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COMPLEMENT AND INTERSECTION LATTICE

An arrangement of hyperplanes is a finite collection A of
codimension 1 linear (or affine) subspaces in V “ Cd .

Intersection lattice LpAq: the poset of all intersections of A,
ordered by reverse inclusion, with _ and ^, and rank function
rankpX q “ codimpX q. It is a geometric lattice.

L1

L2

L3L4

P1 P2

P3

P4

L1 L2 L3 L4

P1 P2 P3 P4

Complement: MpAq “ Cd z
Ť

HPA H. It is a connected, smooth,
quasi-projective variety.
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We may assume that A is essential, i.e.,
Ş

HPA H “ t0u.

Fix an ordering A “ tH1, . . . ,Hnu, and choose linear forms
fi : Cd Ñ C with kerpfiq “ Hi . Define an injective linear map

ι : Cd Ñ Cn, z ÞÑ pf1pzq, . . . , fnpzqq.

This map restricts to an inclusion ι : MpAq ãÑ pC˚qn. Hence,
MpAq “ ιpCd q X pC˚qn is a Stein manifold.

Therefore, M “ MpAq has the homotopy type of a connected,
finite cell complex of dimension d .

In fact, M has a minimal cell structure. Consequently, H˚pM,Zq is
torsion-free.

Let UpAq “ PpMpAqq “ CPd z
Ť

HPA PpHq be the projectivized
complement. Then MpAq – UpAq ˆ C˚.
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CLASSES OF ARRANGEMENTS

EXAMPLE (THE BOOLEAN ARRANGEMENTS)
Bn: all coordinate hyperplanes zi “ 0 in Cn.

LpBnq: Boolean lattice of subsets of t0,1u
n.

MpBnq: complex algebraic torus pC˚qn » K pZn, 1q.

EXAMPLE (THE BRAID ARRANGEMENTS)
An: all diagonal hyperplanes Hij “ tzi ´ zj “ 0u in Cn.

LpAnq: lattice of partitions of rns :“ t1, . . . ,nu, ordered by
refinement.

MpAnq: configuration space of n ordered points in C, a classifying
space for Pn, the pure braid group on n strings.
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EXAMPLE (SUPERSOLVABLE ARRANGEMENTS)
A flat X P LpAq is modular if for any other flat Y ,

rankpX q ` rankpY q “ rankpX _ Y q ` rankpX ^ Y q.

A is supersolvable if LpAq contains a maximal chain of modular
elements, V “ X0 ą X1 ą ¨ ¨ ¨ ą Xr “ t0u, where r “ rankpAq.

Equivalently, A is supersolvable (or, fiber-type) if it admits a
filtration H “ A0 Ă A1 Ă ¨ ¨ ¨ Ă Ar “ A, where each Ai has
rankpAiq “ i and D MpAiq Ñ MpAi´1q a bundle map with fiber
Cztdi pointsu that is the restriction of a linear projection Ci Ñ Ci´1.

The complement MpAq is a K pπ,1q and its fundamental group is
an iterated semidirect product of finitely generated free groups.

The braid arrangement An is fiber-type. Each projection
MpAiq Ñ MpAi´1q has fiber Czti ´ 1 pointsu, and gives rise to
split extension 1 Ñ Fi´1 Ñ Pi Ñ Pi´1 Ñ 1. Hence,

Pn “ Fn´1 ¸ ¨ ¨ ¨ ¸ F2 ¸ F1.
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EXAMPLE (GRAPHIC ARRANGEMENTS)
Let Γ “ pV,Eq be a finite simplicial graph with vertex set
V “ rns :“ t1, . . . , nu and edge set E Ă 2rns.

The graphic arrangement AΓ consists of the hyperplanes
He “ tzi ´ zj “ 0u in Cn indexed by the edges e “ ti , ju of E.

If Γ “ Kn, the complete graph on n vertices, then AKn “ An.

Thus, any graphic arrangement AΓ can be viewed as a
sub-arrangement of the braid arrangement An, where n “ |V|.

Stanley: AΓ is supersolvable if and only if Γ is chordal (i.e., every
cycle of four or more vertices has a chord).
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COHOMOLOGY RINGS OF ARRANGEMENTS

Let A be central arrangement in Cd . For each H P A, let
fH : Cd Ñ C linear map such that H “ kerpfHq.

