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@ HYPERPLANE ARRANGEMENTS
@ Complement and intersection lattice
@ Classes of arrangements
@ Cohomology rings of arrangements
@ Fundamental groups of arrangements

© POLYNOMIAL COVERS AND BRAID MONODROMY
@ Polynomial covers
@ Configuration spaces
@ Braid bundles
@ Braid monodromy of plane algebraic curves

© MILNOR FIBRATIONS AND BOUNDARY MANIFOLDS
@ The Milnor fibrations of an arrangement
@ The boundary manifold of an arrangement
@ The boundary of the Milnor fiber
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COMPLEMENT AND INTERSECTION LATTICE

@ An arrangement of hyperplanes is a finite collection A of
codimension 1 linear (or affine) subspaces in V = C°.

@ Intersection lattice L(A): the poset of all intersections of A,
ordered by reverse inclusion, with v and A, and rank function
rank(X) = codim(X). It is a geometric lattice.
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@ Complement: M(A) = C9\ Unea H- Itis a connected, smooth,
quasi-projective variety.
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@ We may assume that A is essential, i.e., (.4 H = {0}.

@ Fix an ordering A = {Hy, ..., Hn}, and choose linear forms
f.: €4 — C with ker(f;) = H,. Define an injective linear map

1 CPC" 2z (f(2),...,f(2)).
@ This map restricts to an inclusion ¢: M(A) — (C*)". Hence,
M(A) = +(CY) ~ (C*)" is a Stein manifold.

@ Therefore, M = M(.A) has the homotopy type of a connected,
finite cell complex of dimension d.

@ In fact, M has a minimal cell structure. Consequently, H.(M,Z) is
torsion-free.

o Let U(A) = P(M(A)) = CP9\ Unea P(H) be the projectivized
complement. Then M(A) = U(A) x C*.
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CLASSES OF ARRANGEMENTS

EXAMPLE (THE BOOLEAN ARRANGEMENTS)
@ B,: all coordinate hyperplanes z; = 0 in C".

@ L(B,): Boolean lattice of subsets of {0,1}".
@ M(B,): complex algebraic torus (C*)" ~ K(Z",1).

EXAMPLE (THE BRAID ARRANGEMENTS)
@ Ap: all diagonal hyperplanes Hj = {z; — z; = 0} in C".
@ L(Ap): lattice of partitions of [n] := {1,..., n}, ordered by
refinement.

@ M(Ap): configuration space of n ordered points in C, a classifying
space for P, the pure braid group on n strings.
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EXAMPLE (SUPERSOLVABLE ARRANGEMENTS)
@ Aflat X € L(.A) is modular if for any other flat Y,
rank(X) + rank(Y) = rank(X v Y) + rank(X A Y).

@ A is supersolvable if L(.A) contains a maximal chain of modular
elements, V = Xo > X; > --- > X, = {0}, where r = rank(A).

@ Equivalently, A is supersolvable (or, fiber-type) if it admits a
filtration @ = Ag < Ay < --- < A, = A, where each A, has
rank(A;) = i and 3 M(A;) — M(A;_41) a bundle map with fiber
C\{d; points} that is the restriction of a linear projection C' — C'~".

@ The complement M(A) is a K(m, 1) and its fundamental group is
an iterated semidirect product of finitely generated free groups.

@ The braid arrangement A, is fiber-type. Each projection
M(A;) — M(A,;_+) has fiber C\{i — 1 points}, and gives rise to
split extension 1 — F;_y —» P; — P,_y — 1. Hence,

PnZFn,1 XX F2 X F1.
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EXAMPLE (GRAPHIC ARRANGEMENTS)

@ Letl = (V, E) be afinite simplicial graph with vertex set
V =[n]:={1,...,n} and edge set E c 2!".

@ The graphic arrangement Ar consists of the hyperplanes
He = {zi — z; = 0} in C" indexed by the edges e = {/,/} of E.

@ If I = Kj, the complete graph on n vertices, then Ay, = Ap.

@ Thus, any graphic arrangement A can be viewed as a
sub-arrangement of the braid arrangement A,, where n = |V|.

