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Abstract. In their 2012 paper, Bobadilla and Kollár studied topological conditions which
guarantee that a proper map of complex algebraic varieties is a topological or differentiable
fibration. They also asked whether a certain finiteness property on the relative covering
space can imply that a proper map is a fibration. In this paper, we answer positively the
integral homology version of their question in the case of abelian varieties, and the rational
homology version in the case of compact ball quotients. We also propose several conjectures
in relation to the Singer-Hopf conjecture in the complex projective setting.

1. Introduction

A CW-complex X is called aspherical if it is connected and all its higher homotopy groups
vanish, i.e., πi(X) is trivial for all i ≥ 2. The vanishing of higher-homotopy groups is

equivalent to the fact that the universal covering X̃ of X is contractible. The homotopy
type of an aspherical CW complex depends only of its fundamental group.

Interesting examples of aspherical spaces are the closed Riemannian manifolds with non-
positive sectional curvature, compact ball quotients or abelian varieties.

There are several prominent open conjectures concerning aspherical manifolds. For in-
stance, a conjecture of Borel asserts that two aspherical closed manifolds are homeomorphic
if and only if their fundamental groups are isomorphic. The Borel conjecture is proved in
many important cases, e.g., it is true in dimensions 6= 3, 4 for all non-positively curved closed
Riemannian manifolds, see [FJ]. Another important conjecture was made by Hopf (and later
on strengthened by Singer) on the sign of the topological Euler characteristic of an aspherical
closed manifold.

Conjecture 1.1. (Singer-Hopf) If X2n is a closed, aspherical manifold of real dimension
2n, then

(−1)nχ(X2n) ≥ 0.

More recently, inspired by work of Kollár and Pardon [KP], Bobadilla and Kollár [BK]
used aspherical manifolds in their search for homotopy/homology fiber bundles, which in
turn are conjectured to be differentiable fibre bundles. In order to state their conjecture, we
make the following definition.
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Definition 1.2 ([BK, Definition 1]). Let X and Y be complex manifolds.1 A proper holo-
morphic map f : X → Y is said to be a homotopy fiber bundle if Y has an open cover
Y =

⋃
j Uj such that for every j and for every y ∈ Uj the inclusion

f−1(y) ↪→ f−1(Uj) is a homotopy equivalence.

Similarly, given a commutative ring A, the map f : X → Y is called an A-homology fiber
bundle if

H∗(f
−1(y),A)→ H∗(f

−1(Uj),A) is an isomorphism.

Let X and Y be smooth projective varieties and f : X → Y a surjective morphism. Let

Ỹ → Y denote the universal cover. By pull-back we obtain a map f̃ : X̃ → Ỹ . In [BK],
Bobadilla and Kollár asked the following question, which also appears as Question 26 in
[KP] (see also [KP, Question 4] for a broader statement).

Question 1.3. Assume that Ỹ is contractible and X̃ is homotopy equivalent to a finite CW
complex. Does this imply that f is a topological or differentiable fiber bundle?

The above question can be divided into two parts. The first part is more topological:

Question 1.4. ([BK, Question 4.2]) Assume that Ỹ is contractible and X̃ is homotopy
equivalent to a finite CW complex. Does this imply that f is a homotopy or Z-homology fiber
bundle?

We will refer to the homological part of Question 1.4 as the integral Bobadilla-Kollár
question. If we replace “Z-homology fiber bundle” by “Q-homology fiber bundle” in the
above question, we call it the rational Bobadilla-Kollár question.

The second part is more geometric, and is formulated as a conjecture in [BK].

Conjecture 1.5. ([BK, Conjecture 3]) Let f : X → Y be a proper map of smooth complex
algebraic varieties. If f is a homotopy or Z-homology fiber bundle, then it is a differentiable
fiber bundle.

In this paper we answer positively the homological versions of the Bobadilla-Kollár ques-
tion 1.4 in the case of aspherical projective manifolds with ample cotangent bundles (e.g.,
compact ball quotients) and abelian varieties. More precisely, we show the following (see
Theorem 5.3 and 5.17).

Theorem 1.6. The rational Bobadilla-Kollár question is true if Y is an aspherical projective
manifold with ample cotangent bundle (e.g., a compact ball quotient). Moreover, the integral
Bobadilla-Kollár question is true if Y is an abelian variety.

As a concrete application, we get the following.

Corollary 1.7. Let X be a projective manifold, and denote by Xab the universal free abelian
cover of X, i.e., the covering associated to the homomorphism π1(X) → H1(X,Z)/torsion.
If Xab is homotopy equivalent to a finite CW-complex, then the Albanese map of X is a
Z-homology fiber bundle.

1In [BK], the authors considered more generally complex spaces. In this paper, we will restrict ourselves
to smooth manifolds/varieties.
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Our main results should be compared to [KP, Theorem 16, Theorem 20] by Kollár and
Pardon, where special cases of Question 1.3 are addressed.

Our approach to proving Theorem 1.6 relies on the theory of perverse sheaves and de-
rived calculus (for an introduction to these techniques, see, e.g., [Di, Ma]). Let us mention
here the main ideas of the proof. First note that a proper map f : X → Y of smooth
complex algebraic varieties is a Z-homology fiber bundle if and only if the higher derived
pushforwards Rif∗ZX are locally constant sheaves on Y . If this is the case, we say that the
constructible complex Rf∗ZX is locally constant. (Similar considerations apply to rational
coefficients.) Such complexes are introduced and characterized in Section 4. To answer the
homological version of Question 1.4, in Section 2 we first introduce and study the properties
of a nonabelian version of the Mellin transformation considered in [LMW2, LMW3], see
Definition 2.1. A positive answer to the rational Bobadilla–Kollár question can be given for
any aspherical projective manifold with an ample cotangent bundle (e.g., a compact ball
quotient) by using the decomposition theorem and positivity results for Chern classes of
ample vector bundles (cf. Section 3). For the integral version, we have to also work with
fields of positive characteristics. A positive answer to the integral Bobadilla–Kollár question
for abelian varieties is given in Section 5, and it relies on a key non-vanishing property of
the Mellin transformation (see Proposition 5.6), which is proved using characteristic cycles
and the geometry of abelian varieties.

Finally, in Section 6 we speculate around the Singer-Hopf conjecture 1.1 in the complex
algebraic setting. We propose various generalizations, also in relation to the Shafarevich
conjecture. For instance, we prove the following result (see Corollary 6.8).

Theorem 1.8. Let Y be an aspherical projective manifold. Then the Shafarevich conjecture
implies that the universal cover of Y is Stein.

