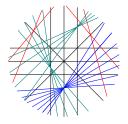
AN INTRODUCTION TO HYPERPLANE ARRANGEMENTS TOPOLOGY AND GEOMETRY – LECTURE 1

Alex Suciu

Northeastern University

Workshop and Summer School on Hyperplane Arrangements and Related Topics

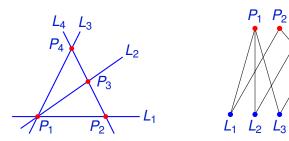
Tongji University, Shanghai, China August 11–15, 2025



- HYPERPLANE ARRANGEMENTS
 - Complement and intersection lattice
 - Classes of arrangements
 - Cohomology rings of arrangements
 - Fundamental groups of arrangements
- POLYNOMIAL COVERS AND BRAID MONODROMY
 - Polynomial covers
 - Configuration spaces
 - Braid bundles
 - Braid monodromy of plane algebraic curves
- MILNOR FIBRATIONS AND BOUNDARY MANIFOLDS
 - The Milnor fibrations of an arrangement
 - The boundary manifold of an arrangement
 - The boundary of the Milnor fiber

COMPLEMENT AND INTERSECTION LATTICE

- An arrangement of hyperplanes is a finite collection \mathcal{A} of codimension 1 linear (or affine) subspaces in $V = \mathbb{C}^d$.
- Intersection lattice L(A): the poset of all intersections of A, ordered by reverse inclusion, with \vee and \wedge , and rank function $\operatorname{rank}(X) = \operatorname{codim}(X)$. It is a geometric lattice.



• Complement: $M(A) = \mathbb{C}^d \setminus \bigcup_{H \in A} H$. It is a connected, smooth, quasi-projective variety.

- We may assume that A is essential, i.e., $\bigcap_{H \in A} H = \{0\}$.
- Fix an ordering $\mathcal{A} = \{H_1, \dots, H_n\}$, and choose linear forms $f_i : \mathbb{C}^d \to \mathbb{C}$ with $\ker(f_i) = H_i$. Define an injective linear map

$$\iota \colon \mathbb{C}^d \to \mathbb{C}^n, \quad z \mapsto (f_1(z), \dots, f_n(z)).$$

- This map restricts to an inclusion $\iota : M(\mathcal{A}) \hookrightarrow (\mathbb{C}^*)^n$. Hence, $M(\mathcal{A}) = \iota(\mathbb{C}^d) \cap (\mathbb{C}^*)^n$ is a Stein manifold.
- Therefore, M = M(A) has the homotopy type of a connected, finite cell complex of dimension d.
- In fact, M has a minimal cell structure. Consequently, $H_*(M,\mathbb{Z})$ is torsion-free.
- Let $U(A) = \mathbb{P}(M(A)) = \mathbb{CP}^d \setminus \bigcup_{H \in A} \mathbb{P}(H)$ be the projectivized complement. Then $M(A) \cong U(A) \times \mathbb{C}^*$.

CLASSES OF ARRANGEMENTS

EXAMPLE (THE BOOLEAN ARRANGEMENTS)

- \mathcal{B}_n : all coordinate hyperplanes $z_i = 0$ in \mathbb{C}^n .
- $L(\mathcal{B}_n)$: Boolean lattice of subsets of $\{0,1\}^n$.
- $M(\mathcal{B}_n)$: complex algebraic torus $(\mathbb{C}^*)^n \simeq K(\mathbb{Z}^n, 1)$.

EXAMPLE (THE BRAID ARRANGEMENTS)

- A_n : all diagonal hyperplanes $H_{ij} = \{z_i z_j = 0\}$ in \mathbb{C}^n .
- $L(A_n)$: lattice of partitions of $[n] := \{1, ..., n\}$, ordered by refinement.
- $M(A_n)$: configuration space of n ordered points in \mathbb{C} , a classifying space for P_n , the pure braid group on n strings.

