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Abstract. We give a proof of the Thom-Sebastiani type theorem for holonomic filtered
D-modules satisfying certain good conditions (including Hodge modules) by using alge-
braic partial microlocalization. By a well-known relation between multiplier ideals and
V -filtrations of Kashiwara and Malgrange, the argument in the proof implies also a Thom-
Sebastiani type theorem for multiplier ideals, which cannot be deduced from a already known
proof of the Thom-Sebastiani theorem for mixed Hodge modules (since the latter gives only
the information of graded pieces of multiplier ideals). We also sketch a more elementary
proof of the Thom-Sebastiani type theorem for multiplier ideals (as communicated to us
by M. Mustaţǎ), which seems to be known to specialists, although it does not seem to be
stated explicitly in the literature.

Introduction

For a = 1, 2, let Ya be a smooth complex variety or a connected complex manifold. Set
Xa := f−1

a (0) with fa a non-constant function on Ya (that is, fa ∈ Γ(Ya,OYa
) \ C). Put

Y := Y1 × Y2, X := f−1(0) ⊂ Y with f := f1 + f2 on Y,

where f1+ f2 is an abbreviation of pr∗1f1+pr∗2f2 with pra the a-th projection (a = 1, 2). For
α ∈ Q, we have a decreasing sequence of the multiplier ideals J (αX) ⊂ OY together with
their graded quotients G(αX), and similarly for J (αXa), G(αXa) with a = 1, 2, see also
(2.1) below. (For general references to multiplier ideals, see [La], [Na].) Set Σa := SingXa,
Σ := SingX . In this paper we prove the following.

Theorem 1. In the above notation, we have the following equalities for α ∈ (0, 1) :

(1) J (αX) =
∑

α1+α2=α J (α1X1)⊠ J (α2X2) in OY = OY1 ⊠OY2 ,

together with the canonical isomorphisms of OX-modules for α ∈ (0, 1) :

(2) G(αX) =
∑

α1+α2=α G(α1X1)⊠ G(α2X2),

by replacing (if necessary) Ya with an open neighborhood of Xa in Ya (a = 1, 2) so that

Σ = Σ1 × Σ2.

Here we may assume α1, α2 ∈ (0, α) on the right-hand side of (1), (2). The formula (1)
determines J (αX) for any α ∈ Q, since it is well known (and is easy to show) that

(3) J ((α+ 1)X) = fJ (αX) (∀α > 0), J (αX) = OY (∀α 6 0),

see (2.1.2) below. The formula (2) for α = 1 is more complicated (see Corollary (2.4) below),
since it is closely related to the “irrationality” of the singularities of X , see a remark after
(2.1.9) below.

We define the set of jumping coefficients JC(X) and the log canonical threshold lct(X) by

JC(X) := {α ∈ Q | G(αX) 6= 0}, lct(X) := min JC(X),

and similarly for JC(Xa), lct(Xa) (a = 1, 2). From Theorem 1 we can deduce the following
addition theorem for jumping coefficients and log canonical thresholds.

Corollary 1. In the above notation, we have the equalities

(4) JC(X) ∩ (0, 1) =
(
JC(X1) + JC(X2)

)
∩ (0, 1),

1
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(5) lct(X) = min
{
1, lct(X1) + lct(X2)

}
,

by replacing (if necessary) Ya with an open neighborhood of Xa (a = 1, 2) so that Σ = Σ1×Σ2.

Note that JC(X) is determined by JC(X1), JC(X2) using (4) together with the periodicity
coming from (3) (see also (2.1.5) below), since we have 1 ∈ JC(X) by looking at the smooth
points of X . Note also that Theorem 1 and Corollary 1 were essentially known to specialists
according to M. Mustaţǎ although it does not seem to be stated explicitly in the literature,
see Remark (2.7) below.

Theorem 1 is obtained as a by-product of a proof of the Thom-Sebastiani theorem for
filtered holonomic D-modules in the constant coefficient case using the algebraic partial

microlocalization, where a well-known relation between the multiplier ideals and the V -
filtration of Kashiwara [Ka2] and Malgrange [Ma2] is also used, see [BuSa, Theorem 0.1]
(and also (2.1.6) below). Note also that the equality (1) in Theorem 1 cannot be deduced
from the arguments in [Sa6] (which gives only the information of graded pieces of multiplier
ideals). Let if : X →֒ Y be the graph embedding by f . Set

(Bf , F ) := (if )
D

∗ (OX , F ),

where (if)
D
∗ is the direct image as filtered D-module. In this paper, the Hodge filtration

F is indexed like a right D-module. This means that the Hodge filtrations are not shifted

by codimensions under the direct images by closed embeddings, see for instance [MaSaSc,
Section 1.2], [Sa7, Section B.3]. We have the filtration V of Kashiwara [Ka2] and Malgrange
[Ma2] on Bf indexed decreasingly by Q so that ∂tt − α is nilpotent on GrαVBf , see [Sa2].
Setting e(−α) := exp(−2πiα), we define the e(−α)-eigenspace of the filtered vanishing cycle

functor by

ϕ
(α)
f (OY , F ) := GrαV (Bf , F )

(
α ∈ (−1, 0]

)
,

so that
⊕

α∈(−1,0] ϕ
(α)
f (OY , F ) is the underlying F -filtered DY -module of the mixed Hodge

module of vanishing cycles in [Sa2], [Sa3] (which is denoted by ϕfQh,Y [dY −1] in this paper),
see (1.1.10) below. There are canonical isomorphisms

DR(ϕ
(α)
f OY ) = ϕf,e(−α)CY [dY − 1],

where dY := dimY , and ϕf,e(−α) denotes the e(−α)-eigenspace of the vanishing cycle functor

for C-complexes [De], see (1.5.2) below. (Similarly for ϕ
(α)
fa

(OYa
, F ) with a = 1, 2.)