We also conjecture that the cotangent bundle of a projective manifold with a Stein uni-
versal cover is nef (see Conjecture 6.3). Together with semi-positivity results for nef vector
bundles from [DPS], this would then imply the Singer-Hopf Conjecture 1.1 in the complex
projective setting.

As a convention, in this paper all varieties and manifolds are assumed to be connected.
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DMS-1701305 and by a Sloan Fellowship.

2. Nonabelian Mellin transformation

In this section we introduce the Mellin transformation for complex manifolds and study
its immediate properties.

Let Y be a complex manifold of dimension d with fundamental group π1(Y ) = G. We

denote the universal cover of Y by Ỹ . Let A be a commutative ring, and let F be a bounded
A-constructible complex on Y .

Definition 2.1. We define the Mellin transformation of F on Y as

M∗(Y,F) := Rq̃!
(
p∗F

)
∈ Db(A[G]),
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where p : Ỹ → Y is the universal covering map, q̃ : Ỹ → pt is the projection to a point, and
Db(A[G]) is the derived category of right A[G]-modules. When there is no risk of confusion,
we will simply write M∗(F) instead of M∗(Y,F).

Note that since p∗F is a right G-equivariant complex and q̃ is a right G-equivariant map,
Rq̃!(p

∗F) admits a natural right G-action. By definition, the Mellin transformation

M∗(Y,−) : Db
c(Y,A)→ Db(A[G])

is a functor of triangulated categories.
Let LG be the rank one A[G]-local system on Y whose monodromy action is given by

multiplication on the right. Note that LG ∼= Rp!AỸ as sheaves of right A[G]-modules. Then
an equivalent description of the Mellin transformation is given by the following

Proposition 2.2.

(2.1) M∗(Y,F) = Rq!(F ⊗A LG) ∈ Db(A[G]),

where q : Y → pt is the projection to a point.

Proof. Indeed, we have:

Rq̃!
(
p∗F

) ∼= Rq!Rp!
(
p∗F ⊗A AỸ

) ∼= Rq!
(
F ⊗A Rp!AỸ

) ∼= Rq!
(
F ⊗A LG

)
,

where the second isomorphism uses the projection formula. �

Remark 2.3. Here we made a choice that the equivariant G-actions are on the right. This

essentially depends on how we let G act on Ỹ . We consider points in Ỹ as homotopy classes
of paths from the base point y0 to an arbitrary point y on Y . Then the natural action of G

on Ỹ is on the right.

Example 2.4. Suppose that Y is an aspherical complex manifold of complex dimension d
and L is an A-local system on Y . Then M∗(L) ∼= V [−2d], where V is the A[G]-module
associated to the monodromy representation of L.

Let V be a finitely generated freeA-module. Fix a representation ρ : G→ AutA(V ), which
induces a left A[G]-module structure on V . We write Vρ to emphasize the A[G]-module
structure on V . We denote by Lρ the A-local system on Y whose stalks are isomorphic to
V and whose monodromy action is equal to ρ.

Proposition 2.5. Given any ρ as above and F ∈ Db
c(Y,A), there is a canonical isomorphism

(2.2) H i
c(Y,F ⊗A Lρ) ∼= H i

(
M∗(Y,F)⊗LA[G] Vρ

)
where ⊗LA[G] denotes the derived tensor product of right and left A[G]-modules.

Proof. By projection formula, we have

Rq!
(
F ⊗A LG

)
⊗LA[G] Vρ

∼= Rq!
(
F ⊗A LG ⊗LA[G] q

∗Vρ
) ∼= Rq!

(
F ⊗A Lρ

)
.

Formula (2.2) follows by taking i-th cohomology on both sides. �

Corollary 2.6. Let Y be a smooth complex algebraic variety or a compact complex manifold.
Given a field K, if F ∈ Db

c(Y,K) has the property that its Euler characteristic χ(Y,F) is not
zero, then M∗(Y,F) 6= 0.
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Proof. Suppose that M∗(Y,F) = 0. Applying the above proposition to the case when Vρ
is the trivial rank one G-representation, we get that Hk

c (Y,F) = 0 for all k ∈ Z. Then
χ(Y,F) = χc(Y,F) = 0, contradicting our assumptions. For the equality of the Euler char-
acteristics with and without compact support in the algebraic case, e.g., see [Di, Proposition
4.1.23]. �

Corollary 2.7. Let F be a K-constructible complex on an abelian variety A. ThenM∗(F) =
0 if and only if H i(A,F ⊗K L) = 0 for any i and any rank one K-local system L, where K
is the algebraic closure of K.

Proof. Notice that the group ring K[π1(A)] is isomorphic to a Laurent polynomial ring. Over
a finitely generated K-algebra, a module is zero if and only if its restriction to every K-point
is zero. So the assertion follows from Proposition 2.5. �

3. Euler characteristic of perverse sheaves and characteristic cycles

In this section, we recall several (semi-)positivity results for ample (resp., nef) vector
bundles on projective manifolds. We use such results to deduce (semi-)positivity statements
for the Euler characteristics of perverse sheaves on complex projective manifolds with ample
(resp., nef) cotangent bundles. For perverse sheaves we use field coefficients.

First, let us recall the definition of ample and, resp., nef vector bundles.

Definition 3.1. If E is a vector bundle on a projective manifold X, denote by P(E) the
projective bundle of hyperplanes in the fibers of E. A vector bundle E on X is called ample
(resp. nef) if the line bundle OE(1) on P(E) is ample (resp. nef).

In [FL], Fulton and Lazarsfeld studied the positivity of Chern classes of ample vector
bundles, and proved the following result.

Theorem 3.2. ([FL, Theorem II]) Let X be a projective manifold and let E be a rank r ample
vector bundle on X. For any r-dimensional conic subvariety C of E, that is a subvariety
that is invariant under the C∗-action on E, the intersection number satisfies

〈C,ZE〉E > 0

where ZE is the zero section of E.

Together with Kashiwara’s index theorem, we have the following positivity result on the
Euler characteristics of perverse sheaves.

Proposition 3.3. Let X be a projective manifold with ample cotangent bundle, and let P
be a nonzero perverse sheaf on X. Then χ(X,P) > 0.

Proof. Kashiwara’s global index theorem [Ka] computes the Euler characteristic of any
bounded constructible complex P on X by the formula:

(3.1) χ(X,P) = 〈CC(P), [X]〉T ∗X ,

that is, the intersection index in the cotangent bundle T ∗X, of the characteristic cycle of
P with the zero section of T ∗X. Recall that the characteristic cycle CC(P) is a formal
Z-linear combination of irreducible conic Lagrangian cycles T ∗ZX := T ∗Zreg

X in T ∗X given by
the conormal spaces of certain irreducible closed subvarieties Z ⊆ X.