EXAMPLE (SUPERSOLVABLE ARRANGEMENTS)

- A flat $X \in L(A)$ is *modular* if for any other flat Y, $rank(X) + rank(Y) = rank(X \vee Y) + rank(X \wedge Y)$.
- \mathcal{A} is supersolvable if $L(\mathcal{A})$ contains a maximal chain of modular elements, $V = X_0 > X_1 > \cdots > X_r = \{0\}$, where $r = \text{rank}(\mathcal{A})$.
- Equivalently, \mathcal{A} is supersolvable (or, fiber-type) if it admits a filtration $\emptyset = \mathcal{A}_0 \subset \mathcal{A}_1 \subset \cdots \subset \mathcal{A}_r = \mathcal{A}$, where each \mathcal{A}_i has $\operatorname{rank}(\mathcal{A}_i) = i$ and $\exists M(\mathcal{A}_i) \to M(\mathcal{A}_{i-1})$ a bundle map with fiber $\mathbb{C}\setminus\{d_i \text{ points}\}$ that is the restriction of a linear projection $\mathbb{C}^i \to \mathbb{C}^{i-1}$.
- The complement M(A) is a $K(\pi, 1)$ and its fundamental group is an iterated semidirect product of finitely generated free groups.
- The braid arrangement A_n is fiber-type. Each projection $M(A_i) \to M(A_{i-1})$ has fiber $\mathbb{C} \setminus \{i-1 \text{ points}\}$, and gives rise to split extension $1 \to F_{i-1} \to P_i \to P_{i-1} \to 1$. Hence, $P_n = F_{n-1} \times \cdots \times F_2 \times F_1$.

EXAMPLE (GRAPHIC ARRANGEMENTS)

- Let $\Gamma = (V, E)$ be a finite simplicial graph with vertex set $V = [n] := \{1, ..., n\}$ and edge set $E \subset 2^{[n]}$.
- The graphic arrangement A_{Γ} consists of the hyperplanes $H_e = \{z_i z_j = 0\}$ in \mathbb{C}^n indexed by the edges $e = \{i, j\}$ of E.
- If $\Gamma = K_n$, the complete graph on n vertices, then $A_{K_n} = A_n$.
- Thus, any graphic arrangement A_{Γ} can be viewed as a sub-arrangement of the braid arrangement A_n , where n = |V|.
- Stanley: A_{Γ} is supersolvable if and only if Γ is *chordal* (i.e., every cycle of four or more vertices has a chord).

COHOMOLOGY RINGS OF ARRANGEMENTS

- Let \mathcal{A} be central arrangement in \mathbb{C}^d . For each $H \in \mathcal{A}$, let $f_H \colon \mathbb{C}^d \to \mathbb{C}$ linear map such that $H = \ker(f_H)$.
- The logarithmic 1-forms $\omega_H = \frac{1}{2\pi i} d \log f_H \in \Omega_{dR}(M)$ are closed.
- Let E be the \mathbb{Z} -exterior algebra on the degree 1 cohomology classes $e_H = [\omega_H]$ dual to the meridians x_H around $H \in A$.
- Let $\partial \colon E^* \to E^{*-1}$ be the differential given by $\partial(e_H) = 1$, and set $e_X = \prod_{H\supset X} e_H$ for each $X \in L(A)$.
- The cohomology ring $A(A) = H^*(M; \mathbb{Z})$ is isomorphic to the Orlik–Solomon algebra E/I, where $I = \langle \partial e_X : \operatorname{rank}(X) < |X| \rangle$.
- Hence, A(A) is determined by L(A).

- The *localization* of an arrangement A at a flat $X \in L(A)$ is the sub-arrangement $A_X := \{H \in A : H \supset X\}$.
- The inclusion $\mathcal{A}_X \subset \mathcal{A}$ gives rise to an inclusion of complements, $j_X \colon M(\mathcal{A}) \hookrightarrow M(\mathcal{A}_X)$. The inclusions $\{j_X\}_{X \in L(\mathcal{A})}$ assemble into a map $j \colon M(\mathcal{A}) \to \prod_{X \in L(\mathcal{A})} M(\mathcal{A}_X)$.
- Brieskorn: the homomorphism induced in cohomology by j is an isomorphism in each degree $k \ge 0$. Moreover, the groups $H^k(M(\mathcal{A}_X);\mathbb{Z})$ are torsion-free, and so, by the Künneth formula, we have isomorphisms

$$H^k(M(\mathcal{A});\mathbb{Z})\cong\bigoplus_{X\in L_k(\mathcal{A})}H^k(M(\mathcal{A}_X);\mathbb{Z})$$