In this paper we give a proof of the Thom-Sebastiani theorem for holonomic filtered
D-modules satisfying the assumptions (1.1.5–7) below (which hold in the case of Hodge
modules), see Theorem (1.2) below. In a special case this implies the following.

Theorem 2. In the above notation, there are canonical isomorphisms of filtered DY -modules

for α ∈ (−1, 0] :

(6)
ϕ
(α)
f (OY , F ) =

⊕
α1>αϕ

(α1)
f1

(OY1 , F )⊠ ϕ
(α−α1)
f2

(OY2 , F )

⊕
⊕

α1<αϕ
(α1)
f1

(OY1 , F )⊠ ϕ
(α−1−α1)
f2

(OY2, F [−1]),

by replacing (if necessary) Ya with an open neighborhood of Xa (a = 1, 2) so that Σ = Σ1×Σ2.

More precisely, α1 on the right-hand side of (6) is contained in (−1, 0] ∩ [α, α + 1) or in
(−1, 0] ∩ [α− 1, α), see (1.2.2) below. (Note that Theorem 2 also follows from [Sa6].)

For the proof of Theorem 2, we use the algebraic partial microlocalization B̃fa , B̃f of Bfa , Bf
with respect to the action of ∂t, which was introduced in [Sa5]. The microlocal V -filtration

on B̃fa , B̃f is naturally associated with this, and the induced filtration on the structure

sheaf OY , OYa
gives the microlocal multiplier ideals J̃ (αX), J̃ (αXa), which coincide with
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the usual multiplier ideals J (αX), J (αXa) for α < 1, see (2.1) below. We then get the
Thom-Sebastiani theorem for microlocal multiplier ideals which holds for any α ∈ Q (see
Theorem (2.2) below), and this implies Theorem 1 by restricting to α < 1.

As another application of Theorem 2, we prove in [MaSaSc] a Thom-Sebastiani type
theorem for the spectral Hirzebruch-Milnor classes introduced there. Such a result can be
viewed as a global analogue of a similar assertion for the Steenbrink spectrum of hypersurface
singularities, which follows from results in [ScSt], [Va] in the isolated hypersurface singularity
case, and from [Sa6] or Theorem 2 in general. (Finally, it is not clear to us how to relate the
Thom-Sebastiani theorem in [Ba] with the ones obtained in this paper.)

We thank M. Mustaţǎ for very important information concerning the relation between
the summation formula and the Thom-Sebastiani type theorem for multiplier ideals, see
Remark (2.7) below. We also thank the referee for useful comments. The first named author
is partially supported by NSF and NSA. The second named author is partially supported by
Kakenhi 15K04816. The third named author is supported by the SFB 878 “groups, geometry
and actions”.

In Section 1 we first explain algebraic partial microlocalization together with microlocal
V -filtration, and then prove Theorem (1.2) below, which is a generalization of Theorem 2.
In Section 2 we prove the Thom-Sebastiani type theorem for microlocal multiplier ideals in
Theorem (2.2) below.

1. Thom-Sebastiani theorem

In this section we first explain algebraic partial microlocalization together with microlocal
V -filtration, and then prove Theorem (1.2) below, which is a generalization of Theorem 2.

1.1. Algebraic microlocalization. Let Y be a smooth complex algebraic variety (or a
connected complex manifold) with f a non-constant function on Y , that is f ∈ Γ(Y,OY )\C.
Let if : Y →֒ Y × C be the graph embedding by f , and t be the coordinate of the second
factor of Y × C. Let (M,F ) be a holonomic filtered left D-module (in particular, GrF

•
M is

coherent over GrF
•
DY ). Set

(1.1.1) (Mf , F ) := (if )
D

∗ (M,F ) = (M [∂t], F ) with FpMf =
⊕

i∈Z Fp−iM⊗∂
i
t .

Here (if)
D
∗ denotes the direct image of filtered D-modules, and the filtration F is indexed like

a right D-module, see for instance [MaSaSc, Section 1.2], [Sa7, Section B.3]. (In this case
the filtration F on the de Rham functor DR must be defined also as in the right D-module
case, see for instance [MaSaSc, 1.2.2].) The above second isomorphism is as filtered OY [∂t]-
modules, and the sheaf-theoretic direct image (if )∗ is omitted to simplify the notation. The
actions of t and ∂yi with yi local coordinates of Y are given by

(1.1.2)
t(m∂jt ) = fm∂jt − jm∂

j−1
t ,

∂yi(m∂
j
t ) = (∂yim) ∂jt − (∂yif)m∂

j+1
t (m ∈M).

Here m∂jt is an abbreviation of m⊗∂jt , or more precisely, m⊗∂jt δ(t− f) with

δ(t− f) := 1
t−f
∈ OY×C

[
1

t−f

]
/OY×C.

Note that δ(t− f) is also identified with f s (and −∂tt with s), and this identification gives
the relation between the Bernstein-Sato polynomial and the V -filtration, see for instance
[Ma2].