@ Stanley: Ar is supersolvable if and only if I' is chordal (i.e., every
cycle of four or more vertices has a chord).
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COHOMOLOGY RINGS OF ARRANGEMENTS

@ Let A be central arrangement in C9. For each H € A, let
fy: C? — C linear map such that H = ker(fy).

@ The logarithmic 1-forms wy = 5= dlog fyy € Qur(M) are closed.

@ Let E be the Z-exterior algebra on the degree 1 cohomology
classes ey = [wy] dual to the meridians x4 around H € A.

@ Let 0: E* — E*~! be the differential given by d(ey) = 1, and set
ex = [ [y-x en for each X € L(A).

@ The cohomology ring A(A) = H*(M; Z) is isomorphic to the
Orlik—Solomon algebra E//, where | = (dex : rank(X) < | X|).

@ Hence, A(A) is determined by L(.A).
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@ The localization of an arrangement A at a flat X € L(.A) is the
sub-arrangement Ay = {He A: H > X}.

@ The inclusion Ay — A gives rise to an inclusion of complements,
Jx: M(A) — M(Ax). The inclusions {jx} xc.(4) assemble into a

map j: M(A) — [ I xer(a) M(Ax).

@ Brieskorn: the homomorphism induced in cohomology by j is an
isomorphism in each degree k > 0. Moreover, the groups
HX(M(Ax); Z) are torsion-free, and so, by the Kiinneth formula,
we have isomorphisms

HYM(A);Z) =~ @ H(M(Ax);Z)
Xely(A)

@ Likewise, for each k > 2, the degree k piece of the Orlik—Solomon
ideal, /X(Ax), decomposes as the direct sum of the groups
IK(Ax), taken over all X € Lx(A).
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@ |t follows that all the homology groups of Hx(M,Z) are
torsion-free. Their ranks are the Betti numbers b, (M), given by

i d ran
Poin(M, t) :== Zk:o b(M)tk = ZXEL(A) (X (—t)rankX),

where p: L(A) — Z is the Mébius function, defined recursively by
p(C%) =1and u(X) = — 2yox 1Y)
@ [(Ajz), with Mdbius function:

@ Since H*(M;Z) is torsion-free (as a group) and generated in
degree 1 (as an algebra), the Hurewicz homomorphism
h: 7j(M) — H;(M;Z) is the zero map, for each 2 </ < d.
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L(A4) AND MOBIUS FUNCTION
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EXAMPLE
@ A = A, braid arrangement

@ E=A(er,...,6p)

@ /= {(e1—es)(e2— €4),(e1 — &5)(€3 — €5),
(62— es)(€3 — €5), (€1 — €5)(€5 — €6))

L6 @ Poin(M,t) =1 +6t+ 1112 + 613
=(1+H(1+2t)(1 + 3f)

v

P

EXAMPLE (SUPERSOLVABLE ARRANGEMENTS (CONTINUED))

@ Let1 =04,ds,...,d, be the exponents of a supersolvable
arrangement A. Then the Poincaré polynomial of the complement
factors completely: Poin(M(A), t) = [T_{(1 + d;t).

@ Bjorner—Ziegler: A is supersolvable if and only if the OS-ideal /(.A)
admits a quadratic Grébner basis, in which case A = A(A) is a
Koszul algebra, i.e., Exty(k,k); = 0 for j # j.

@ Question (Yuzvinsky): If A(A) is Koszul, is A supersolvable?
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FUNDAMENTAL GROUPS OF ARRANGEMENTS

@ Let A’ = {H n C?} 4 be a generic planar section of A. Then the
arrangement group, G(A) = m1(M(.A)), is isomorphic to
™1 (M(A")).

@ So let A be an arrangement of n affine lines in C2. Taking a
generic projection C?> — C yields the braid monodromy
a = (aq,...,as), where s = #{multiple points} and the braids
ar € Py can be read off an associated braided wiring diagram,

\/J
\ N—

@ The group G(A) has a presentation with meridional generators
Xi,..., X, and commutator relators xjoy(x;)~".