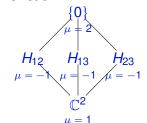
• Likewise, for each $k \ge 2$, the degree k piece of the Orlik–Solomon ideal, $I^k(\mathcal{A}_X)$, decomposes as the direct sum of the groups $I^k(\mathcal{A}_X)$, taken over all $X \in L_k(\mathcal{A})$.

• It follows that all the homology groups of $H_k(M, \mathbb{Z})$ are torsion-free. Their ranks are the Betti numbers $b_k(M)$, given by

$$\mathsf{Poin}(M,t) := \sum\nolimits_{k=0}^{d} b_k(M) t^k = \sum\nolimits_{X \in L(\mathcal{A})} \mu(X) (-t)^{\mathsf{rank}(X)},$$

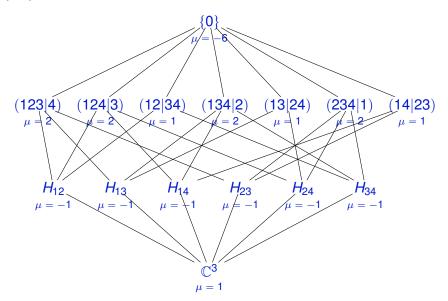
where $\mu \colon L(\mathcal{A}) \to \mathbb{Z}$ is the Möbius function, defined recursively by $\mu(\mathbb{C}^d) = 1$ and $\mu(X) = -\sum_{Y\supset X} \mu(Y)$.

• $L(A_3)$, with Möbius function:

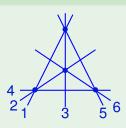


Since H*(M; Z) is torsion-free (as a group) and generated in degree 1 (as an algebra), the Hurewicz homomorphism
 h: π_i(M) → H_i(M; Z) is the zero map, for each 2 ≤ i ≤ d.

$L(A_4)$ AND MÖBIUS FUNCTION



EXAMPLE



- $A = A_4$ braid arrangement
- $E = \bigwedge (e_1, \ldots, e_6)$

$$\bullet I = \langle (e_1 - e_4)(e_2 - e_4), (e_1 - e_5)(e_3 - e_5), \\ (e_2 - e_6)(e_3 - e_6), (e_4 - e_6)(e_5 - e_6) \rangle$$

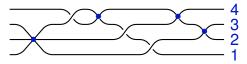
• Poin(
$$M$$
, t) = 1 + 6 t + 11 t ² + 6 t ³
= (1 + t)(1 + 2 t)(1 + 3 t)

EXAMPLE (SUPERSOLVABLE ARRANGEMENTS (CONTINUED))

- Let $1 = d_1, d_2, ..., d_r$, be the *exponents* of a supersolvable arrangement \mathcal{A} . Then the Poincaré polynomial of the complement factors completely: $Poin(M(\mathcal{A}), t) = \prod_{i=1}^{r} (1 + d_i t)$.
- Björner–Ziegler: \mathcal{A} is supersolvable if and only if the OS-ideal $I(\mathcal{A})$ admits a quadratic Gröbner basis, in which case $A = A(\mathcal{A})$ is a Koszul algebra, i.e., $\operatorname{Ext}_A^i(\Bbbk, \Bbbk)_i = 0$ for $i \neq j$.
- Question (Yuzvinsky): If A(A) is Koszul, is A supersolvable?