Since the characteristic cycle of a perverse sheaf is known to be effective (e.g., see [Di,
Corollary 5.2.24]), the positivity of χ(X,P) follows immediately from the ampleness of the
cotangent bundle of X together with Theorem 3.2. �
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Since compact ball quotients have ample cotangent bundles (e.g., see [Laz, Construction
6.3.36]), we get the following:

Corollary 3.4. If X is a compact ball quotient and P is a nonzero perverse sheaf on X,
then χ(X,P) > 0.

The analogous result of Fulton-Lazarsfeld for nef vector bundles is proved by Demailly-
Peternell-Schneider [DPS].

Theorem 3.5. ([DPS, Proposition 2.3]) Let X be a projective manifold and let E be a rank
r nef vector bundle on X. For any r-dimensional conic subvariety C of E, the intersection
number satisfies

〈C,ZE〉E ≥ 0

where ZE is the zero section of E.

The following analog of Proposition 3.3 can be proved by the same arguments.

Proposition 3.6. Let X be a projective manifold with nef cotangent bundle, and let P be a
nonzero perverse sheaf on X. Then χ(X,P) ≥ 0. In particular, (−1)dimXχ(X) ≥ 0.

Since the intersection complex ICZ of any pure-dimensional complex algebraic variety Z
is a perverse sheaf and since IHk(Z) ∼= Hk+dimZ(Z, ICZ), we have the following.

Corollary 3.7. Let X be a projective manifold with nef cotangent bundle, and let Z be an
irreducible closed subvariety of X. Then the intersection cohomology Euler characteristics
of Z, that is,

χIH(Z) :=
∑

0≤k≤2 dimZ

(−1)k dim IHk(Z)

satisfies

(−1)dimZχIH(Z) ≥ 0.

Example 3.8. The class of complex projective manifolds whose cotangent bundles are nef
is closed under taking products, subvarieties and finite unramified covers, and it includes
smooth subvarieties of abelian varieties. It should also be noted that if A is an abelian
variety of dimension g, and X ⊂ A is a smooth subvariety of dimension n and codimension
g−n < n, then the cotangent bundle of X is not ample (see [De, Sc], and also, [Laz, Example
7.2.3]). On the other hand, for an arbitrary smooth m-dimensional projective variety M and
each n ≤ m/2, there exist plenty of smooth n-dimensional subvarieties X ⊂ M with ample
cotangent bundle, e.g., complete intersection of sections of M by general hypersurfaces of
sufficiently high degrees in the ambient projective space, see [BD, Xi].

4. Locally constant constructible complexes

We should note here that a proper map f : X → Y of smooth complex algebraic varieties
is a Z-homology fiber bundle if and only if the higher derived pushforwards Rif∗ZX are
locally constant sheaves on Y . If this is the case, we say that the constructible complex
Rf∗ZX is locally constant.

This motivates the following.
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Definition 4.1. Let M be a complex manifold, A a commutative ring, and let F be a
bounded A-constructible complex. We say that F is locally constant if for any contractible
open subset U ⊂M , the restriction map

RΓ(U,F)→ i∗xF
is a quasi-isomorphism for every point x ∈ U , where ix : {x} ↪→ M is the point inclusion
and RΓ(U,−) : Db

c(M,A)→ D−(A) is the derived functor of taking sections over U .

Lemma 4.2. The mapping cone of any morphism of locally constant bounded A-constructible
complexes is also locally constant.

Proof. Let f : F → G be a morphism of bounded constructible complexes, and let C(f)
be its mapping cone. Let U be a contractible open subset of M , and x ∈ U . Since the
restriction map is functorial, we have the following map of long exact sequences

Hk(U,F|U) Hk(U,G|U) Hk(U,C(f)|U) Hk+1(U,F|U) Hk+1(U,G|U)

Hk(i∗xF) Hk(i∗xG) Hk(i∗xC(f)) Hk(i∗xF) Hk(i∗xG).

By definition, all the vertical arrows are isomorphisms except the middle one. By the 5-
lemma, the middle vertical arrow is also an isomorphism. This implies that the restriction
map RΓ(U,C(f))→ i∗xC(f) is a quasi-isomorphism. �

Locally constant complexes are described by the following result.

Proposition 4.3. Let F be a bounded A-constructible complex on a complex manifold M .
The following conditions are equivalent:

(1) F is locally constant;
(2) there exists a covering {Uλ}λ∈I of M by contractible open subsets such that the re-

striction map RΓ(Uλ,F)→ i∗xF is an isomorphism for all λ ∈ I and x ∈ Uλ.
(3) the cohomology sheaves Hk(F) are local systems for all k;
(4) the perverse cohomology sheaves pHk(F) are shifts of local systems for all k.

If A is a field, then the above conditions are also equivalent to

(5) the Verdier dual D(F) is locally constant.

Proof. First, we prove (2) ⇒ (3). If F = 0, there is nothing to prove. Otherwise, let
Hl(F) be the lowest degree nonzero sheaf cohomology. Using the hypercohomology spectral
sequence

Eij
2 = H i

(
Uλ,Hj(F)

)
=⇒ H i+j(Uλ,F),

we get that

H0
(
Uλ,Hl(F)

) ∼= H l(Uλ,F).

Since the restriction map RΓ(Uλ,F)→ i∗xF is a quasi-isomorphism, we have an isomorphism
of cohomology groups

H l(Uλ,F) ∼= H l(i∗xF).

Since taking sheaf cohomology commutes with taking stalk, we also have a natural isomor-
phism

H l(i∗xF) ∼= i∗x
(
Hl(F)

)
.
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Combining the above three isomorphism, we have

H0
(
Uλ,Hl(F)

) ∼= i∗x
(
Hl(F)

)
for every Uλ and any x ∈ Uλ. Thus, Hl(F) is a local system. Since Hl(F) is the lowest
nonzero sheaf cohomology of F , there is an isomorphism Hl(F)[−l] ∼= τ≤lF , which induces
a natural morphism

g : Hl(F)[−l]→ F
of constructible complexes. Here, (τ≤, τ≥) denotes the canonical (or standard) truncation
on Db

c(M). Applying the proof of Lemma 4.2 for the map g over each Uλ, we get that the
mapping cone C(g) also satisfies property (2). By construction, we have that C(g) ∼= τ≥l+1F ,
and hence

Hk(C(g)) ∼=

{
0 if k < l + 1

Hk(F) if k ≥ l + 1.

Applying the above argument to C(g), we get that Hl+1(C(g)) ∼= Hl+1(F) is a local system.
Repeating this argument, we can conclude that all Hk(F) are local systems.