Let M̃f be the algebraic partial microlocalization of Mf (see [Sa5]), that is,

(1.1.3) (M̃f , F ) = (M [∂t, ∂
−1
t ], F ) with FpM̃f =

⊕
i∈Z Fp−iM⊗∂

i
t ,

where the actions of t and ∂yi are given by (1.1.2).
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In the caseM = OY , we denoteMf , M̃f respectively by Bf , B̃f , where the Hodge filtration
F on OY is defined by GrFpOY = 0 (i 6= −dY ) with dY := dimY as in the case of right D-
modules, so that

(1.1.4) FpBf =
⊕

06i6p+dY
OY ⊗∂

i
t , FpB̃f =

⊕
i6p+dY

OY ⊗∂
i
t .

Let V be the V -filtration of Kashiwara [Ka2] and Malgrange [Ma2] on Mf along t = 0,
see for instance [Sa4, Proposition 1.9]. We assume that V is indexed discretely by the
real numbers R (instead of Q as in [Sa2], [Sa3]), and moreover the following conditions are
satisfied (as in the case of mixed Hodge modules, see [Sa2, Section 3.2.1]):

(1.1.5) GrF
•
GrαVM are coherent over GrF

•
DY (∀α ∈ [0, 1]).

(1.1.6) t : V α(Mf , F )
∼
−→ V α+1(Mf , F ) (∀α > 0),

(1.1.7) ∂t : GrαV (Mf , F )
∼
−→ Grα−1

V (Mf , F [−1]) (∀α < 1),

where F [m]p = F [m]−p = Fm−p = Fp−m in general. We say that (M,F ) is f -admissible if
conditions (1.1.6–7) hold, see [Sa7, Section 2.1].

Let V be the microlocal V -filtration on M̃f along t = 0, see [Sa5] in the case M = OY . In
general this can be defined by modifying the V -filtration on Mf so that

V αM̃f =
∑

i>0 ∂
−i
t V α−iMf (α ∈ R),

where Mf is naturally identified with a subsheaf of M̃f . It is an exhaustive decreasing

filtration on M̃f indexed discretely by R.

There is a canonical inclusion

can : (Mf ;F, V ) →֒ (M̃f ;F, V ),

which is strictly compatible with F by (1.1.1), (1.1.3). It is also strictly compatible with V α

for α < 1. Indeed, if there is m ∈ Mf with m ∈ V αM̃f for some α < 1, then there is some

k ≫ 0 with ∂ktm ∈ V
α−kMf by the above definition of V on M̃f (since ∂tV

αMf ⊂ V α−1Mf ),
where can is omitted to simplify the notation. Then m ∈ V αMf by using the injectivity
of (1.1.7) with F forgotten. A similar argument implies the isomorphism (1.1.9) below with
filtration F forgotten, see also the proof of (1.1.9) below in the filtered case.

The filtration V on M̃f satisfies the following three conditions, and moreover it is uniquely
determined by these.

(a) The V αM̃f are locally finitely generated over DY [∂
−1
t ] (∀α ∈ R).

(b) t(V αM̃f ) ⊂ V α+1M̃f , ∂t(V
αM̃f) = V α−1M̃f (∀α ∈ R).

(c) The action of ∂tt− α on GrαV M̃f is nilpotent (∀α ∈ R).

The property (a) follows (1.1.6) together with Nakayama’s lemma applied to the FpV
αMf .

Indeed, these imply that the V αMf are locally finitely generated over OY×C〈∂y1 , . . . , ∂ydY 〉,
and any local section of Mf is annihilated by a sufficiently high power of t− f .

By condition (b) together with (1.1.3) there are canonical bi-filtered isomorphisms

(1.1.8) ∂ k
t : (M̃f ;F, V )

∼
−→ (M̃f ;F [−k], V [−k]) (∀ k ∈ Z).

We then get the canonical filtered isomorphisms

(1.1.9) GrαV can : GrαV (Mf , F )
∼
−→ GrαV (M̃f , F ) (∀α < 1).
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Here it is enough to prove the strict surjectivity, since the injectivity with F forgotten follows
from the strict compatibility of the morphism can with V α (α < 1) which is shown above.

For any m ∈ FpV
αM̃f , we have for some k ≫ 0 by the definition of V on M̃f

∂ktm ∈ can(V α−kMf ) ∩ Fp+kM̃f = can(Fp+kV
α−kMf ),

where the last equality follows from the strictness of can : (Mf , F ) →֒ (M̃f , F ). Then (1.1.9)
follows from (1.1.7–8).

For a holonomic filtered DY -module (M,F ), we define the vanishing cycle functor by

(1.1.10) ϕf(M,F ) :=
⊕

α∈(−1,0] GrαV (Mf , F ) =
⊕

α∈(−1,0] GrαV (M̃f , F ),

assuming (1.1.7) for the last isomorphism (using (1.1.9)), see Remark (1.6)(i) below for the
justification of the use of ϕf . Here the filtration F is not shifted, although it is shifted by

1 using (1.1.8) if we consider GrαV M̃f for α ∈ (0, 1] instead of α ∈ (−1, 0]. This definition
is compatible with the one in [Sa2, 5.1.3.3] in the Hodge module case. Indeed, for α = 0,
it coincides with the original definition of ϕf,1 in loc. cit., and we use (1.1.8–9) for the case
α ∈ (−1, 0), since ψf,λ = ϕf,λ for λ 6= 1. (In this section, we index the filtration F like right

D-modules as is explained before (1.1.2), and V is indexed decreasingly so that Vα = V −α

and GrVα = Gr−α
V .)