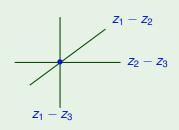
FUNDAMENTAL GROUPS OF ARRANGEMENTS

- Let $\mathcal{A}' = \{H \cap \mathbb{C}^2\}_{H \in \mathcal{A}}$ be a generic planar section of \mathcal{A} . Then the arrangement group, $G(\mathcal{A}) = \pi_1(M(\mathcal{A}))$, is isomorphic to $\pi_1(M(\mathcal{A}'))$.
- So let \mathcal{A} be an arrangement of n affine lines in \mathbb{C}^2 . Taking a generic projection $\mathbb{C}^2 \to \mathbb{C}$ yields the braid monodromy $\alpha = (\alpha_1, \dots, \alpha_s)$, where $s = \#\{\text{multiple points}\}$ and the braids $\alpha_r \in P_n$ can be read off an associated braided wiring diagram,

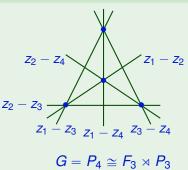


• The group G(A) has a presentation with meridional generators x_1, \ldots, x_n and commutator relators $x_i \alpha_i(x_i)^{-1}$.

EXAMPLE



$$G = P_3 \cong F_2 \times \mathbb{Z}$$



$$G = P_4 \cong F_3 \rtimes P_3$$

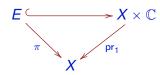
POLYNOMIAL COVERS

• Let X be a path-connected space. A simple Weierstrass polynomial of degree n on X is a map $f: X \times \mathbb{C} \to \mathbb{C}$ given by

$$f(x,z) = z^n + \sum_{i=1}^n a_i(x)z^{n-i},$$

with continuous coefficient maps $a_i: X \to \mathbb{C}$, and with no multiple roots for any $x \in X$.

- Let $E = E(f) = \{(x, z) \in X \times \mathbb{C} \mid f(x, z) = 0\}.$
- The restriction of $\operatorname{pr}_1: X \times \mathbb{C} \to X$ to E defines an n-fold cover $\pi = \pi_f: E \to X$, the *polynomial covering map* associated to f.



CONFIGURATION SPACES

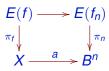
- Let $\mathsf{Conf}_n(\mathbb{C}) = \{z \in \mathbb{C}^n \mid z_i \neq z_j \text{ for } i \neq j\}$ and $\mathsf{UConf}_n(\mathbb{C}) = \mathsf{Conf}_n(\mathbb{C})/S_n$.
- Since $f: X \times \mathbb{C} \to \mathbb{C}$ has no multiple roots, the *coefficient map* $a = (a_1, \dots, a_n): X \to \mathbb{C}^n$ takes values in

$$B^n := \mathbb{C}^n \backslash \Delta_n = \mathsf{UConf}_n(\mathbb{C}).$$

• Over $UConf_n(\mathbb{C})$, there is a canonical *n*-fold polynomial covering map, $\pi_n \colon E(f_n) \to UConf_n(\mathbb{C})$, determined by the W-polynomial

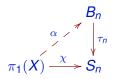
$$f_n(x,z) = z^n + \sum_{i=1}^n x_i z^{n-i}.$$

We get a pullback diagram of covers,



BRAID GROUPS

- Let B_n be the Artin braid group on n strands. Then $B_n = \pi_1(\mathsf{UConf}_n(\mathbb{C}))$.
- We let $\psi_n : B_n \hookrightarrow \operatorname{Aut}(F_n)$ be the Artin representation.
- The coefficient homomorphism, $\alpha = a_* : \pi_1(X) \to B_n$, is well-defined up to conjugacy.
- Polynomial covers are those covers $\pi \colon E \to X$ for which the characteristic homomorphism $\chi \colon \pi_1(X) \to S_n$ factors through the canonical surjection $\tau_n \colon B_n \twoheadrightarrow S_n$,



THE ROOT MAP

Now assume that the W-polynomial f completely factors as

$$f(x,z) = \prod_{i=1}^{n} (z - b_i(x)),$$

with continuous roots $b_i: X \to \mathbb{C}$.