Next, we prove (3)⇒ (4). IfHk(F) are local systems for all k, then F is constructible with
respect to the trivial stratification of M , that is, the one with a single stratum. With respect
to this stratification, the truncations pτ≤k (resp. pτ≥k) and τ≤k−dimM (resp., τ≥k−dimM) are
equal. Here, (pτ≤, pτ≥) denotes the perverse truncation. Thus,

pHk(F) ∼= Hk−dimM(F)[dimM ]

is the shift of a local system.
The implication (4) ⇒ (1) follows immediately from Lemma 4.2, and the implication

(1)⇒ (2) is obvious. So far, we have proved that the statments (1) - (4) are all equivalent.
WhenA is a field, we have that D(Hk(F)) ∼= H−k(DF). Hence statement (5) is a consequence
of the first four statements. Since D(DF) ∼= F , the implication (1) ⇒ (5) also implies that
(5)⇒ (1). �

5. The rational and integral Bobadilla-Kollár questions

In this section, we answer positively the rational Bobadilla-Kollár question for compact
ball quotients and the integral Bobadilla-Kollár question for abelian varieties. The rational
version is in general easier thanks to the decomposition theorem. We will first simultaneously
answer the rational Bobadilla-Kollár question for both ball quotients and abelian varieties.
For the integral version, we have to work with fields of positive characteristics, in which
case neither the decomposition theorem nor the stronger generic vanishing theorem as in
[BSS] hold. We use characteristic cycles and the geometry of abelian varieties to prove a
key non-vanishing property of the Mellin transformation, which is sufficient to answer the
integral Bobadilla-Kollár question for abelian varieties.

Let Y be an aspherical compact complex manifold with fundament group G and of di-
mension d. Let F be a K-constructible complex on Y , where K is a field, and assume that
each cohomology group

V j := Hj(M∗(F))

is a finite dimensional K-vector space. Notice that V j has a natural K[G]-module structure,
and we denote the corresponding K-local system on Y by Lj.
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Lemma 5.1. Under the above notations, let V r = Hr(M∗(F)) be the nonzero cohomology
group of the lowest degree. Then there exists a morphism φ : Lr[2d − r] → F such that the
induced morphism M∗(φ) :M∗(L

r[2d− r])→M∗(F) induces an isomorphism

Hr
(
M∗

(
Lr[2d− r]

)) ∼= Hr
(
M∗(F)

)
.

Proof. The canonical truncation on M∗(F) induces a spectral sequence

Eij
2 = H i

(
Hj
(
M∗(F)

)
⊗LK[G] (V r)∨

)
=⇒ H i+j

(
M∗(F)⊗LK[G] (V r)∨

)
.

In fact, choosing a free resolution F • of (V r)∨ and a complex G• representing M∗(F), it is
the spectral sequence of the double complex G• ⊗K[G] F

•.
By assumption, Hj(M∗(F)) = 0 if j < r. By Example 2.4 and Proposition 2.5, we have

H i
(
Hj
(
M∗(F)

)
⊗LK[G] (V r)∨

)
= H i

(
V j ⊗LK[G] (V r)∨

)
∼= H i+2d

(
Y, Lj ⊗K (Lr)∨

)
,

which vanishes when i < −2d. Therefore,

E−2d,r2
∼= E−2d,r∞

∼= Hr−2d
(
M∗(F)⊗LK[G] (V r)∨

)
,

that is,

H−2d
(
V r ⊗LK[G] (V r)∨

)
∼= Hr−2d

(
M∗(F)⊗LK[G] (V r)∨

)
.

Since M∗(L
r) ∼= V r[−2d] (cf. Example 2.4), by Proposition 2.5 we have canonical isomor-

phisms

H0
(
Y, Lr ⊗K (Lr)∨

) ∼= H0
(
M∗(L

r)⊗LK[G] (V r)∨
)
∼= H−2d

(
V r ⊗LK[G] (V r)∨

)
.

On the other hand, also by Proposition 2.5, we have canonical isomorphisms

Hom(Lr[2d− r],F) ∼= Hr−2d(Y,F ⊗ (Lr)∨) ∼= Hr−2d
(
M∗(F)⊗LK[G] (V r)∨

)
.

Combining the above three displayed equations, we have a natural isomorphism

H0
(
Y, Lr ⊗K (Lr)∨

) ∼= Hom(Lr[2d− r],F).

There exists an element in H0(Y, Lr ⊗K (Lr)∨) associated to the identity map on Lr. We
let φ be the corresponding element in Hom(Lr[2d − r],F). Then φ satisfies the desired
property. �

Proposition 5.2. Let Y be an aspherical projective manifold of dimension d, and let K be
any field. Let P be a simple K-perverse sheaf on Y . Suppose that M∗(P) is nonzero and
the cohomology of M∗(P) in every degree is finite dimensional. Then P is a shift of a local
system.

Proof. As in Lemma 5.1, we let Hr(M∗(P)) be the nonzero cohomology group of the lowest
degree, with corresponding local system on Y denoted by Lr. By Lemma 5.1 there exist a

nonzero morphism φ : Lr[2d− r]→ P . By definition,M∗(P) = Rq̃!(p
∗P), where p : Ỹ → Y

is the universal covering map and q̃ : Ỹ → pt is the projection to a point. Since p∗P is a

perverse sheaf on Ỹ (cf. [Di, Proposition 5.2.13 and Corollary 5.2.15]), the cohomology

Hk
(
Rq̃!(p

∗P)
) ∼= Hk

c

(
Ỹ , p∗P

)
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is zero if k /∈ [−d, d] (e.g., see [Di, Proposition 5.2.20]). Thus, we have r ≤ d. On the other
hand, since

Lr[2d− r] ∈ pD≤r−dc (Y,K) and P ∈ pD≥0c (Y,K),

the existence of a nonzero morphism φ : Lr[2d− r]→ P implies that r − d ≥ 0. Combining
the two inequalities, we have that r = d. Thus, we have a nonzero morphism of perverse
sheaves Lr[d] → P . Since P is simple, it must be a quotient of Lr[d] in the category of
perverse sheaves. Therefore, P is the shift of a local system. �

Theorem 5.3. Let f : X → Y be a morphism of smooth projective varieties. Let Ỹ be the

universal cover of Y , and assume that X̃ := X ×Y Ỹ is homotopy equivalent to a finite CW-
complex. Suppose that Y is either an abelian variety or an aspherical projective manifold
with an ample cotangent bundle (e.g., a compact ball quotient). Then f is a Q-homology
fiber bundle.