N

“NDWh
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EXAMPLE

21— 2o

Z2 — 23

Z{ — Z3

G=P3§F2><Z

Zo — 24 Z1 — 2o

Zo— 73

21 =23 7 — 74 BB~ %

G=P4§F3>4P3
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POLYNOMIAL COVERS
@ Let X be a path-connected space. A simple Weierstrass
polynomial of degree non X isamap f: X x C — C given by

n
f(x,2) = 2"+ > aj(x)2"",
i~

with continuous coefficient maps a;: X — C, and with no multiple
roots for any x € X.

o Let E = E(f) = {(x,z) e X x C | f(x,z) = O}.

@ The restriction of pry: X x C — X to E defines an n-fold cover
m =7 E — X, the polynomial covering map associated to f.

E———— = XxC

A
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CONFIGURATION SPACES

@ Let Confy(C) = {ze C" | z; # z;for i # j} and
UConfp(C) = Conf,(C)/Sp.

@ Since f: X x C — C has no multiple roots, the coefficient map
a=(ay,...,an): X — C" takes values in

B" .= C™ A, = UConf,(C).

@ Over UConf,(C), there is a canonical n-fold polynomial covering
map, m,: E(f,) — UConf,(C), determined by the W-polynomial

n _.
fo(x,2) = 2" + ZH xiz" .

@ We get a pullback diagram of covers,

E(f) —— E(fp)
ok
X B"
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BRAID GROUPS

@ Let B, be the Artin braid group on n strands. Then
Bn - 7T1 (Uconfn(c))

@ We let v,: B, — Aut(Fj) be the Artin representation.

@ The coefficient homomorphism, o = a,.: m1(X) — By, is
well-defined up to conjugacy.

@ Polynomial covers are those covers 7: E — X for which the
characteristic homomorphism y: 71(X) — S, factors through the
canonical surjection 7,: B, — Sp,

B,
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THE ROOT MAP
@ Now assume that the W-polynomial f completely factors as

n
fx,2) = [ [, (2= bix)),
with continuous roots b;: X — C.

@ Since f is simple, the root map b = (by,...,b,): X — C" takes
values in Conf,(C).

@ Over Conf,(C), there is a canonical n-fold cover,
To,: E(Qn) — Confp(C), where

Qn(w,z2)=(z—wq)---(Z— wp).

@ We get a pullback diagram of covers,

E(f) —— E(Qn)

g | 7o

X —L Confp(C)
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BRAID BUNDLES

@ Let P, = ker(my: By — Sp) be the pure braid group. Then
Ppn = 71(Confpy(C)).

@ The map 5 = b.: m1(X) — Pp is well-defined up to conjugacy.

@ The polynomial covers which are trivial covers are precisely those
for which ao = v 0 8, where v,: Pp — By is the inclusion map.

THEOREM (COHEN-S. 1997)
Letf: X x C — C be a simple W-polynomial. Let Y = X x C\E(f) and
letp: Y — X be the restriction ofpri: X xC — X to Y.
@ Themapp: Y — X is a locally trivial bundle, with structure group
B, and fiber C, = C\{n points}. Upon identifying = (Cp) with Fp,
the monodromy of this bundle is 1 o a: w1 (X) — Aut(Fp).

@ If f completely factors into linear factors, the structure group
reduces to P,, and the monodromy factors as 1p o vp 0 5.

o
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BRAID MONODROMY OF PLANE ALGEBRAIC CURVES

@ Let C be a reduced algebraic curve in C?, defined by a polynomial
f = f(z1,z2) of degree n.

@ Let 7: C? — C be a linear projection, and let Y = {y1,...,ys} be
the set of points in C for which the fibers of = contain singular
points of C, or are tangent to C.

@ WLOG, we may assume that = = pr4 is generic with respect to C.
That is, for each k, the line £, = 7' (yx) contains at most one
singular point v of C and does not belong to the tangent cone of C
at vx, and, moreover, all tangencies are simple.

o Letf = Uﬁk
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@ In the chosen coordinates, the defining polynomial f of C may be
written as f(x,z) = z" + 37 ai(x)z"".

