Motivic Infinite Cyclic Covers

LAURENTIU MAXIM University of Wisconsin-Madison

(join with A. Libgober & M. Gonzalez-Villa)

LAURENTIU MAXIM University of Wisconsin-Madison Motivic Infinite Cyclic Covers

- topological Milnor fiber of a hypersurface singularity germ
 f: (ℂ^{d+1}, x) → (ℂ, 0) yields an example of *infinite cyclic cover*.
- Denef-Loeser defined a *motivic* Milnor fiber, from which one can recover Hodge-theoretic invariants of the topological Milnor fiber (such as Hodge spectrum).
- Aim: extend Denef-Loeser's definition to arbitrary infinite cyclic covers, and give a *topological* construction/perspective (*without* arc spaces) of Denef-Loeser's motivic Milnor fiber.

Definition

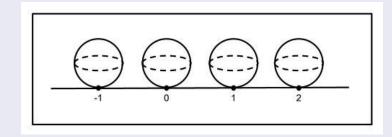
An infinite cyclic cover (icc, for short) is a cover $\widetilde{X} \xrightarrow{p} X$, with fiber $p^{-1}(x) = \mathbb{Z}$, for all $x \in X$.

Construction

If X is a connected CW complex, and $\alpha : \pi_1(X) \to \mathbb{Z}$ is a homomorphism, the cover \widetilde{X} of X defined by ker(α) is an icc with $[\mathbb{Z} : \text{Im}(\alpha)]$ connected components.

Example

If
$$X = S^1 \vee S^2$$
, $\alpha = id_{\mathbb{Z}} : \pi_1(X) \cong \mathbb{Z} \to \mathbb{Z}$, then $\widetilde{X} \simeq \bigvee_{k \in \mathbb{Z}} S_k^2$.



In particular, the icc \widetilde{X} is not of finite type.

- If X̃ is an icc of X, the covering group of X̃ is Z, acting by a covering homeomorphism h.
- So C_i(X̃; Q), H_i(X̃; Q), Hⁱ_(c)(X̃; Q) become Q[Z] ≅ Q[t^{±1}] modules, where multiplication by t corresponds to the action induced by h.
- Hence, $C_i(\widetilde{X}; \mathbb{Q})$, $H_i(\widetilde{X}; \mathbb{Q})$, $H_{(c)}^i(\widetilde{X}; \mathbb{Q})$ have a structure of:
 - Q-vector space (*not* finite dim'l in general)
 - $\mathbb{Q}[t^{\pm 1}]$ -module (*not* torsion in general)
- In Example, $H_2(\widetilde{X}; \mathbb{Q}) \cong \mathbb{Q}[t^{\pm 1}]$, with all S^2 's identified via h.

2. Milnor fiber of a hypersurface singularity germ

•
$$f: \mathbb{C}^{d+1} \to \mathbb{C}, x \in f^{-1}(0).$$

 for 0 < δ ≪ ε small enough, there exists a locally trivial Milnor fibration at x,

$$B_{\epsilon,\delta}(x) := B_{\epsilon}(x) \cap f^{-1}(D^*_{\delta}) \stackrel{\pi(=f)}{\longrightarrow} D^*_{\delta}$$

with monodromy homeo h acting on the Milnor fiber $M_{f,x}$.

- *H*ⁱ_(c)(*M*_{f,x}; ℚ) has a mixed Hodge structure, compatible with the semi-simple part of the monodromy.
- Basic Problem: compute invariants of $M_{f,x}$, such as Betti numbers, Steenbrink-Hodge spectrum, etc.

Remark

 $M_{f,x}$ has the homotopy type of an infinite cyclic cover. Indeed, the right-hand vertical map of the fiber product

$$egin{array}{ccc} B_{\epsilon,\delta}(x) imes_{D^*_\delta}\mathbb{R} & \stackrel{p_2}{\longrightarrow} & \mathbb{R} \ & & & & \downarrow^{ ext{exp}} \ & & & \downarrow^{ ext{exp}} \ & & & & \downarrow^{ ext{exp}} \ & & & B_{\epsilon,\delta}(x) & & \stackrel{\pi}{\longrightarrow} & D^*_\delta \simeq S^1 \end{array}$$

is an icc, hence so is the left-hand vertical arrow. For $r \in \mathbb{R}$, have: $p_2^{-1}(r) \cong \pi^{-1}(\exp(r)) = M_{f,x}$. But \mathbb{R} is contractible, so $p_2^{-1}(r) \simeq B_{\epsilon,\delta}(x) \times_{D_{\delta}^*} \mathbb{R}$. Altogether, $M_{f,x} \simeq B_{\epsilon,\delta}(x) \times_{D_{\delta}^*} \mathbb{R}$ (which is an icc), compatible with the monodromy and resp. covering group action.