Proof. By our assumptions, the cohomology groups Hk(X̃,Q) are finite dimensional Q-vector
spaces. The assertion in the theorem is equivalent to showing that Rf∗QX is locally constant.

Since f is proper, by Poincaré duality and proper base change (e.g., see [Ma, Theorem
5.1.7]) we have

H2 dimX−k(X̃,Q)∨ ∼= Hk
c

(
X̃,Q

) ∼= Hk
c

(
Ỹ , Rf̃!QX̃

) ∼= Hk
c

(
Ỹ , p∗Rf!QX

) ∼= Hk
c

(
Ỹ , p∗Rf∗QX

)
where f̃ : X̃ → Ỹ is the lifting of f : X → Y , and p : Ỹ → Y is the universal covering

map. Thus, the vector spaces Hk
c (Ỹ , p∗(Rf∗QX)) are finite dimensional for all k. Applying

the decomposition theorem [BBD] for the proper map f : X → Y yields is a decomposition

Rf∗QX
∼=
⊕
1≤i≤l

Pi[ni]

where ni ∈ Z and Pi are nonzero simple perverse sheaves. Therefore, each Pi has the

property that Hk
c (Ỹ , p∗(Pi)) are finite dimensional for all k.

By the definition of Mellin transformation, we have

Hk
c

(
Ỹ , p∗Pi

) ∼= Hk
(
M∗(Pi)

)
.

Thus, the cohomology groups of M∗(Pi) are all finite dimensional Q-vector spaces. To
apply Proposition 5.2, we need to prove thatM∗(Pi) are nonzero. When Y is an aspherical
projective manifold with an ample cotangent bundle (e.g., a compact ball quotient), this
follows from Corollary 2.6 and Proposition 3.3. When Y is an abelian variety, this follows
from the Riemann-Hilbert correspondence and the Fourier-Mukai transformation being an
equivalence of categories ([Lau] and [Ro]). See [We, Theorem 2] and [Sch, Theorem 7.6] for
stronger results.

Now, by Proposition 5.2, each Pi is a shifted local system, and henceRf∗QX
∼=
⊕

1≤i≤l Pi[ni]
is locally constant. �

In the remainder of this section, we deal with the integral Bobadilla-Kollár question for
abelian varieties.

Lemma 5.4. Let Y be an aspherical projective manifold of complex dimension d, and fix a
field K. Let F be a locally constant complex with M∗(F) = 0. Then F = 0.
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Proof. Let p : Ỹ → Y be the universal covering map. Then p∗F is also locally constant. By

Proposition 4.3, the Verdier dual D(p∗F) is also locally constant. Since Ỹ is contractible,
Proposition 4.3 yields isomorphisms

(5.1) RΓ
(
Ỹ ,D(p∗F)

) ∼= i∗x
(
D(p∗F)

)
for all x ∈ Ỹ . For q̃ : Ỹ → pt the projection to a point, we have

M∗(F) = Rq̃!(p
∗F) ∼= DRq̃∗

(
D(p∗F)

) ∼= DRΓ
(
Ỹ ,D(p∗F)

)
.

Since M∗(F) = 0, we get that DRΓ(Ỹ ,D(p∗F)) = 0, and hence RΓ(Ỹ ,D(p∗F)) = 0. By

(5.1), we get that the stalk of D(p∗F) at every point x ∈ Ỹ is zero. Thus, D(p∗F) = 0, and
equivalently p∗F = 0. This then also implies that F = 0. �

Proposition 5.5. Let Y be an aspherical projective manifold of complex dimension d, and
fix a field K. The following statements are equivalent:

(1) The Mellin transformation of any nonzero K-constructible complex is nonzero.
(2) For any constructible complex F on Y , if Hk(M∗(F)) is finite dimensional for all k,

then F is locally constant.

Proof. The implication (2)⇒ (1) follows directly from Lemma 5.4.
To prove the implication (1)⇒ (2), we use induction on the total dimension

σ(F) :=
∑
k∈Z

dimKH
k
(
M∗(F)

)
.

If σ(F) = 0, that is, M∗(F) = 0, then statement (1) implies that F = 0. Assume that
σ(F) > 0. Let Hr(M∗(F)) be the nonzero cohomology group of the lowest degree. By
Lemma 5.1, there exists a morphism φ : Lr[2d − r] → F such that the mapping cone C(φ)
satisfies

Hk
(
M∗

(
C(φ)

))
=

{
0 if k ≤ r

Hk(M(F)) if k > r.

Thus, σ(C(φ)) < σ(F). By the inductive hypothesis, C(φ) is locally constant. By Lemma 4.2
and the distinguished triangle

Lr[2d− r]→ F → C(φ)→ Lr[2d− r + 1],

we know that F is also locally constant. �

We also have the following result, whose proof will be given later on.

Proposition 5.6. Let A be an abelian variety, and let F be a nonzero K-constructible
complex. Then the Mellin transformation M∗(F) is nonzero.

Combining the above two propositions, we have the following corollary.

Corollary 5.7. Let A be an abelian variety, and let F be a K-constructible complex. If
M∗(F) has finite dimensional cohomology in every degree, then F is locally constant.

Lemma 5.8. Let f : M• → N• be a homomorphism of bounded complexes of free Z-modules,
with finitely generated cohomology. If f ⊗ZK : M•⊗ZK→ N•⊗ZK is a quasi-isomorphism
for any field K, then f is a quasi-isomorphism.
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Proof. Consider the mapping cone C(f) of f . By assumption, C(f)⊗Z K is acyclic for any
field K. Suppose that C(f) is not acyclic. Let Hk(C(f)) be a nonzero cohomology group.
Since Hk(C(f)) is a finitely generated abelian group, we can choose K to be either Q or a
finite field such that Hk(C(f)) ⊗Z K 6= 0. By the universal coefficient theorem, we have a
short exact sequence

0→ Hk(C(f))⊗Z K→ Hk(C(f)⊗Z K)→ Tor
(
Hk+1(C(f)),K

)
→ 0.

This contradicts the fact that C(f)⊗Z K is acyclic. Hence C(f) must be acyclic, that is, f
is a quasi-isomorphism. �

Lemma 5.9. Let F be a Z-constructible complex on a complex manifold M . If F ⊗LZ K is
locally constant for any field K, then F is locally constant.

Proof. First, we can take an open cover {Uλ}λ∈I such that each Uλ is contractible and
the cohomology groups of RΓ(Uλ,F) are finitely generated. The second condition can be
achieved by choosing Uλ as sufficiently small balls.