- Since f is simple, the root map $b = (b_1, \ldots, b_n) \colon X \to \mathbb{C}^n$ takes values in $\mathsf{Conf}_n(\mathbb{C})$.
- Over $\operatorname{Conf}_n(\mathbb{C})$, there is a canonical *n*-fold cover, $\pi_{Q_n} \colon E(Q_n) \to \operatorname{Conf}_n(\mathbb{C})$, where

$$Q_n(w,z)=(z-w_1)\cdots(z-w_n).$$

• We get a pullback diagram of covers,

$$E(f) \longrightarrow E(Q_n)$$

$$\downarrow^{\pi_{Q_n}} \qquad \downarrow^{\pi_{Q_n}}$$

$$X \longrightarrow \mathsf{Conf}_n(\mathbb{C})$$

BRAID BUNDLES

- Let $P_n = \ker(\tau_n \colon B_n \twoheadrightarrow S_n)$ be the pure braid group. Then $P_n = \pi_1(\mathsf{Conf}_n(\mathbb{C}))$.
- The map $\beta = b_* : \pi_1(X) \to P_n$ is well-defined up to conjugacy.
- The polynomial covers which are trivial covers are precisely those for which $\alpha = \iota_n \circ \beta$, where $\iota_n \colon P_n \hookrightarrow B_n$ is the inclusion map.

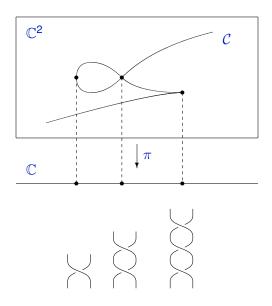
THEOREM (COHEN-S. 1997)

Let $f: X \times \mathbb{C} \to \mathbb{C}$ be a simple W-polynomial. Let $Y = X \times \mathbb{C} \setminus E(f)$ and let $p: Y \to X$ be the restriction of $\operatorname{pr}_1: X \times \mathbb{C} \to X$ to Y.

- The map $p: Y \to X$ is a locally trivial bundle, with structure group B_n and fiber $\mathbb{C}_n = \mathbb{C} \setminus \{n \text{ points}\}$. Upon identifying $\pi_1(\mathbb{C}_n)$ with F_n , the monodromy of this bundle is $\psi_n \circ \alpha \colon \pi_1(X) \to \operatorname{Aut}(F_n)$.
- If f completely factors into linear factors, the structure group reduces to P_n , and the monodromy factors as $\psi_n \circ \iota_n \circ \beta$.

BRAID MONODROMY OF PLANE ALGEBRAIC CURVES

- Let \mathcal{C} be a reduced algebraic curve in \mathbb{C}^2 , defined by a polynomial $f = f(z_1, z_2)$ of degree n.
- Let $\pi \colon \mathbb{C}^2 \to \mathbb{C}$ be a linear projection, and let $\mathcal{Y} = \{y_1, \dots, y_s\}$ be the set of points in \mathbb{C} for which the fibers of π contain singular points of \mathcal{C} , or are tangent to \mathcal{C} .
- WLOG, we may assume that $\pi = \operatorname{pr}_1$ is generic with respect to \mathcal{C} . That is, for each k, the line $\mathcal{L}_k = \pi^{-1}(y_k)$ contains at most one singular point v_k of \mathcal{C} and does not belong to the tangent cone of \mathcal{C} at v_k , and, moreover, all tangencies are simple.
- Let $\mathcal{L} = \bigcup \mathcal{L}_k$.



- In the chosen coordinates, the defining polynomial f of C may be written as $f(x,z) = z^n + \sum_{i=1}^n a_i(x)z^{n-i}$.
- Since \mathcal{C} is reduced, for each $x \notin \mathcal{Y}$, the equation f(x, z) = 0 has n distinct roots. Thus, f is a simple W-polynomial over $\mathbb{C} \setminus \mathcal{Y}$, and

$$\pi = \pi_f \colon \mathcal{C} \setminus (\mathcal{C} \cap \mathcal{L}) \to \mathbb{C} \setminus \mathcal{Y}$$

is the associated polynomial *n*-fold cover.