We have a Thom-Sebastiani theorem as below. This is mentioned in [Sa5, Remark 4.5], and
follows from [Sa6] in the Hodge module case (see [DeLo], [GeLoMe] for the motivic version,
[Ma1], [ScSt], [Va] for the isolated hypersurface singularity case with constant coefficients,
and also [Mas], [Sch1] for complexes with constructible cohomology sheaves). We give here
a proof using algebraic partial microlocalization.

Theorem 1.2. Let Ya be a smooth complex algebraic variety (or a connected complex

manifold) with fa a non-constant function, that is, fa ∈ Γ(Ya,OYa
) \ C, for a = 1, 2. Set

Y = Y1 × Y2, and f = f1 + f2 in the notation of the introduction. Let (Ma, F ) (a = 1, 2) be

a holonomic filtered left DYa
-module satisfying the assumptions (1.1.5–7), and define M̃a,fa,

M̃f as in (1.1) with M := M1 ⊠M2. Then there are canonical isomorphisms of holonomic

filtered DY -modules for α ∈ (−1, 0] :

(1.2.1)
GrαV (M̃f , F ) =

⊕
α1∈I(α)

Grα1
V (M̃1,f1 , F )⊠Grα−α1

V (M̃2,f2 , F )

⊕
⊕

α1∈J(α)
Grα1

V (M̃1,f1 , F )⊠Grα−1−α1
V (M̃2,f2 , F [−1]),

by replacing Ya with an open neighborhood of Xa := f−1
a (0) in Ya (a = 1, 2) if necessary,

where

I(α) := (−1, 0] ∩ [α, α + 1) J(α) := (−1, 0] ∩ [α− 1, α).

Note. Setting α2 = α− α1, α
′
2 = α− 1− α1, we have

(1.2.2) α1 ∈ I(α) ⇐⇒ α1, α2 ∈ (−1, 0], α1 ∈ J(α) ⇐⇒ α1, α
′

2 ∈ (−1, 0].

Proof. Set Σa = Sing f−1
a (0) (a = 1, 2). By replacing Ya with an open neighborhood of Xa

(a = 1, 2) if necessary, we may assume

Sing f−1(0) = Σ1 × Σ2.

Indeed, f−1(0) is the inverse image of the anti-diagonal of C× C by f1 × f2.

We next show that there is the bi-filtered short exact sequence

(1.2.3) 0→ (M̃1,f1 ⊠ M̃2,f2 ;F [1], V [1])
ι
→ (M̃1,f1 ⊠ M̃2,f2 ;F, V )

η
→ (M̃f ;F, V )→ 0,

where ι is defined by
∂t1 ⊠ id− id⊠ ∂t2 ,
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and η by

η
(
m1∂

i1
t1 ⊠m2∂

i1
t2

)
:= (m1 ⊠m2)∂

i1+i2
t for ma ∈Ma (a = 1, 2),

(see also [Sa5, Section 4.1] for the case Ma = OYa
(a = 1, 2)). We have

(1.2.4) (M̃1,f1 ⊠ M̃2,f2 ;F, V ) := (M̃1,f1 ;F, V )⊠ (M̃2,f2 ;F, V ),

where the external product ⊠ is taken as that of OYa
-modules (a = 1, 2). This implies the

following filtered isomorphisms for α ∈ R (see Lemma (1.4) below for the proof):

(1.2.5) GrαV (M̃1,f1 ⊠ M̃2,f2, F )
∼
←−

⊕
α1∈R

Grα1
V (M̃1,f1, F )⊠Grα−α1

V (M̃2,f2 , F ).

By the definition of ι and by using (1.1.8) for j = 1, the filtered isomorphism (1.2.5) implies
that GrαV ι is strictly injective for F and we have the filtered isomorphism for α ∈ R :

(1.2.6) (Coker GrαV ι, F )
∼=

⊕
α1∈(−1,0] Grα1

V (M̃1,f1 , F )⊠Grα−α1
V (M̃2,f2 , F ),

where the left-hand side is defined to be a quotient of GrαV (M̃1,f1 ⊠ M̃2,f2 , F ).

We now show that the morphism η in (1.2.3) induces an isomorphism of bi-filtered DY -
modules

(1.2.7) (Coker ι;F, V )
∼
−→ (M̃f ;F, V ),

which is also compatible with the action of t, ∂t. Here the action of t and ∂t on Coker ι
is defined respectively by t1 + t2 and either ∂t1 or ∂t2 by the definition of ι. (To keep the
exposition more concise, we choose not to formulate (1.2.7) as a theorem.) The compatibility
of the isomorphism (1.2.7) with F follows from the definition (1.1.3). The compatibility with
the filtration V is equivalent to that η is strictly compatible with the filtration V . By the
uniqueness of the microlocal filtration V explained in (1.1), this is also equivalent to that
the quotient filtration V on Coker ι satisfies the conditions of the microlocal V -filtration in

(1.1). Here the finiteness condition (a) for M̃f follows from that for M̃a,fa . Condition (b)
follows from the definition of the action of t, ∂t explained above. Condition (c) is verified
also by using the definition of the action of t, ∂t on the left-hand side (especially t = t1+ t2).
Thus (1.2.7) follows.