Good actions

- $\mu_n = \text{group of all } n\text{-th roots of unity.}$
- the groups μ_n form a *projective system* with respect to the maps μ_{d·n} → μ_n, α ↦ α^d.
- let $\hat{\mu} := \lim \mu_n$ be the projective limit of the μ_n .
- a good μ_n-action on a complex algebraic variety X is an algebraic action μ_n × X → X, s.t. each orbit is contained in an affine subvariety of X. (This last condition is automatically satisfied if X is quasi-projective.)
- A good μ̂-action on X is a μ̂-action which factors through a good μ_n-action, for some n.

The Grothendieck ring $K_0(\operatorname{Var}^{\hat{\mu}}_{\mathbb{C}})$ of the category $\operatorname{Var}^{\hat{\mu}}_{\mathbb{C}}$ of complex algebraic varieties endowed with a good $\hat{\mu}$ -action is generated by classes $[Y, \sigma]$ of isomorphic varieties endowed with good $\hat{\mu}$ -actions, modulo the following relations:

• $[Y, \sigma] = [Y \setminus Y', \sigma_{|_{Y \setminus Y'}}] + [Y', \sigma_{|_{Y'}}]$, if Y' is a closed σ -invariant subset of Y.

•
$$[Y \times Y', (\sigma, \sigma')] = [Y, \sigma][Y', \sigma'].$$

• $[Y \times \mathbb{A}^1_{\mathbb{C}}, \sigma] = [Y \times \mathbb{A}^1_{\mathbb{C}}, \sigma']$, if σ and σ' are two affine liftings of the same \mathbb{C}^* -action on Y.

We denote by $\mathbb{L} = [\mathbb{C}]$ the class in $\mathcal{K}_0(\operatorname{Var}^{\hat{\mu}}_{\mathbb{C}})$ of the affine line, with the trivial $\hat{\mu}$ -action.

4. Motivic Milnor fiber of Denef-Loeser

Definition (Denef-Loeser)

For a non constant morphism $f : \mathbb{C}^{d+1} \to \mathbb{C}$ and $x \in f^{-1}(0)$, the local motivic Milnor fibre $S_{f,x}$ of f at x is defined as:

$$\mathcal{S}_{f,x} = -\lim_{T \to +\infty} \sum_{n \ge 1} [\mathcal{X}_{n,1}] \mathbb{L}^{(d+1)n} T^n \in \mathcal{K}_0(\operatorname{Var}_{\mathbb{C}}^{\hat{\mu}})[\mathbb{L}^{-1}],$$

where

$$\mathcal{X}_{n,1} := \{(n+1) - jets \ \varphi \ of \ \mathbb{C}^{d+1} \ at \ x \mid f \circ \varphi = t^n + \dots \}$$

with μ_n -action given by $\lambda \times \varphi \mapsto \varphi(\lambda \cdot t)$.

Remark

 $S_{f,x}$ can be computed in terms of a log-resolution (X, E) of the pair $(\mathbb{C}^{d+1}, f^{-1}(0))$.

LAURENTIU MAXIM University of Wisconsin-Madison Motivic Infinite Cyclic Covers

Let $K_0(HS^{mon})$ be the Grothendieck group of *monodromic Hodge* structures (i.e., Hodge structures endowed with a finite order automorphism).

Definition (Hodge realization)

$$\begin{split} \chi_{\mathsf{Hodge}} &: \mathsf{K}_0(\operatorname{Var}^{\hat{\mu}}_{\mathbb{C}})[\mathbb{L}^{-1}] \to \mathsf{K}_0(\mathsf{HS}^{\mathsf{mon}})\\ [Y,\sigma] &\mapsto [\mathsf{H}^*_c(Y;\mathbb{Q}),\sigma^*] := \sum_{i \ge 0} (-1)^i [\mathsf{H}^i_c(Y;\mathbb{Q}),\sigma^*]. \end{split}$$

Theorem (Denef-Loeser)

$$\chi_{Hodge}(\mathcal{S}_{f,x}) = [H^*_c(M_{f,x}), h^*_{ss}] \in K_0(HS^{mon})$$

- infinite cyclic covers are generally *not* of finite type.
- in order to talk about "motives" or "Betti/Hodge realizations" of an icc, we need to impose some finiteness assumptions.