- Note that $Y(f) = ((\mathbb{C} \setminus \mathcal{Y}) \times \mathbb{C}) \setminus (\mathcal{C} \setminus (\mathcal{C} \cap \mathcal{L})) = \mathbb{C}^2 \setminus (\mathcal{C} \cup \mathcal{L}).$
- Thus, the restriction of pr_1 to Y(f),

$$p \colon \mathbb{C}^2 \backslash (\mathcal{C} \cup \mathcal{L}) \to \mathbb{C} \backslash \mathcal{Y},$$

is a bundle map, with structure group B_n , fiber \mathbb{C}_n , and monodromy homomorphism $\alpha = a_* : \pi_1(\mathbb{C} \setminus \mathcal{Y}) \to B_n$.

BRAID MONODROMY PRESENTATION

• The homotopy exact sequence of fibration $p: \mathbb{C}^2 \setminus (\mathcal{C} \cup \mathcal{L}) \to \mathbb{C} \setminus \mathcal{Y}$:

$$1 \longrightarrow \pi_1(\mathbb{C}_n) \longrightarrow \pi_1(\mathbb{C}^2 \setminus (\mathcal{C} \cup \mathcal{L})) \xrightarrow{p_*} \pi_1(\mathbb{C} \setminus \mathcal{Y}) \longrightarrow 1.$$

- This sequence is split exact, with action given by the braid monodromy homomorphism $\alpha \colon \pi_1(\mathbb{C}\backslash\mathcal{Y}) \to \operatorname{Aut}(\pi_1(\mathbb{C}_n))$.
- Order the points of \mathcal{Y} by decreasing real part, and pick the basepoint y_0 in $\mathbb{C}\backslash\mathcal{Y}$ with $\text{Re}(y_0) > \max\{\text{Re}(y_k)\}$.
- Choose loops $\xi_k : [0,1] \to \mathbb{C} \setminus \mathcal{Y}$ based at y_0 , and going around y_k .
- Setting $x_k = [\xi_k]$, identify $\pi_1(\mathbb{C} \setminus \mathcal{Y}, y_0)$ with $F_s = \langle x_1, \dots, x_s \rangle$. Similarly, identify $\pi_1(\mathbb{C}_n, \hat{y}_0)$ with $F_n = \langle t_1, \dots, t_n \rangle$.
- Then $\pi_1(\mathbb{C}^2 \setminus (\mathcal{C} \cup \mathcal{L}), \hat{y}_0) = F_n \rtimes_{\alpha} F_s$.

The corresponding presentation is

$$\pi_1(\mathbb{C}^2\setminus (\mathcal{C}\cup\mathcal{L}))=\langle t_1,\ldots t_n,x_1\ldots,x_s\mid x_k^{-1}t_ix_k=\alpha(x_k)(t_i)\rangle.$$

• The group $\pi_1(\mathbb{C}^2 \setminus \mathcal{C})$ is the quotient of $\pi_1(\mathbb{C}^2 \setminus (\mathcal{C} \cup \mathcal{L}))$ by the normal closure of $F_s = \langle x_1, \dots, x_s \rangle$. Thus,

$$\pi_1(\mathbb{C}^2 \setminus \mathcal{C}) = \langle t_1, \dots, t_n \mid t_i = \alpha(x_k)(t_i) \rangle.$$

 This presentation can be simplified by Tietze-II moves to eliminate redundant relations. This yields the braid monodromy presentation

$$\pi_1(\mathbb{C}^2 \setminus \mathcal{C}) = \langle t_1, \ldots, t_n \mid t_i = \alpha(x_k)(t_i), i = j_1, \ldots, j_{m_k-1}; k = 1, \ldots, s \rangle.$$

where m_k is the multiplicity of the singular point y_k .

• (Libgober 1986) The 2-complex modeled on this presentation is homotopy equivalent to $\mathbb{C}^2 \setminus \mathcal{C}$.

THE MILNOR FIBRATION(S) OF AN ARRANGEMENT

- Let A be a central hyperplane arrangement in \mathbb{C}^d .
- For each $H \in \mathcal{A}$, let $f_H : \mathbb{C}^d \to \mathbb{C}$ be a linear form with kernel H.
- For each choice of multiplicities $m = (m_H)_{H \in A}$ with $m_H \in \mathbb{N}$, let

$$Q_m := Q_m(A) = \prod_{H \in A} f_H^{m_H},$$

a homogeneous polynomial of degree $N = \sum_{H \in \mathcal{A}} m_H$.