As is shown after (1.2.5), GrαV ι is strictly injective for F . Hence ι is bistrictly injective
for F, V . By (1.2.7), this implies that (1.2.3) is bistrictly exact for F, V , applying [Sa2,
Theorem 1.2.12] to

(M̃1,f1 ⊠ M̃2,f2;F, V,G),

where the third filtration G is defined so that GrGi = 0 for i 6= 0, 1 and GrG0 is given by the
image of ι. In particular, the cokernel commutes with GrαV in a compatible way with the
filtration F . (This does not necessarily hold if ι is not bistrictly compatible with F, V .)

The assertion (1.2.1) now follows from (1.2.6–7). Indeed, (1.2.6) says that CokerGrαV ι for
α ∈ (−1, 0] is given by the direct sum over the index set defined by the conditions:

α1 ∈ (−1, 0], α1 + α2 = α ∈ (−1, 0] with α2 := α− α1,

where α2 ∈ (−1, 1), and does not necessarily belong to (−1, 0]. However, the difference with
the union of the index sets of the direct sums in (1.2.1) (see also (1.2.2)) can be recovered by
using (1.1.8) for a = 2, j = 1, where we get the shift of F by −1 in the last term of (1.2.1).
Thus Theorem (1.2) follows.

Remarks 1.3. In the proof of (1.2.5) given in Lemma (1.4) below, we need the notion of
convolution of filtrations and the related compatibility properties, which we now recall. In
general, assume there are compatible m filtrations F(1), . . . , F(m) of an object A of an abelian
category A in the sense of [Sa2, Section 1]. Here we assume that the inductive limit over a
directed set is always an exact functor (for instance, the category of C-vector spaces). Then
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we can show by using [Sa2, Theorem 1.2.12] that the m + 1 filtrations F(1,2), F(1), . . . , F(m)

also form compatible filtrations of A, where F(1,2) is the convolution of F(1) and F(2), that is,

F p
(1,2)A =

∑
q∈Z F

q
(1)A ∩ F

p−q
(2) A.

This assertion can be reduced to the finite sum case by using an inductive limit argument
as above, and then to the finite filtration case (by replacing F p

(1), F
q
(2) with 0 for p, q ≫ 0).

Here we have the canonical isomorphisms

GrpF(1,2)
A

∼
←−

⊕
q∈Z GrqF(1)

Grp−q
F(2)

A,

which is compatible with the filtrations F(i) (i > 2). This can be shown by using

Grp−q
F(2)

GrpF(1,2)
A = GrpF(1,2)

Grp−q
F(2)

A = GrqF(1)
Grp−q

F(2)
A.

Here, taking an abelian category containing the exact category of (m− 2)-filtered objects of
A as in [Sa2, Sections 1.3.2–3], the assertion is essentially reduced to the case m = 2, where
it is more or less well-known.

Lemma 1.4. With the above notation and assumptions, we have the filtered isomorphism

(1.2.5).

Proof. Let F (a) be the filtration on M̃1,f1 ⊠ M̃2,f2 induced by F on M̃a,fa , and similarly for

V(a) (a = 1, 2). The filtrations F , F (1), F (2), V , V(1), V(2) on M̃1,f1 ⊠ M̃2,f2 form compatible

filtrations in the sense of [Sa2, Section 1]. Note that F is the convolution of F (1), F (2), and
similarly for V , see Remark (1.3) above for convolution. We can prove the compatibility of
the above six filtrations by using [Sa2, Theorem 1.2.12]. Indeed, the compatibility of the
four filtrations F (1), F (2), V(1), V(2) follows from the definition, since the external product
is an exact functor for both factors. Then we can apply Remark (1.3) above, and (1.2.5)
follows by taking GrV(2), since we have the canonical isomorphism

Grα1
V(1)

Grα2
V(2)

(M̃1,f1 ⊠ M̃2,f2) = Grα1
V M̃1,f1 ⊠Grα2

V M̃2,f2 ,

which is compatible with the filtrations F (1), F (2).

In the case of (1.2.5), however, there is an additional difficulty, since the filtration V does
not satisfy the condition V α = 0 for α ≫ 0 (and similarly for V α

(1), V
α
(2)). In order to avoid

this problem, we can restrict to V β
(1), and take the inductive limit for β → −∞. Note that

the induced filtration V(2) on GrαV V
β
(1) satisfies the above property (since V γ

(2)GrαV V
β
(1) = 0 for

γ > α− β). This finishes the proof of Lemma (1.4).

1.5. Case M = OY . From now on, we restrict to the case M = OY , and explain some
well-known properties needed for applications to multiplier ideals.

Recall first that the morphism can in (1.1.9) for α = 1 is strictly surjective by [Sa2,
Lemma 5.1.4 and Proposition 5.1.14]. Indeed, by setting

X := f−1(0) ⊂ Y,

the morphism can in (1.1.9) for α = 1 is identified with the underlying morphism of filtered
DY -modules of the morphism can in the short exact sequence of mixed Hodge modules

(1.5.1) 0→ Qh,X [dX ]→ ψf,1Qh,Y [dX ]
can
−→ ϕf,1Qh,Y [dX ]→ 0.

(This follows for instance from [Sa3, Corollary 2.24].) Here

Qh,X := a∗XQ ∈ D
bMHM(X),

with aX : X → pt the structure morphism (similarly for Qh,Y ), and ψf,1, ϕf,1 are the
unipotent monodromy part of the nearby and vanishing cycles functors [De]. More generally,
ψf,λ, ϕf,λ for λ ∈ C can be defined for the underlying C-complexes by using Ker(Ts − λ)
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with Ts the semisimple part of the monodromy. (Note that the nearby and vanishing cycle
functors preserve mixed Hodge modules up to the shift of complex by 1 in this paper.)