@ Since C is reduced, for each x ¢ ), the equation f(x,z) = 0 has n
distinct roots. Thus, f is a simple W-polynomial over C\), and

m=m:C\(Cn L) > C\Y
is the associated polynomial n-fold cover.
@ Note that Y (f) = ((C\Y) x C)\(C\(C n L)) = C2\(C U L).
@ Thus, the restriction of pry to Y(f),
p: CA\(Cu L) > C\,

is a bundle map, with structure group B, fiber C,, and
monodromy homomorphism « = a,.: m(C\Y) — By.
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BRAID MONODROMY PRESENTATION

@ The homotopy exact sequence of fibration p: C2\(C U £) — C\V:

1 — 11(Cp) —> m(CA\(C U £)) 2 7y (C\Y) — 1.
@ This sequence is split exact, with action given by the braid
monodromy homomorphism «: m1(C\Y) — Aut(m1(Cp)).

@ Order the points of ) by decreasing real part, and pick the
basepoint yp in C\Y with Re(yp) > max{Re(yx)}.

@ Choose loops & : [0,1] — C\Y based at yg, and going around .

@ Setting xx = [&], identify w1 (C\Y, yp) with Fs = (x1,..., Xs).
Similarly, identify 71 (Cp, o) with F, = (t1, ..., ty).

@ Then m1(C2\(C U L), o) = Fn x4 Fs.
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@ The corresponding presentation is

T(C3\(C U L)) =y, by X1 ooy Xs | X Xk = a(Xi) (£))-

@ The group 71(C?\C) is the quotient of 1(C2\(C U L)) by the
normal closure of Fs = (x1,..., Xs). Thus,

T1(CB\C) = (ty, ..., ta | t = (k) (1))

@ This presentation can be simplified by Tietze-Il moves to eliminate
redundant relations. This yields the braid monodromy presentation

T (CAC) = byt | = a(Xi)(6), i = fi, o me—1i k= 1,...,8).

where my is the multiplicity of the singular point yy.

@ (Libgober 1986) The 2-complex modeled on this presentation is
homotopy equivalent to C?\C.
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THE MILNOR FIBRATION(S) OF AN ARRANGEMENT

@ Let A be a central hyperplane arrangement in C¢.
@ Foreach He A, let fy: C? — C be a linear form with kernel H.

@ For each choice of multiplicities m = (my) gea With my € N, let

Qm = Qm(A) = [ ",
He A

a homogeneous polynomial of degree N = >, . my.
@ The map Q: CY — C restricts to a map Qn: M(A) — C*.

@ This is the projection of a smooth, locally trivial bundle, known as
the Milnor fibration of the multi-arrangement (A, m),

_Cn o,

Fm(A) —— M(A)
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@ The typical fiber, F,(A) = Q' (1), is called the Milnor fiber of the
multi-arrangement.

@ Fp(A)is a Stein manifold. It has the homotopy type of a finite cell
complex, with gcd(m) connected components, of dim d — 1.

@ The (geometric) monodromy is the diffeomorphism

h: Fn(A) = Fn(A), z— e®™/Nz

@ If all my = 1, the polynomial Q = Q(A) is the usual defining
polynomial, and F(.A) is the usual Milnor fiber of A.
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EXAMPLE

Let A be the single hyperplane {0} inside C. Then M(A) = C*,
Qmn(A) =2z", and Fp(A) = {m-roots of 1}.

EXAMPLE

Let A be a pencil of 3 lines through the origin of C2. Then F(A) is a
thrice-punctured torus, and his an automorphism of order 3:

\_/a
W A Fu)

More generally, if A is a pencil of n lines in C?, then F(A) is a Riemann
surface of genus (”51), with n punctures.

v
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@ Let B, be the Boolean arrangement, with Qp,(B,) = 2™ --- zp™.
Then M(B,) = (C*)" and

Fm(Bn) - kel’(Qm) = ((C*)n_1 X chd(m)

@ Let A= {H,,..., Hy} be an essential arrangement. The inclusion
t: M(A) — M(B,) restricts to a bundle map

Fin(A) M(A) "D
Fm(izs,,)%,/w(izan) An(Bn)_ o

@ Thus,
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THE BOUNDARY MANIFOLD OF AN ARRANGEMENT
@ Let A be a (central) arrangement of hyperplanes in C9 (d > 2).

