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Motivation

topological Milnor fiber of a hypersurface singularity germ
f : (Cd+1, x)→ (C, 0) yields an example of infinite cyclic
cover.

Denef-Loeser defined a motivic Milnor fiber, from which one
can recover Hodge-theoretic invariants of the topological
Milnor fiber (such as Hodge spectrum).

Aim: extend Denef-Loeser’s definition to arbitrary infinite
cyclic covers, and give a topological construction/perspective
(without arc spaces) of Denef-Loeser’s motivic Milnor fiber.
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1. What are infinite cyclic covers?

Definition

An infinite cyclic cover (icc, for short) is a cover X̃
p→ X, with fiber

p−1(x) = Z, for all x ∈ X.

Construction

If X is a connected CW complex, and α : π1(X )→ Z is a
homomorphism, the cover X̃ of X defined by ker(α) is an icc with
[Z : Im(α)] connected components.
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Example

If X = S1 ∨ S2, α = idZ : π1(X ) ∼= Z→ Z, then X̃ '
∨

k∈Z S
2
k .

In particular, the icc X̃ is not of finite type.
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If X̃ is an icc of X , the covering group of X̃ is Z, acting by a
covering homeomorphism h.

So Ci (X̃ ;Q), Hi (X̃ ;Q), H i
(c)(X̃ ;Q) become Q[Z] ∼= Q[t±1] -

modules, where multiplication by t corresponds to the action
induced by h.

Hence, Ci (X̃ ;Q), Hi (X̃ ;Q), H i
(c)(X̃ ;Q) have a structure of:

Q-vector space (not finite dim’l in general)
Q[t±1]-module (not torsion in general)

In Example, H2(X̃ ;Q) ∼= Q[t±1], with all S2’s identified via h.
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2. Milnor fiber of a hypersurface singularity germ

f : Cd+1 → C, x ∈ f −1(0).

for 0 < δ � ε small enough, there exists a locally trivial
Milnor fibration at x ,

Bε,δ(x) := Bε(x) ∩ f −1(D∗δ )
π(=f )−→ D∗δ

with monodromy homeo h acting on the Milnor fiber Mf ,x .

H i
(c)(Mf ,x ;Q) has a mixed Hodge structure, compatible with

the semi-simple part of the monodromy.

Basic Problem: compute invariants of Mf ,x , such as Betti
numbers, Steenbrink-Hodge spectrum, etc.
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Remark

Mf ,x has the homotopy type of an infinite cyclic cover.
Indeed, the right-hand vertical map of the fiber product

Bε,δ(x)×D∗δ
R p2−−−−→ R

p1

y yexp

Bε,δ(x) −−−−→
π

D∗δ ' S1.

is an icc, hence so is the left-hand vertical arrow.
For r ∈ R, have: p−1

2 (r) ∼= π−1(exp(r)) = Mf ,x .
But R is contractible, so p−1

2 (r) ' Bε,δ(x)×D∗δ
R.

Altogether, Mf ,x ' Bε,δ(x)×D∗δ
R (which is an icc), compatible

with the monodromy and resp. covering group action.
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3. Equivariant motivic Grothendieck ring K0(Varµ̂C)

Good actions

µn = group of all n-th roots of unity.

the groups µn form a projective system with respect to the
maps µd ·n → µn, α 7→ αd .

let µ̂ := limµn be the projective limit of the µn.

a good µn-action on a complex algebraic variety X is an
algebraic action µn × X → X , s.t. each orbit is contained in
an affine subvariety of X . (This last condition is automatically
satisfied if X is quasi-projective.)

A good µ̂-action on X is a µ̂-action which factors through a
good µn-action, for some n.
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The Grothendieck ring K0(Varµ̂C) of the category Varµ̂C of complex
algebraic varieties endowed with a good µ̂-action is generated by
classes [Y , σ] of isomorphic varieties endowed with good µ̂-actions,
modulo the following relations:

[Y , σ] = [Y \ Y ′, σ|Y\Y ′ ] + [Y ′, σ|Y ′ ], if Y ′ is a closed

σ-invariant subset of Y .

[Y × Y ′, (σ, σ′)] = [Y , σ][Y ′, σ′].

[Y × A1
C, σ] = [Y × A1

C, σ
′], if σ and σ′ are two affine liftings

of the same C∗-action on Y .