Using (1.1.8–9) we have the canonical isomorphisms for any α ∈ Q

(1.5.2) DRY (GrαV B̃f ) = ϕf,e(−α)CY [dX ],

where e(−α) := exp(−2πiα), and the left-hand side is the de Rham complex associated with

the DY -module GrαV B̃f (viewed as an OY -module with an integrable connection) and shifted
by dY to the left; see also Remark (1.6)(i) below for a generalization of (1.5.2).

The above argument implies that the morphism can : Gr1V Bf → Gr1V B̃f is identified with
the underlying morphism of the canonical morphism can in the short exact sequence (1.5.1),
and hence the short exact sequence (2.1.9) below is identified with the short exact sequence
deduced from (1.5.1) by restricting to F−dX of the underlying filtered DY -modules.

Remarks 1.6. (i) The isomorphism (1.5.2) holds for any α ∈ R with B̃f , CY [dX ] replaced

respectively by M̃f , DRY (M)[−1] if M is regular holonomic or if (1.1.5–7) are satisfied.

Indeed, this is well known for Mf (instead of M̃f) if α ∈ [0, 1) (see [Sa2, Proposition 3.4.12]

for the case (1.1.5–7) hold). Then it holds for M̃f and for any α ∈ R by (1.1.8–9).

(ii) In general the mixed Hodge modules are stable by ψ[−1], ϕ[−1]. As a consequence, we
get the shift of complex by −1 in the Thom-Sebastiani isomorphism (see also [Mas], [Sch1,
Corollary 1.3.4 on p. 72]):

(1.6.1) ϕfCY = ϕf1CY1 ⊠ ϕf2CY2[−1],

which is closely related to the sign appearing in [MaSaSc, Theorems 3 and 4].

(iii) The Thom-Sebastiani isomorphism obtained by Theorem (1.2) can be compatible
with the one for complexes with constructible cohomology sheaves in [Mas], [Sch1] via the
de Rham functor in the mixed Hodge module case only after applying some automorphism
of the external product. Indeed, it is expected that the former coincides with the one for the
underlying filtered D-module part in [Sa6] (where the argument is not completely trivial),
and it is shown in [Sch2, Proposition A.2] that the latter coincides with the one in [Sa6,
Section 2]. However, these two Thom-Sebastiani isomorphisms in [Sa6] can coincide only
after applying an automorphism of the external product defined by using the beta function
and the logarithm of the unipotent part of the monodromy as is seen in the definition of
twisted external products, see loc. cit.

(iv) By (1.1.4) we get

(1.6.2) GrFp GrαV Bf = GrFp GrαV B̃f = 0 if p < −dY , α ∈ (−1, 0].

For α = 0, this uses the strict surjectivity of (1.1.9) for α = 1. (It is closely related to the
strict negativity of the roots of b-functions, see [Ka1].) This is used in [MaSaSc, 3.1.7] and
also in Section 2 below (for instance in (2.1.9)) implicitly.

2. Application to multiplier ideals

In this section we prove the Thom-Sebastiani type theorem for microlocal multiplier ideals
in Theorem (2.2) below.

2.1. Multiplier ideals. Let Y be a smooth complex algebraic variety (or a connected
complex manifold), and f be a non-constant function on Y , that is, f ∈ Γ(Y,OY ) \ C. Set
X := f−1(0) ⊂ Y . Let J (αX) ⊂ OY be the multiplier ideal of X with coefficient α ∈ Q (or
R more generally). It can be defined by the local integrability of

(2.1.1) |g|2/|f |2α for g ∈ OY .
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(For general references to multiplier ideals, see [La], [Na].) By definition, the J (αX) form
a decreasing sequence of ideal sheaves of OY indexed by R and satisfying

(2.1.2) J (αX) = OY (α 6 0), J ((α + 1)X) = fJ (αX) (α > 0).

It is quite well known (and is quite easy to verify) that the multiplier ideals can be defined
also by using an embedded resolution of X ⊂ Y , since the integrability condition can be
expressed by the multiplicities of the pull-backs of f, g and the differential form dy1∧ · · · ∧dyn
(with n = dY ) along the irreducible components of the exceptional divisor, see also [BuSa,
1.1.1] for instance. This implies the coherence of the J (αX) together with

(2.1.3) J (αX) = J ((α + ε)X) (0 < ∀ ε≪ 1).

The latter means that J (αX) is right-continuous for α. More precisely, for any α′ ∈ R, the
argument using an embedded resolution implies that we have for some β, β ′ ∈ Q

{
α ∈ R | J (αX) = J (α′X)

}
= [β, β ′) or (−∞, β ′).

We define the graded quotients G(αX) by

G(αX) := J ((α− ε)X)/J (αX) (0 < ε≪ 1),

where the range of ε may depend on α (this is the same in (2.1.3)). We then have

JC(X) :=
{
α ∈ R | G(αX) 6= 0

}
⊂ Q.

The members of JC(X) are called the jumping coefficients of X . We will restrict to rational
numbers α when we consider J (αX), G(αX).

By (2.1.2) we get the isomorphisms

(2.1.4) f : G(αX)
∼
−→ G((α + 1)X) (α > 0),

and

(2.1.5) JC(X) =
(
JC(X) ∩ (0, 1]

)
+ N.

Consider the filtration V on OY induced by the filtration V on Bf via the inclusion

OY = F−dY Bf →֒ Bf .