@ Let P(A) = {P(H)}Hea, and let v( V) be a regular neighborhood of
the algebraic hypersurface V = |, 4 P(H) inside CP?~".

@ Let U = CP9 "\ int(r(V)) be the exterior of P(A).

@ The boundary manifold of Ais U = dv(V): a compact,
orientable, smooth manifold of dimension 2d — 3.

EXAMPLE

Let A be a pencil of n hyperplanes in CY, defined by Q = 2] — zJ
If n =1, then oU = S29-3. If n > 1, then oU = " 1S" x 52<d 2>

EXAMPLE

Let A be a near-pencil of n planes in C3, defined by
Q=2z(z8" —z5"). Then U = S' x £, », where ¥4 = £9S" x S'.

v
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@ By Lefschetz duality: Hy(0U,Z) =~ Hq(U,Z) & Hag—q-3(U, Z)

@ Let A= H*(U,Z); then A = Homy(A, Z) is an A-bimodule, with
(a-f)(b) = f(ba) and (f - a)(b) = f(ab).

THEOREM (COHEN-S. 2006)

The ring A = H*(0U; Z) is the “double” of A, that is: A = A® A, with
(a,f)-(b,g) = (ab, ag + fb), and grading A7 = A9 @ A29-9-3,

@ When d = 3, the boundary manifold oU is a 3-dimensional
graph-manifold Wi, where
@ [ is the incidence graph of A, with V(I') = L1(A) u L»(.A) and
E(r)={(L,P)| PelL}.
@ Vertex manifolds W, = S x (8*\Uyy wyce(r) D7) are glued
along edge manifolds W, = S' x S' via flip maps.
@ bi(Wr) =|A|l+ by(I') —1.

THEOREM (JIANG-YAU 1993)
UA) =2UA) = Wr=Wp =Tl = L(A) = LA). J
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THE BOUNDARY OF THE MILNOR FIBER
@ Let (A, m) be a multi-arrangement in C¢.

o Define Fm(A) = F(A) n D@ to be the closed Milnor fiber of
(A, m). Clearly, F,(A) deform-retracts onto F,(.A).

@ The boundary of the Milnor fiber of (A, m) is the compact,
smooth, orientable, (2d — 3)-manifold 0F ,(A) = Fi(A) n S29-1,

@ The pair (Fpy, 0F ) is (d — 2)-connected. In particular, if d > 2,
then 0F , is connected, and 71 (0F ;) — 71 (Fm) is surjective.

AN
N

FIGURE: Closed Milnor fiber for Q(A) = xy
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EXAMPLE

@ Let B, be the Boolean arrangement in C". Recall F = (C*)n—1,
Hence, F = T"~1' x D"~', and so 0F = T"~! x S"2,

@ Let A be a near-pencil of n planes in C2. Then 0F = S x ¥,,_».

@ The Hopf fibration 7 Cj\{O} — (C]j’""1 restricts to regular, cyclic
n-fold covers, 7: F — U and =: 0F — dU, which fit into the ladder

n7Zn7ZnHC* C*
oF F——=F M ca\{0}
oU——U—=>U=——U——>CPp!

ALEX SUCIU (NORTHEASTERN) TONGJI UNIV., AUGUST 11,2025 32/32



	Hyperplane arrangements
	Complement and intersection lattice
	Classes of arrangements
	Cohomology rings of arrangements
	Fundamental groups of arrangements

	Polynomial covers and braid monodromy
	Polynomial covers
	Configuration spaces
	Braid bundles
	Braid monodromy of plane algebraic curves

	Milnor fibrations and boundary manifolds
	The Milnor fibrations of an arrangement
	The boundary manifold of an arrangement
	The boundary of the Milnor fiber