- $X \rightsquigarrow$ smooth q-projective complex variety
- $E = \sum_{i \in J} E_j \rightsquigarrow$ reduced simple normal crossing divisor in X
- *T*^{*}_{X,E} := *T*_{X,E} \ *E* → *link of E* (i.e. punctured regular neighborhood of E in X)
- holonomy: $\Delta : \pi_1(T^*_{X,E}) \to \mathbb{Z}$, with $m_i := \Delta(\delta_i)$, for δ_i the boundary of a small oriented disc transversal at a generic point to E_i .
- $\widetilde{T}^*_{X,E,\Delta} \rightsquigarrow$ infinite cyclic cover of $T^*_{X,E}$ defined by ker(Δ).
- *T*^{*}_{X,E,Δ} is *not an algebraic variety* in general, so we can't assign a "motive" to it.
- But we give an algebro-geometric interpretation of it.

Definition

Say that $T^*_{X,E,\Delta}$ is an icc of finite type if $m_i \neq 0$, for all $i \in J$.

Theorem (Gonzalez-Villa – M. – Libgober)

If $m_i \neq 0$, for all $i \in J$, then $H^k_{(c)}(\widetilde{T}^*_{X,E,\Delta}; \mathbb{Q})$ is a finite dim'l \mathbb{Q} -vector space for all k.

Remark

 $H_{(c)}^{k}(X \setminus E; \mathbb{Q})$ are not finite dim'l \mathbb{Q} -vector spaces in general, e.g., take $X = \mathbb{P}^{1}$, E = 3 points.

6. Motivic infinite cyclic covers of finite type

• stratify
$$E = \sum_{i \in J} E_j$$
 with strata: $\{E_I^{\circ}, \emptyset \neq I \subseteq J\}$, where:
 $E_I = \bigcap_{i \in I} E_i$ and $E_I^{\circ} = E_I \setminus \bigcup_{j \notin I} E_j$
• $X = \bigcup_{I \subseteq J} E_I^{\circ}, X \setminus E = E_{\emptyset}^{\circ}$ and $E = \bigcup_{\emptyset \neq I \subseteq J} E_I^{\circ}$.
• $T_{X,E}^* = \bigcup_{\emptyset \neq I \subseteq J} T_{E_I}^*$,

where $T_{E_l^{\circ}}^* \to E_l^{\circ}$ is a locally trivial fibration with fibre $(\mathbb{C}^*)^{|I|}$.

We use the holonomy $\Delta : \pi_1(T^*_{X,E}) \to \mathbb{Z}$ to define a *finite cyclic* cover $\widetilde{E}_I^\circ \to E_I^\circ$, where \widetilde{E}_I° is an algebraic variety with a good μ_{m_I} -action, for $m_I := \gcd(m_i \mid i \in I)$.

Definition (Motivic infinite cyclic cover of $T^*_{X,E,\Delta}$)

$$S_{X,E,\Delta} := \sum_{\emptyset
eq I \subseteq J} (-1)^{|I|} \cdot [\widetilde{E}_I^\circ] (\mathbb{L} - 1)^{|I|-1} \in \mathcal{K}_0(\operatorname{Var}^{\hat{\mu}}_{\mathbb{C}})$$

Remark

We regard the summation as coming from the inclusion-exclusion principle for $T_{X,E}^* = \bigcup_{\emptyset \neq I \subseteq J} T_{E_I^\circ}^*$, while $[\widetilde{E}_I^\circ](\mathbb{L}-1)^{|I|-1}$ should be thought as the "motive" of $\widetilde{T}_{E_I^\circ}^*$. (Justification to follow.)

Remark

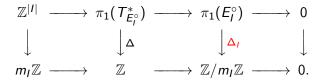
More generally, for any $A \subseteq J$, define:

$$S^{\mathcal{A}}_{X,E,\Delta} := \sum_{\emptyset \neq I \subseteq J, \mathcal{A} \cap I \neq \emptyset} (-1)^{|I|} \cdots$$

LAURENTIU MAXIM University of Wisconsin-Madison

Motivic Infinite Cyclic Covers

The $(\mathbb{C}^*)^{|I|}$ -fibration $T^*_{E_I^\circ} \to E_I^\circ$ induces a commutative diagram:



for $m_I := \operatorname{gcd}(m_i, i \in I)$ and $\Delta_I : \pi_1(E_I^\circ) \to \mathbb{Z}/m_I\mathbb{Z}$ induced by Δ . Define $\widetilde{E}_I^\circ \to E_I^\circ$ to be the cover of E_I° defined by $\operatorname{ker}(\Delta_I)$. \widetilde{E}_I° has $n = [\mathbb{Z} : \operatorname{Im}(\Delta)]$ connected components, each being the cyclic cover of E_I° with deck group $n\mathbb{Z}/m_I\mathbb{Z}$.