- The map $Q_m : \mathbb{C}^d \to \mathbb{C}$ restricts to a map $Q_m : M(A) \to \mathbb{C}^*$.
- This is the projection of a smooth, locally trivial bundle, known as the *Milnor fibration* of the multi-arrangement (A, m),

$$F_m(A) \longrightarrow M(A) \xrightarrow{Q_m} \mathbb{C}^*.$$

- The typical fiber, $F_m(A) = Q_m^{-1}(1)$, is called the *Milnor fiber* of the multi-arrangement.
- $F_m(A)$ is a Stein manifold. It has the homotopy type of a finite cell complex, with gcd(m) connected components, of dim d-1.
- The (geometric) monodromy is the diffeomorphism

$$h: F_m(A) \to F_m(A), \quad z \mapsto e^{2\pi i/N} z.$$

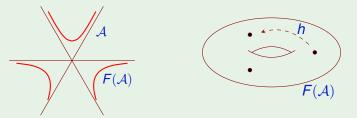
• If all $m_H = 1$, the polynomial Q = Q(A) is the usual defining polynomial, and F(A) is the usual Milnor fiber of A.

EXAMPLE

Let \mathcal{A} be the single hyperplane $\{0\}$ inside \mathbb{C} . Then $M(\mathcal{A}) = \mathbb{C}^*$, $Q_m(\mathcal{A}) = z^m$, and $F_m(\mathcal{A}) = \{m\text{-roots of 1}\}$.

EXAMPLE

Let \mathcal{A} be a pencil of 3 lines through the origin of \mathbb{C}^2 . Then $F(\mathcal{A})$ is a thrice-punctured torus, and h is an automorphism of order 3:



More generally, if \mathcal{A} is a pencil of n lines in \mathbb{C}^2 , then $F(\mathcal{A})$ is a Riemann surface of genus $\binom{n-1}{2}$, with n punctures.

• Let \mathcal{B}_n be the Boolean arrangement, with $Q_m(\mathcal{B}_n) = z_1^{m_1} \cdots z_n^{m_n}$. Then $M(\mathcal{B}_n) = (\mathbb{C}^*)^n$ and

$$F_m(\mathcal{B}_n) = \ker(Q_m) \cong (\mathbb{C}^*)^{n-1} \times \mathbb{Z}_{\gcd(m)}.$$

• Let $A = \{H_1, \dots, H_n\}$ be an essential arrangement. The inclusion $\iota \colon M(A) \to M(\mathcal{B}_n)$ restricts to a bundle map

Thus,

$$F_m(\mathcal{A}) = M(\mathcal{A}) \cap F_m(\mathcal{B}_n).$$

THE BOUNDARY MANIFOLD OF AN ARRANGEMENT

- Let \mathcal{A} be a (central) arrangement of hyperplanes in \mathbb{C}^d ($d \ge 2$).
- Let $\mathbb{P}(A) = {\mathbb{P}(H)}_{H \in A}$, and let $\nu(V)$ be a regular neighborhood of the algebraic hypersurface $V = \bigcup_{H \in A} \mathbb{P}(H)$ inside \mathbb{CP}^{d-1} .
- Let $\overline{U} = \mathbb{CP}^{d-1} \setminus \operatorname{int}(\nu(V))$ be the *exterior* of $\mathbb{P}(A)$.
- The boundary manifold of \mathcal{A} is $\partial \overline{U} = \partial \nu(V)$: a compact, orientable, smooth manifold of dimension 2d 3.

EXAMPLE

Let \mathcal{A} be a pencil of n hyperplanes in \mathbb{C}^d , defined by $Q = z_1^n - z_2^n$. If n = 1, then $\partial \overline{U} = S^{2d-3}$. If n > 1, then $\partial \overline{U} = \sharp^{n-1} S^1 \times S^{2(d-2)}$.

