb{R}P^2$ be the (oriented) double cover of $\mathbb{R}P^2$. Since $\mathbb{R}P^2$ is a non-orientable surface, we know by Remark 3.9 that there are only two isomorphism classes of complex line bundles on $\mathbb{R}P^2$: the trivial one, and a non-trivial complex line bundle which we denote by

 $\pi: E \to \mathbb{R}P^2$. On the other hand, since S^2 is a closed orientable surface, the isomorphism classes of complex line bundles on S^2 are in bijection with \mathbb{Z} . Which integer corresponds to complex line bundle $p^*\pi: p^*E \to S^2$ on S^2 ?

2. Consider a locally trivial fiber bundle $S^2 \hookrightarrow E \xrightarrow{\pi} S^2$. Recall that such π can be regarded as a fiber bundle with structure group $G = Homeo(S^2) \cong SO(3)$. By the classification Theorem 3.1, SO(3)-bundles over S^2 correspond to elements in

$$[S^2, BSO(3)] = \pi_2(BSO(3)) \cong \pi_1(SO(3)).$$

(a) Show that $\pi_1(SO(3)) \cong \mathbb{Z}/2$. (Hint: Show that SO(3) is homeomorphic to $\mathbb{R}P^3$.)

(b) What is the non-trivial SO(3)-bundle over S^2 ?

3. Let $\pi : E \to X$ be a principal S^1 -bundle over the simply-connected space X. Let $a \in H^1(S^1, \mathbb{Z})$ be a generator. Show that

$$c_1(\pi) = d_2(a),$$

where d_2 is the differential on the E_2 -page of the Leray-Serre spectral sequence associated to π , i.e., $E_2^{p,q} = H^p(X, H^q(S^1)) \Rightarrow H^{p+q}(E, \mathbb{Z}).$

4. By the classification Theorem 3.1, (isomorphism classes of) S^1 -bundles over S^2 are given by

$$[S^2, BS^1] = \pi_2(BS^1) \cong \pi_1(S^1) \cong \mathbb{Z}$$

and this correspondence is realized by the first Chern class, i.e., $\pi \mapsto c_1(\pi)$.

- (a) What is the first Chern class of the Hopf bundle $S^1 \hookrightarrow S^3 \to S^2$?
- (b) What is the first Chern class of the sphere (or unit) bundle of the tangent bundle TS^2 ?
- (c) Construct explicitly the S^1 -bundle over S^2 corresponding to $n \in \mathbb{Z}$. (Hint: Think of lens spaces, and use the above Exercise 3.)