We denote by L = [C] the class in K0(Varµ̂C) of the affine line,
with the trivial µ̂-action.
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4. Motivic Milnor fiber of Denef-Loeser

Definition (Denef-Loeser)

For a non constant morphism f : Cd+1 → C and x ∈ f −1(0), the
local motivic Milnor fibre Sf ,x of f at x is defined as:

Sf ,x = − lim
T→+∞

∑
n≥1

[Xn,1]L(d+1)nT n ∈ K0(Varµ̂C)[L−1],

where

Xn,1 := {(n + 1)− jets ϕ of Cd+1 at x | f ◦ ϕ = tn + . . . }

with µn-action given by λ× ϕ 7→ ϕ(λ · t).

Remark

Sf ,x can be computed in terms of a log-resolution (X ,E ) of the
pair (Cd+1, f −1(0)).
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Hodge realization

Let K0(HSmon) be the Grothendieck group of monodromic Hodge
structures (i.e., Hodge structures endowed with a finite order
automorphism).

Definition (Hodge realization)

χHodge : K0(Varµ̂C)[L−1]→ K0(HSmon)

[Y , σ] 7→ [H∗c (Y ;Q), σ∗] :=
∑
i≥0

(−1)i [H i
c(Y ;Q), σ∗].

Theorem (Denef-Loeser)

χHodge(Sf ,x) = [H∗c (Mf ,x), h∗ss ] ∈ K0(HSmon)
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5. Infinite cyclic covers of finite type

infinite cyclic covers are generally not of finite type.

in order to talk about “motives” or “Betti/Hodge realizations”
of an icc, we need to impose some finiteness assumptions.
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Setup

X ; smooth q-projective complex variety

E =
∑

i∈J Ej ; reduced simple normal crossing divisor in X

T ∗X ,E := TX ,E \ E ; link of E (i.e. punctured regular
neighborhood of E in X )

holonomy: ∆ : π1(T ∗X ,E )→ Z, with mi := ∆(δi ),
for δi the boundary of a small oriented disc transversal at a
generic point to Ei .

T̃ ∗X ,E ,∆ ; infinite cyclic cover of T ∗X ,E defined by ker(∆).

T̃ ∗X ,E ,∆ is not an algebraic variety in general, so we can’t
assign a “motive” to it.

But we give an algebro-geometric interpretation of it.
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Definition

Say that T̃ ∗X ,E ,∆ is an icc of finite type if mi 6= 0, for all i ∈ J.

Theorem (Gonzalez-Villa – M. – Libgober)

If mi 6= 0, for all i ∈ J, then Hk
(c)(T̃ ∗X ,E ,∆;Q) is a finite dim’l

Q-vector space for all k.

Remark

Hk
(c)(X̃ \ E ;Q) are not finite dim’l Q-vector spaces in general, e.g.,

take X = P1, E = 3 points.
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6. Motivic infinite cyclic covers of finite type

stratify E =
∑

i∈J Ej with strata: {E ◦I , ∅ 6= I ⊆ J}, where:

EI =
⋂
i∈I

Ei and E ◦I = EI \
⋃
j 6∈I

Ej

X =
⋃

I⊆J E
◦
I , X \ E = E ◦∅ and E =

⋃
∅6=I⊆J E

◦
I .

T ∗X ,E =
⋃
∅6=I⊆J

T ∗E◦I
,

where T ∗E◦I
→ E ◦I is a locally trivial fibration with fibre (C∗)|I |.
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We use the holonomy ∆ : π1(T ∗X ,E )→ Z to define a finite cyclic

cover Ẽ ◦I → E ◦I , where Ẽ ◦I is an algebraic variety with a good
µmI

-action, for mI := gcd(mi | i ∈ I ).

Definition (Motivic infinite cyclic cover of T ∗X ,E ,∆)

SX ,E ,∆ :=
∑
∅6=I⊆J

(−1)|I | · [Ẽ ◦I ](L− 1)|I |−1 ∈ K0(Varµ̂C)

Remark

We regard the summation as coming from the inclusion-exclusion
principle for T ∗X ,E =

⋃
∅6=I⊆J T

∗
E◦I

, while [Ẽ ◦I ](L− 1)|I |−1 should be

thought as the “motive” of T̃ ∗E◦I
. (Justification to follow.)