EXAMPLE

Let \mathcal{A} be a near-pencil of n planes in \mathbb{C}^3 , defined by $Q = z_1(z_2^{n-1} - z_3^{n-1})$. Then $\partial \overline{U} = S^1 \times \Sigma_{n-2}$, where $\Sigma_g = \sharp^g S^1 \times S^1$.

- By Lefschetz duality: $H_q(\partial \overline{U}, \mathbb{Z}) \cong H_q(U, \mathbb{Z}) \oplus H_{2d-q-3}(U, \mathbb{Z})$
- Let $A = H^*(U, \mathbb{Z})$; then $\check{A} = \operatorname{Hom}_{\mathbb{Z}}(A, \mathbb{Z})$ is an A-bimodule, with $(a \cdot f)(b) = f(ba)$ and $(f \cdot a)(b) = f(ab)$.

THEOREM (COHEN-S. 2006)

The ring $\widehat{A} = H^*(\partial \overline{U}; \mathbb{Z})$ is the "double" of A, that is: $\widehat{A} = A \oplus \widecheck{A}$, with $(a, f) \cdot (b, g) = (ab, ag + fb)$, and grading $\widehat{A}^q = A^q \oplus \widecheck{A}^{2d-q-3}$.

- When d=3, the boundary manifold $\partial \overline{U}$ is a 3-dimensional graph-manifold W_{Γ} , where
 - Γ is the incidence graph of \mathcal{A} , with $V(\Gamma) = L_1(\mathcal{A}) \cup L_2(\mathcal{A})$ and $E(\Gamma) = \{(L, P) \mid P \in L\}.$
 - Vertex manifolds $W_v = S^1 \times (S^2 \setminus \bigcup_{\{v,w\} \in E(\Gamma)} D^2_{v,w})$ are glued along edge manifolds $W_e = S^1 \times S^1$ via flip maps.
- $b_1(W_{\Gamma}) = |A| + b_1(\Gamma) 1$.

THEOREM (JIANG-YAU 1993)

$$U(A) \cong U(A') \Rightarrow W_{\Gamma} \cong W_{\Gamma'} \Rightarrow \Gamma \cong \Gamma' \Rightarrow L(A) \cong L(A').$$

THE BOUNDARY OF THE MILNOR FIBER

- Let (A, m) be a multi-arrangement in \mathbb{C}^d .
- Define $\overline{F}_m(\mathcal{A}) = F_m(\mathcal{A}) \cap D^{2d}$ to be the *closed Milnor fiber* of (\mathcal{A}, m) . Clearly, $F_m(\mathcal{A})$ deform-retracts onto $\overline{F}_m(\mathcal{A})$.
- The boundary of the Milnor fiber of (A, m) is the compact, smooth, orientable, (2d-3)-manifold $\partial \overline{F}_m(A) = F_m(A) \cap S^{2d-1}$.
- The pair $(\overline{F}_m, \partial \overline{F}_m)$ is (d-2)-connected. In particular, if $d \ge 2$, then $\partial \overline{F}_m$ is connected, and $\pi_1(\partial \overline{F}_m) \to \pi_1(\overline{F}_m)$ is surjective.

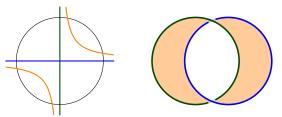


FIGURE: Closed Milnor fiber for Q(A) = xy

EXAMPLE

- Let \mathcal{B}_n be the Boolean arrangement in \mathbb{C}^n . Recall $F = (\mathbb{C}^*)^{n-1}$. Hence, $\overline{F} = T^{n-1} \times D^{n-1}$, and so $\partial \overline{F} = T^{n-1} \times S^{n-2}$.
- Let \mathcal{A} be a near-pencil of n planes in \mathbb{C}^3 . Then $\partial \overline{F} = S^1 \times \Sigma_{n-2}$.
- The Hopf fibration π: C^d\{0} → CP^{d-1} restricts to regular, cyclic n-fold covers, π: F → Ū and π: ∂F → ∂Ū, which fit into the ladder