By [BuSa, Theorem 0.1] we have

(2.1.6)
J (αX) = V αOY if α /∈ JC(X),

G(αX) = GrαVOY = V αOY /J (αX) if α ∈ JC(X).

The last isomorphism is a consequence of the assertion that J (αX) is right-continuous for
α as is explained above, although V αOY is left-continuous for α.

We now consider the microlocal V -filtration on OY which is denoted by Ṽ , and is induced
by the filtration V on B̃f via the isomorphism

OY = GrF−dY
B̃f .

Set

J̃C(X) :=
{
α ∈ Q | Grα

Ṽ
OY 6= 0

}
.

We have by (1.1.9)

(2.1.7) J̃C(X) ⊂ (0,+∞), J̃C(X) ∩ (0, 1) = JC(X) ∩ (0, 1).

However, the last equality does not necessarily hold if (0, 1) is replaced by (0, 1] (since

J̃C(X) does not necessarily contain 1), and (2.1.5) with JC(X) replaced by J̃C(X) does not
necessarily hold, see Example (2.6)(ii) below.
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We have the microlocal multiplier ideals J̃ (αX) together with their graded quotients

G̃(αX) such that J̃ (αX) is right-continuous (see a remark after (2.1.3)) and

(2.1.8)
J̃ (αX) = Ṽ αOY if α /∈ J̃C(X),

G̃(αX) = Grα
Ṽ
OY = Ṽ αOY /J̃ (αX) if α ∈ J̃C(X).

As for the relation with the usual multiplier ideals, we have the following short exact sequence
in the notation of (1.1):

(2.1.9) 0→ ω̃X⊗OX
ω∨

X → F−dXGr1V Bf
can
−→ F−dXGr1V B̃f → 0,

where X is assumed to be reduced, and

ω̃X := (ρ)∗ωX̃ →֒ ωX , ω∨

X := HomOX
(ωX ,OX),

with ρ : X̃ → X a resolution of singularities (see [MaSaSc, 4.1.1]). We have

ωX = ωY ⊗OY
OX ,

since X is globally defined by f , see for instance [Sa4, Lemma 2.9]. The coherent sheaf
ωX/ω̃X may be called the “irrationality” of the singularities of X , see also [MaSaSc, 4.2.5].

By (1.1.9), (2.1.9) we then get

(2.1.10) J (αX) = J̃ (αX), G(αX) = G̃(αX) (α < 1),

(2.1.11) J̃ (X)/J (X) = ω̃X⊗OX
ω∨

X ⊂ OX (α = 1),

(2.1.12) 0→ ω̃X⊗OX
ω∨

X → G(X)→ G̃(X)→ 0 (α = 1).

Here we assume X reduced in (2.1.11–12). Note that we have by (2.1.2)

(2.1.13) J (X) = OY (−X) = IX (α = 1),

where the last term is the ideal sheaf of X .

We have the Thom-Sebastiani type theorem for microlocal multiplier ideals as follows.

Theorem 2.2. With the notation and assumption of Theorem (1.2), there are equalities for

any α ∈ Q :

(2.2.1) J̃ (αX) =
∑

α1+α2=α J̃ (α1X1)⊠ J̃ (α2X2) in OY = OY1 ⊠OY2 .

by replacing Ya with an open neighborhood of Xa = f−1
a (0) in Ya (a = 1, 2) so that Σ = Σ1×Σ2

if necessary. Here we may assume α1, α2 ∈ (0, α) by the first equality in (2.1.2) together with
(2.1.10).

Proof. In (2.2.1) we may replace α1 + α2 = α by α1 + α2 > α, and assume for 0 < ε≪ 1/m

(2.2.2) αa ∈ J̃C(Xa)− ε (a = 1, 2),

(since J̃ (αX) is right-continuous), where m is a positive integer such that J̃C(Xa) ∈ Z/m.
We now show that (2.2.1) is equivalent to the following.

(2.2.3) Ṽ αOY =
∑

α1+α2=α Ṽ
α1OY1 ⊠ Ṽ α2OY2 in OY = OY1 ⊠OY2 .

We may replace α1 + α2 = α by α1 + α2 > α in (2.2.3), and assume

(2.2.4) αa ∈ J̃C(Xa) (a = 1, 2),

since Ṽ α is left-continuous. However, we may also assume (2.2.2) with 0 < ε≪ 1/m instead
of (2.2.4) by replacing α with α−2ε if necessary. (Here ε may depend on α.) The equivalence
between (2.2.1) and (2.2.3) then follows from (2.1.8).
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We can show (2.2.3) by taking GrF−dY
of the isomorphism (1.2.7) and calculating GrF of

ι in (1.2.7), since GrFpa(B̃fa , V ) is essentially independent of pa by (1.1.8) (a = 1, 2). This
finishes the proof of Theorem (2.2).

Corollary 2.3. With the notation and assumption of Theorem (1.2), there are canonical

isomorphisms for any α ∈ Q :

(2.3.1) G̃(αX) =
⊕

α1+α2=α G̃(α1X1)⊠ G̃(α2X2),

by replacing Ya with an open neighborhood of Xa = f−1
a (0) in Ya (a = 1, 2) if necessary. Here

we may assume α1, α2 ∈ (0, α) as in Theorem (2.2).

It is also possible to deduce this from Theorem (1.2). Combining Corollary (2.3) with
(2.1.10), (2.1.12), we get the following.