We claim that, for any Uλ, there exists a canonical isomorphism

RΓ(Uλ,F)⊗LZ K ∼= RΓ(Uλ,F ⊗LZ K)

in the derived category D(K) of complexes of K-vector spaces. In fact, taking an injective
resolution I• of F and a free resolution P • of K, the total complex of I•⊗Z P

• is a complex
of injective sheaves representing F ⊗LZ K, and hence both sides are isomorphic to the total
complex in D(K). Since taking direct limit commutes with taking tensor product, using the
same resolutions, we also have a canonical isomorphism

i∗xF ⊗LZ K ∼= i∗x(F ⊗LZ K)

in D(K) for any point x ∈M .
Since F ⊗LZ K is locally constant, the restriction map

RΓ(Uλ,F ⊗LZ K)→ i∗x(F ⊗LZ K)

is an isomorphism. Combining the above three displayed equations, it follows that for any
field K, the restriction map RΓ(Uλ,F)→ i∗xF induces isomorphisms

RΓ(Uλ,F)⊗LZ K→ i∗xF ⊗LZ K.

Since both RΓ(Uλ,F) and i∗xF are bounded complexes with finitely generated cohomology
groups, it follows from Lemma 5.8 that RΓ(Uλ,F)→ i∗xF is an isomorphism. �

Corollary 5.10. Let A be an abelian variety, and let F be a Z-constructible complex. If the
cohomology group of M∗(F) in every degree is a finitely generated abelian group, then F is
locally constant.

Proof. Since M∗(F ⊗LZ K) ∼= M∗(F) ⊗LZ K, our assumption implies that M∗(F ⊗LZ K) has
finite dimensional cohomology groups. So F⊗LZK are locally constant by Corollary 5.7. Now
the assertion follows from Lemma 5.9. �

The rest of this section is devoted to proving Proposition 5.6 and to answer the integral
homology version of the Bobadilla-Kollár question for abelian varieties. To this end, we will
use induction to reduce to the case when A is a simple abelian variety. We first need some
preparatory results about simple abelian varieties.
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Lemma 5.11. Let C be an irreducible curve in a simple abelian variety A. There does not
exist a nonzero holomorphic 1-form ξ on A such that the restriction ξ|Creg is zero.

Proof. Let C̃ be the normalization of C. Denote its Jacobian variety by J(C̃), and the Abel-

Jacobi map by αC̃ : C̃ → J(C̃). By the universal property of the Abel-Jacobi map, there

exists a unique map ψ : J(C̃)→ A such that the following diagram commutes

C̃ J(C̃)

C A

α
C̃

ψ

where the left vertical map is the normalization map and the bottom horizontal map is the

inclusion. Since C̃ admits a nonconstant map to an abelian variety, the genus of C̃ is non-
zero and αC̃ is an inclusion. Up to a translate, the image of ψ is an abelian subvariety of A.
Since ψ is not constant and A is simple, ψ must be surjective. Thus, the pull-back ψ∗(ξ) of

a nonzero holomorphic 1-form ξ on A is a nonzero holomorphic 1-form on J(C̃).

Taking pullback to C̃ defines a canonical isomorphism α∗
C̃

: H0(J(C̃),Ω1
J(C̃)

)→ H0(C̃,Ω1
C̃

).

Thus, α∗
C̃
ψ∗(ξ) is a nonzero holomorphic 1-form on C̃. Away from the singular points of C,

the pullback α∗
C̃
ψ∗(ξ) factors through the restriction ξ|Creg . So the restriction cannot be

zero. �

Proposition 5.12. Let A be a simple abelian variety, and let Z ⊂ A be a proper irreducible
subvariety. For a general holomorphic 1-form η on A, the degeneration locus of the restriction
η|Zreg is a nonempty finite set.

Proof. Using translations, we can identify T ∗A with A×T ∗eA, where e is the identity element
of A. Using the canonical isomorphism T ∗eA

∼= H0(A,Ω1
A), we can also identify T ∗A with

A × H0(A,Ω1
A). For a holomorphic 1-form η, we define its image in T ∗A by Γη. Then Γη

corresponds to A× {η} under the above identification. Let µ : T ∗A → A be the projection
of the cotangent bundle. Then µ(T ∗Zreg

A ∩ Γη) is equal to the set of degeneration points of

η|Zreg .
Consider the map

ν : T ∗A ∼= A×H0(A,Ω1
A)→ H0(A,Ω1

A),

that is the second projection after the above identification. By definition, Γη = ν−1(η) for
any holomorphic 1-form η on A. Thus, to prove the proposition, it suffices to show that for
a general η ∈ H0(A,Ω1

A), the intersection

(5.2) ν−1(η) ∩ T ∗Zreg
A = Γη ∩ T ∗Zreg

A

is a nonempty finite set. Since T ∗Zreg
A and H0(A,Ω1

A) have the same dimension, the cardi-

nality of the set (5.2) is finite and equal to the degree of the map

ν|T ∗
Zreg

A : T ∗Zreg
A→ H0(A,Ω1

A).

So we only need to show that the above map is dominant. Suppose that this is not true.
Since Z is a proper subvariety of A, ν(T ∗Zreg

A) has dimension at least one. Choose a general

point ξ in ν(T ∗Zreg
A). Then ν−1(ξ)∩T ∗Zreg

A has dimension at least one. Choose any irreducible

curve C ′ in the above intersection and let C be the closure of µ(C ′). Then the curve C and
the 1-form ξ give a contradiction to Lemma 5.11. �
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Corollary 5.13. Let A be a simple abelian variety. Let Λ ⊂ T ∗A be an irreducible conic
Lagrangian subvariety. If Λ is not the zero section of T ∗A, then the intersection number
〈[Λ], [A]〉T ∗A is positive, where [A] denotes the class of the zero section of T ∗A.

Proof. For a general holomorphic 1-form η with image Γη in T ∗A, Λ intersects Γη transver-
sally. Since Γη is a deformation of the zero-section of T ∗A, the intersection number 〈[Λ], [A]〉T ∗A

is equal to the cardinality of the set Λ∩Γη, which is strictly positive by Proposition 5.12. �

Lemma 5.14. Let P be a K-perverse sheaf on a compact complex manifold or a smooth
complex algebraic variety M .2 If P is not locally constant, then the characteristic cycle of P
contains a component that is not the zero section of the cotangent bundle T ∗M .

Proof. Since the category of K-perverse sheaves on M is an artinian abelian category, P is
obtained by extensions of simple perverse sheaves. Denote the decomposition factors of P
by P1, . . . ,Pr. By Proposition 4.3, if all Pi are locally constant, then so is P , a contradiction
to the assumption. So at least one of the Pi’s is not locally constant, which we assume to
be P1 without loss of generality.

Since the characteristic cycle is additive under a short exact sequence of perverse sheaves,
we have

CC(P) =
∑
1≤i≤r

CC(Pi).