Remark

The locally trivial $(\mathbb{C}^*)^{|I|}$ -fibration $T^*_{E_I^\circ} \to E_I^\circ$ induces a fibration

$$\widetilde{T}^*_{E^\circ_I} \to \widetilde{E}^\circ_I$$

on the icc $\widetilde{T}^*_{E_l^\circ}$, with connected fiber $(\mathbb{C}^*)^{|I|} \cong (\mathbb{C}^*)^{|I|-1}$, the infinite cyclic cover of $(\mathbb{C}^*)^{|I|}$ defined by ker $(\mathbb{Z}^{|I|} \twoheadrightarrow m_I \mathbb{Z})$. This motivates considering $[\widetilde{E}^\circ_l](\mathbb{L}-1)^{|I|-1}$ as the "motive" of $\widetilde{T}^*_{E_l^\circ}$ in the above definition.

Theorem (Gonzalez-Villa – M. – Libgober)

The motivic infinite cyclic cover $S_{X,E,\Delta}$ is an invariant of the link $T^*_{X,E,\Delta}$ of E, i.e., it is invariant under the following equivalence relation:

 $T^*_{X_1,E_1,\Delta_1} \sim T^*_{X_2,E_2,\Delta_2}$ if there is a birational map $\Phi: X_1 \to X_2$ s.t.

• $\Phi_{|}: T^*_{X_1, E_1, \Delta_1} \to T^*_{X_2, E_2, \Delta_2}$ is biregular

- $\Phi(T^*_{X_1,E_1,\Delta_1})$ and $T^*_{X_2,E_2,\Delta_2}$ are deformation retracts of each other
- commutative diagram:

Remark

By WFT, it suffices to show that $S_{X,E,\Delta}$ is independent under blow-ups along a smooth center in E.

7. Betti realization

Definition (Betti realization)

$$\chi_b: \mathcal{K}_0(\operatorname{Var}^{\hat{\mu}}_{\mathbb{C}}) \longrightarrow \mathcal{K}_0(V^{\operatorname{aut}}_{\mathbb{Q}})$$
$$[Y, \sigma] \mapsto [H^*_c(Y; \mathbb{Q}), \sigma^*] := \sum_{i \ge 0} (-1)^i [H^i_c(Y; \mathbb{Q}), \sigma^*].$$

Theorem (Gonzalez-Villa – M. – Libgober)

$$\chi_b(S_{X,E,\Delta}) = \left[H_c^*(\widetilde{T}_{X,E,\Delta}^*;\mathbb{Q}), h^* \right]$$

Remark

This points to the existence of a mixed Hodge structure on $H^*_c(\widetilde{T}^*_{X,E,\Delta};\mathbb{Q})$, whose class in $K_0(HS^{mon})$ is $\chi_{Hodge}(S_{X,E,\Delta})$. Such structures are constructed in special cases by Liu-M.

Theorem (Gonzalez-Villa – M. – Libgober)

Let $f : \mathbb{C}^{d+1} \to \mathbb{C}$ be a non-constant morphism with $x \in f^{-1}(0)$, and let (X, E) be a log-resolution of the pair $(\mathbb{C}^{d+1}, f^{-1}(0))$. Then

$$\mathcal{S}_{f,x} = -S^{\mathcal{A}}_{X,\mathcal{E},\Delta} \in \mathcal{K}_0(\operatorname{Var}^{\hat{\mu}}_{\mathbb{C}})[\mathbb{L}^{-1}],$$

for $A = \{i \in J \mid E_i \subset p^{-1}(x)\}$ and Δ induced by $\alpha \mapsto \int_{\alpha} \frac{df}{f}$.

(a) Our construction also applies to *motivic Milnor fibers of rational functions* and *motivic Milnor fibers at infinity*.

(b) More generally, we can define a *motivic zeta function* $Z_{X,E,\Delta}$ for any log-resolution (X, E) of a pair (Y, D) with D a divisor on a smooth variety Y, show that it is an invariant of the link $T^*_{Y,D}$ of D in Y, and formulate a *global monodromy conjecture* relating the poles of this zeta function to the zeros of the (global) Alexander polynomials of $T^*_{Y,D}$.

THANK YOU !!!