Remark

More generally, for any A ⊆ J, define:

SA
X ,E ,∆ :=

∑
∅6=I⊆J,A∩I 6=∅

(−1)|I | · · ·
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How are the covers Ẽ ◦I defined?

The (C∗)|I |-fibration T ∗E◦I
→ E ◦I induces a commutative diagram:

Z|I | −−−−→ π1(T ∗E◦I
) −−−−→ π1(E ◦I ) −−−−→ 0y y∆

y∆I

y
mIZ −−−−→ Z −−−−→ Z/mIZ −−−−→ 0.

for mI := gcd(mi , i ∈ I ) and ∆I : π1(E ◦I )→ Z/mIZ induced by ∆.

Define Ẽ ◦I → E ◦I to be the cover of E ◦I defined by ker(∆I ).

Ẽ ◦I has n = [Z : Im(∆)] connected components, each being the
cyclic cover of E ◦I with deck group nZ/mIZ.
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Remark

The locally trivial (C∗)|I |-fibration T ∗E◦I
→ E ◦I induces a fibration

T̃ ∗E◦I
→ Ẽ ◦I

on the icc T̃ ∗E◦I
, with connected fiber (̃C∗)|I | ∼= (C∗)|I |−1, the

infinite cyclic cover of (C∗)|I | defined by ker(Z|I | � mIZ).
This motivates considering [Ẽ ◦I ](L− 1)|I |−1 as the “motive” of

T̃ ∗E◦I
in the above definition.
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Theorem (Gonzalez-Villa – M. – Libgober)

The motivic infinite cyclic cover SX ,E ,∆ is an invariant of the link
T ∗X ,E ,∆ of E , i.e., it is invariant under the following equivalence
relation:
T ∗X1,E1,∆1

∼ T ∗X2,E2,∆2
if there is a birational map Φ : X1 → X2 s.t.

Φ| : T ∗X1,E1,∆1
→ T ∗X2,E2,∆2

is biregular

Φ(T ∗X1,E1,∆1
) and T ∗X2,E2,∆2

are deformation retracts of each
other

commutative diagram:

π1(T ∗X1,E1,∆1
)

(Φ|)∗−→ π1(T ∗X2,E2,∆2
)

∆1 ↘ ∆2 ↙
Z

Remark

By WFT, it suffices to show that SX ,E ,∆ is independent under
blow-ups along a smooth center in E .
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7. Betti realization

Definition (Betti realization)

χb : K0(Varµ̂C) −→ K0(V aut
Q )

[Y , σ] 7→ [H∗c (Y ;Q), σ∗] :=
∑
i≥0

(−1)i [H i
c(Y ;Q), σ∗].

Theorem (Gonzalez-Villa – M. – Libgober)

χb(SX ,E ,∆) =
[
H∗c (T̃ ∗X ,E ,∆;Q), h∗

]
Remark

This points to the existence of a mixed Hodge structure on
H∗c (T̃ ∗X ,E ,∆;Q), whose class in K0(HSmon) is χHodge(SX ,E ,∆).
Such structures are constructed in special cases by Liu-M.
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8. Relation with Denef-Loeser’s motivic Milnor fiber

Theorem (Gonzalez-Villa – M. – Libgober)

Let f : Cd+1 → C be a non-constant morphism with x ∈ f −1(0),
and let (X ,E ) be a log-resolution of the pair (Cd+1, f −1(0)). Then

Sf ,x = −SA
X ,E ,∆ ∈ K0(Varµ̂C)[L−1],

for A = {i ∈ J |Ei ⊂ p−1(x)} and ∆ induced by α 7→
∫
α

df
f .
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9. Concluding remarks

(a) Our construction also applies to motivic Milnor fibers of
rational functions and motivic Milnor fibers at infinity.

(b) More generally, we can define a motivic zeta function ZX ,E ,∆

for any log-resolution (X ,E ) of a pair (Y ,D) with D a divisor on a
smooth variety Y , show that it is an invariant of the link T ∗Y ,D of
D in Y , and formulate a global monodromy conjecture relating the
poles of this zeta function to the zeros of the (global) Alexander
polynomials of T ∗Y ,D .
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THANK YOU !!!
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