Since the Pi’s are perverse, each CC(Pi) is a positive combination of conic Lagrangian cycles
on T ∗M . This means that there is no cancelation in the above sum. Thus, to prove that P
contains a component that is not the zero-section, it suffices to show that CC(P1) contains
a component that is not the zero-section.

Since P1 is simple, it is the intermediate extension of a local system on a smooth locally
closed subvariety. In other words, there exits an irreducible subvariety Z ⊂ M , a Zariski
open subset U ⊂ Zreg, and a local system LU on U such that P1 is isomorphic to the
intermediate extension of LU [d] where d = dimZ. Then T ∗ZM must appear as a component
of the characteristic cycle CC(P1). If Z 6= M , then we are done. From now on, we assume
that Z = M and U is a Zariski open subset of M .

Without loss of generality, we can assume U is the largest open set over which P1 is
the shift of a local system. Since P1 is not locally constant on M , we know that M \ U
is nonempty. Since the intermediate extension of (the shift of) a local system across a
subvariety of codimension at least two is again (the shift of) a local system, D := M \ U is
a divisor of M . Near a smooth point x of D, the intermediate extension of LU [d] is equal to
(the shift of) the push forward jU∗(LU)[d], where jU : U →M is the open embedding. Since
we have assumed that U is the maximal open subset where P1 is the shift of a local system,
the monodromy action of LU near x is non-trivial. Thus,

dim
(
jU∗(LU)

)
x
< rank(LU),

that is, the stalk of jU∗(LU) at x has a smaller rank than at a general point. Therefore,
the stalk-wise Euler characteristic of P1 is not a constant function near x. Since the charac-
teristic cycle of a constructible complex determines its stalk-wise Euler characteristics, the
characteristic cycle CC(P1) must have a component supported on the conormal variety of
each of the irreducible components of D. �

2In the algebraic case, we need to assume that P is algebraically constructible in order to ensure that the
category of perverse sheaves is Artinian.
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Corollary 5.15. Let A be a simple abelian variety. Let P be a K-perverse sheaf that is not
locally constant. Then χ(A,P) > 0.

Proof. Write the characteristic cycle CC(P) as

CC(P) =
∑
j∈J

nj[Λj]

where J is a finite index set and Λj are conic Lagrangian cycles on T ∗A. Since P is a nonzero
perverse sheaf, the coefficients nj are positive. By Kashiwara’s index formula,

χ(A,P) =
∑
j∈J

nj〈[Λj], [A]〉T ∗A.

Since we can represent [A] by the image of a general holomorphic 1-form, we have that
〈[Λj], [A]〉T ∗A ≥ 0. (The inequality also follows from Theorem 3.5.) By Lemma 5.14 and
Corollary 5.13, we know that one of intersection number 〈[Λj], [A]〉T ∗A is strictly positive.
Thus χ(A,P) > 0. �

We also recall a generic vanishing theorem of Bhatt-Schnell-Scholze. (See also [LMW1]
for a generalization to semi-abelian varieties.)

Theorem 5.16 ([BSS]). Let P be a K-perverse sheaf on an abelian variety A. Let K be the
algebraic closure of K. For a general rank one K-local system L on A, one has

H i(A,P ⊗K L) = 0 for all i 6= 0.

We now have all the ingredients to complete the proof of Proposition 5.6.

Proof of Proposition 5.6. Let F be a K-constructible complex on an abelian variety A such
that M∗(A,F) = 0. We will show that F = 0.

If F is locally constant, then Lemma 5.4 implies that F = 0.
Let us next assume that A is a simple abelian variety and F is not locally constant.

Then by Proposition 4.3, there exists some perverse cohomology pHl(F) that is not locally
constant. By Corolllary 5.15, we have χ(A, pHl(F)) > 0. Let L be a general rank one K-local
system on A. Then by Theorem 5.16, we have

Hj
(
A, pHi(F)⊗K L

)
= 0 for all i ∈ Z and j 6= 0.

Since χ(A, pHl(F)⊗K L) = χ(A, pHl(F)) > 0, we have that H0(A, pHl(F)⊗K L) 6= 0. Since

pHi(F)⊗K L ∼= pHi(F ⊗K L),

the perverse cohomology spectral sequence

Eij
2 = H i

(
A, pHj(F ⊗K L)

)
=⇒ H i+j(A,F ⊗K L)

degenerates at the E2-page. Therefore, H l(A,F ⊗K L) 6= 0. By Corollary 2.7, we have that
M∗(A,F) 6= 0, a contradiction to the assumption. So this case cannot occur.

So far, we have proved the proposition when A is a simple abelian variety. Finally, we
prove the general case using induction on the dimension of A. Since we are done with the
case when A is simple, from now on we can assume that A is not simple. In this case, there
exists a short exact sequence of positive dimensional abelian varieties

0→ A1 → A
p2−→ A2 → 0.
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In general, the short exact sequence does not split in the category of abelian varieties, but
it does split in the category of real Lie groups. Fix such a splitting, and denote the induced
projection A→ A1 by p1.

Since M∗(A,F) = 0, we get by Corollary 2.7 that

H i
(
A,F ⊗K p

∗
1L1 ⊗K p

∗
2L2

)
= 0

for and i ∈ Z and any rank one K-local systems L1 and L2 on A1 and A2, respectively.
Moreover, by the projection formula, we have

0 = H i
(
A,F ⊗K p

∗
1L1 ⊗K p

∗
2L2

) ∼= H i
(
A2, Rp2∗(F ⊗K p

∗
1L1)⊗K L2

)
.

By Corollary 2.7, we have

M∗(A2, Rp2∗
(
F ⊗K p

∗
1L1)

)
= 0.

By the induction hypothesis, the proposition holds for A2. So we have that

Rp2∗(F ⊗K p
∗
1L1) = 0 for any rank one K-local system L1 on A1.

Choose any point x ∈ A2. By the base change formula, we have

0 = i∗xRp2∗(F ⊗K p
∗
1L1) ∼= Rp2∗

(
(F ⊗K p

∗
1L1)|p−1

2 (x)

)
∼= Rp2∗

(
F|p−1

2 (x) ⊗K p
∗
1L1|p−1

2 (x)

)
,

or, equivalently,

H i
(
p−12 (x),F|p−1

2 (x) ⊗K p
∗
1L1|p−1

2 (x)

)
= 0

for any i ∈ Z and any rank one K-local system L1 on A1.
Notice that p−12 (x) is isomorphic to A1 and as L1 varies through all rank one K-local

systems on A1, p
∗
1L1|p−1

2 (x) varies through all rank one K-local systems on p−12 (x). Thus, by

Corollary 2.7, we have

M∗

(
p−12 (x),F|p−1

2 (x)

)
= 0.