Corollary 2.4. With the notation and assumption of Theorem (1.2), assume further X
reduced. We have the short exact sequence for α = 1 :

(2.4.1) 0→ ω̃X⊗OX
ω∨

X → G(X)→
⊕

α1+α2=1 G(α1X1)⊠ G(α2X2)→ 0.

by replacing Ya with an open neighborhood of Xa = f−1
a (0) in Ya (a = 1, 2) if necessary. Here

we may assume α1, α2 ∈ (0, 1) as in Theorem (2.2).

2.5. Proof of Theorem 1. The assertion follows from Theorem (2.2) and Corollary (2.3)
together with (2.1.10).

Examples 2.6. (i) Let Y = C with coordinate z. Set f = zm for m > 2. Then

(2.6.1) Ṽ i/mOY = OY z
k if i = k + 1 +

[
k/(m− 1)

]
.

Indeed, we have

(2.6.2) V i/mOY = OY z
i−1 (i ∈ [1, m− 1]),

where V is the usual V -filtration on OY , see (2.1). This is compatible with [Sa1], and can
be proved by using the multiplier ideals together with (2.1.6).

We then get the inclusion ⊃ in (2.6.1) by using (2.6.2) together with the definition of the

action of ∂z in (1.1.2) and (1.1.8), since GrF∂z preserves the filtration Ṽ and ∂zf = mzm−1.
So it is enough to show

(2.6.3) dimGr
i/m

Ṽ
OY =

{
1 if i > 1, i/m /∈ Z,

0 otherwise.

We have

H̃0(Ff,0,C)λ =

{
C if λm = 1 and λ 6= 1,

0 otherwise,

where H̃ is the reduced cohomology, and Ff,0 is the Milnor fiber so that ϕf,λCY is identified

with H̃0(Ff,0,C)λ in this case, see also (1.5.2). The assertion (2.6.3) then follows by using
(1.1.8) and recalling the definition of the direct image of filtered D-modules by the inclusion
{0} →֒ C, see for instance [MaSaSc, Section 1.2], [Sa7, Section B.3].

(ii) Let Y = Cd with coordinates z1, . . . , zd. Set f =
∑d

j=1 z
mj

j for mj > 2 (j ∈ [1, d]).

Then Example (i) together with (2.2.3) implies

(2.6.4) Ṽ αOY =
∑

νOY z
ν ,

where the summation is taken over ν = (ν1, . . . , νd) ∈ Nd satisfying

(2.6.5)
∑d

j=1
1
mj

(
νj + 1 +

[ νj
mj−1

])
> α.
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In particular, we have

(2.6.6) Ṽ α̃fOY = OY 6= Ṽ >α̃fOY with α̃f :=
∑d

j=1
1
mj
, lct(X) = min{1, α̃f}.

By (2.6.4–5) we see that the microlocal V -filtration on OY,0 has nothing to do with the
filtration V on the microlocal Gauss-Manin system as in [Sa1]. Indeed, the latter coincides
with the usual Gauss-Manin system (since the Milnor fiber is contractible), and the filtration
V on it is induced by the usual V -filtration on Bf , see [Sa2, Proposition 3.4.8].

Remark 2.7. Theorem 1 and Corollary 1 were essentially known to specialists according
to M. Mustaţǎ. (Here we use the multiplicative notation of multiplicative ideals following
him.) Indeed, setting a := (f1, f2) ⊂ OY , the summation formula [Mu, Theorem 0.3] implies

(2.7.1) J (aα) =
∑

α1+α2=α J
(
(f1)

α1(f2)
α2
)
,

and we have by [La, Proposition 9.5.22]

(2.7.2) J
(
(f1)

α1(f2)
α2
)
= J

(
(f1)

α1
)
⊠J

(
(f2)

α2
)
.

For each α ∈ (0, 1), it follows from [La, Proposition 9.2.28] (with k = 1) that we have for
c1, c2 ∈ C general

(2.7.3) J (aα) = J
(
(c1f1 + c2f2)

α
)
.

We thus get the following equality of ideal sheaves on Y for c1, c2 ∈ C general:

(2.7.4) J
(
(c1f1 + c2f2)

α
)
=

∑
α1+α2=α J

(
(f1)

α1
)
⊠J

(
(f2)

α2
)
.

This may be viewed effectively as a Thom-Sebastiani type theorem for multiplier ideals.
Here it is not necessarily immediate that the equality holds with c1 = c2 = 1, that is, we
have the equality

(2.7.5) J
(
(c1f1 + c2f2)

α
)
= J

(
(f1 + f2)

α
)
.

This can be shown easily in the case when f1 or f2 is analytic-locally a weighted homogeneous
polynomial by using the (local) C∗-action on Y1 or Y2 (together with GAGA). Indeed, we
have λ∗f1 = (c2/c1)f1 with λ∗J

(
(f1)

α1
)
= J

(
(f1)

α1
)
for some λ ∈ C∗ if f1 is a weighted

homogeneous polynomial. In general, the assertion can be reduced to the above case by
taking a resolution of f1 or f2, and applying [La, Theorem 9.2.33].

Remark 2.8. The Hodge ideals in [MuPo] coincide with the microlocal multiplier ideals
modulo the ideal of hypersurface, and hence the j-log canonicity (loc. cit.) is determined

by min J̃C(X), the minimal microlocal jumping coefficient, which coincides with α̃f , the
maximal root of the microlocal b-function up to a sign, see [Sa8].
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[Mu] Mustaţǎ, M., The multiplier ideals of a sum of ideals, Trans. Amer. Math. Soc. 354 (2002),
205–217.
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