Again, by the induction hypothesis, this implies that F|p−1
2 (x) = 0. Since x is an arbitrary

point on A2, we conclude that F = 0. �

We can now prove the integral Bobadilla-Kollár question for abelian varieties.

Theorem 5.17. Let f : X → Y be a morphism from a smooth projective variety to an

abelian variety. Let Ỹ be the universal cover of Y , and assume that X̃ := X ×Y Ỹ is
homotopy equivalent to a finite CW-complex. Then f is a Z-homology fiber bundle.

Proof. It follows by our assumptions, as in the proof of Theorem 5.3, that the Mellin trans-
formationM∗(Rf∗ZX) has finitely generated cohomology groups. By Corollary 5.10, we get
that Rf∗ZX is locally constant. By definition, this is equivalent to the fact that the map
X → Y is a Z-homology fiber bundle. �

Remark 5.18. The same proof also works for a compact complex torus. Notice that for a
non-simple abelian variety, we never used the fact that, up to an isogeny, it is the product
of two smaller abelian varieties. We only used the fact that it is the extension of two smaller
abelian varieties, which also holds in the category of compact complex tori.
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Remark 5.19. In [GL], Gabber and Loeser proved a t-exactness theorem about the Mellin
transformation on a complex affine torus and for arbitrary field coefficients, see also [LMW1].
This result can be used to give a positive answer to the integral Bobadilla-Kollár question
when Y is an affine torus. However, it is not clear how to combine the results for abelian
varieties and affine torus to deduce an answer for semi-abelian varieties. We leave this case
to further investigation.

Applying Theorem 5.17 to the Albanese map of a complex projective manifold, we have
the following.

Corollary 5.20. Let X be a projective manifold. Let Xab be the universal free abelian cover
of X, that is, the covering space of X associated to the group homomorphism π1(X) →
H1(X,Z)/torsion. If Xab is homotopy equivalent to a finite CW-complex, then the Albanese
map of X is a Z-homology fiber bundle.

6. Aspherical projective manifolds and the Singer-Hopf conjecture

This paper is motivated in part by the following long-standing conjecture (e.g., see [Gu,
Conjecture 25.1]):

Conjecture 6.1. (Singer-Hopf) Suppose X2n is a closed, aspherical manifold of real dimen-
sion 2n. Then

(−1)nχ(X2n) ≥ 0.

The conjecture is true for n = 1 (i.e., real dimension 2) since the only closed surfaces with
positive Euler characteristic are S2 and RP 2, and they are the only non-aspherical ones. In
the special case when X2n is a Riemannian manifold with non-positive sectional curvature,
this conjecture is attributed to Hopf and Chern. (The fact that a Riemannian manifold with
non-positive sectional curvature is aspherical is a consequence of Hadamard’s Theorem.) It
was strengthened to the aspherical case by Singer, and it also asserts the vanishing of all
L2-Betti numbers of the universal cover, except possibly the middle one.

Jost and Zuo [JZ] proved Conjecture 6.1 for X a compact Kähler manifold with non-
positive sectional curvature. Their techniques rely on analytic arguments introduced by
Gromov [Gr], who confirmed the Singer-Hopf Conjecture for Kähler hyperbolic manifolds
(these include Kähler manifolds with negative and pinched sectional curvature).

We propose the following natural generalization of Conjecture 6.1 in the projective context:

Conjecture 6.2. If X is an aspherical projective manifold and P is a perverse sheaf on X,
then the Euler characteristic of P is semipositive, that is, χ(X,P) ≥ 0.

By Proposition 3.6, Conjecture 6.2 is a consequence of the following two conjectures.

Conjecture 6.3. Let Y be a projective manifold. If the universal cover of Y is a Stein
manifold, then the cotangent bundle of Y is nef.

A weaker version of this conjecture is proved in [Kr], namely, if the universal cover of Y
is a bounded domain in a Stein manifold, then the cotangent bundle of Y is nef.

Conjecture 6.4. If Y is an aspherical projective manifold, then the universal cover is Stein.

Remark 6.5. Corollary 3.7 suggests that one may formulate a generalization of the Singer-
Hopf conjecture to singular varieties. For example, one may conjecture that if the uni-
versal cover of a (possibly singular) complex projective variety X is a Stein space, then
(−1)dimXχIH(X) ≥ 0.
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We show below that Conjecture 6.4 follows from the following Shafarevich conjecture (see
[Ey] for an introduction) on the universal cover of projective manifolds.

Conjecture 6.6. (Shafarevich conjecture) The universal cover of any projective manifold is
holomorphically convex.

Proposition 6.7. Suppose Y is an aspherical compact projective manifold. Then its uni-

versal cover Ỹ does not contain any positive dimensional compact analytic subvariety.

Proof. Suppose that Ỹ does contain a positive dimensional compact analytic subvariety
Z. By taking intersections with the preimage of general hyperplane sections and taking
irreducible components, we can assume that Z is one-dimensional and irreducible. Let Z ′ be
the normalization of Z. Then Z ′ is a compact Riemann surface. Consider the composition

Z ′ → Z ↪→ Ỹ → Y,

where the first map is the normalization map, the second is the inclusion map and the
third is the universal covering map. The composition is a nonconstant holomorphic map,
whose image is an irreducible 1-cycle in Y . In a projective manifold, any positive cycle
corresponds to a nonzero element in the homology groups. So the above composition is

not null-homotopic. However, since it factors through a contractible space Ỹ , it must be
null-homotopic, a contradiction. �

Corollary 6.8. The Shafarevich conjecture implies Conjecture 6.4.

Proof. Let Y be an aspherical projective manifold with universal cover Ỹ . The Shafarevich

conjecture implies that Ỹ is holomorphically convex. By the Cartan-Remmert reduction,

there exists a proper surjective holomorphic map f : Ỹ → Z to a Stein space with connected

fibers such that f∗(OY ) ∼= OZ . Since Ỹ does not contain any positive dimensional compact
analytic subvariety, the map f must be a bijection, and hence a biholomorphic map. �

If the fundamental group of Y admits a faithful finite-dimensional linear representation,
the Shafarevich conjecture is proved in the recent breakthrough [EKPR] by Eyssidieux-
Katzarkov-Pantev-Ramachandran. We are not aware of any example of an aspherical pro-
jective manifold whose fundamental group does not admit a finite-dimensional faithful rep-
resentation. This leads us to the following question.

Question 6.9. Does the fundamental group of an aspherical projective manifold always admit
a finite-dimensional faithful representation?
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