The logarithmic 1-forms ωH “ 1
2πi d log fH P ΩdRpMq are closed.

Let E be the Z-exterior algebra on the degree 1 cohomology
classes eH “ rωHs dual to the meridians xH around H P A.

Let B : E˚ Ñ E˚´1 be the differential given by BpeHq “ 1, and set
eX “

ś

HĚX eH for each X P LpAq.

The cohomology ring ApAq “ H˚pM;Zq is isomorphic to the
Orlik–Solomon algebra E{I, where I “ xBeX : rankpX q ă |X |y.

Hence, ApAq is determined by LpAq.
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The localization of an arrangement A at a flat X P LpAq is the
sub-arrangement AX :“ tH P A : H Ą Xu.

The inclusion AX Ă A gives rise to an inclusion of complements,
jX : MpAq ãÑ MpAX q. The inclusions tjX uXPLpAq assemble into a
map j : MpAq Ñ

ś

XPLpAq MpAX q.

Brieskorn: the homomorphism induced in cohomology by j is an
isomorphism in each degree k ě 0. Moreover, the groups
Hk pMpAX q;Zq are torsion-free, and so, by the Künneth formula,
we have isomorphisms

Hk pMpAq;Zq –
à

XPLk pAq

Hk pMpAX q;Zq

Likewise, for each k ě 2, the degree k piece of the Orlik–Solomon
ideal, Ik pAX q, decomposes as the direct sum of the groups
Ik pAX q, taken over all X P Lk pAq.
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It follows that all the homology groups of Hk pM,Zq are
torsion-free. Their ranks are the Betti numbers bk pMq, given by

PoinpM, tq :“
ÿd

k“0
bk pMqtk “

ÿ

XPLpAq
µpX qp´tqrankpXq,

where µ : LpAq Ñ Z is the Möbius function, defined recursively by
µpCd q “ 1 and µpX q “ ´

ř

Y ĽX µpY q.

LpA3q, with Möbius function:

C2

µ “ 1

H12
µ “ ´1

H13
µ “ ´1

H23
µ “ ´1

t0u

µ “ 2

Since H˚pM;Zq is torsion-free (as a group) and generated in
degree 1 (as an algebra), the Hurewicz homomorphism
h : πipMq Ñ HipM;Zq is the zero map, for each 2 ď i ď d .
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LpA4q AND MÖBIUS FUNCTION

C3

µ “ 1

H12
µ “ ´1

H13
µ “ ´1

H14
µ “ ´1

H23
µ “ ´1

H24
µ “ ´1

H34
µ “ ´1

p123|4q

µ “ 2
p124|3q

µ “ 2
p12|34q

µ “ 1
p134|2q

µ “ 2
p13|24q

µ “ 1
p234|1q

µ “ 2
p14|23q

µ “ 1

t0u

µ “ ´6
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EXAMPLE

‚ ‚

‚

‚

4
2 1 3 5 6

A “ A4 braid arrangement

E “
Ź

pe1, . . . ,e6q

I “ xpe1 ´ e4qpe2 ´ e4q, pe1 ´ e5qpe3 ´ e5q,
pe2 ´ e6qpe3 ´ e6q, pe4 ´ e6qpe5 ´ e6qy

PoinpM, tq “ 1 ` 6t ` 11t2 ` 6t3

“ p1 ` tqp1 ` 2tqp1 ` 3tq

EXAMPLE (SUPERSOLVABLE ARRANGEMENTS (CONTINUED))
Let 1 “ d1, d2, . . . ,dr , be the exponents of a supersolvable
arrangement A. Then the Poincaré polynomial of the complement
factors completely: PoinpMpAq, tq “

śr
i“1p1 ` di tq.

Björner–Ziegler: A is supersolvable if and only if the OS-ideal IpAq

admits a quadratic Gröbner basis, in which case A “ ApAq is a
Koszul algebra, i.e., ExtiApk, kqj “ 0 for i ‰ j .

Question (Yuzvinsky): If ApAq is Koszul, is A supersolvable?
ALEX SUCIU (NORTHEASTERN) HYPERPLANE ARRANGEMENTS 1 TONGJI UNIV., AUGUST 11, 2025 12 / 32



FUNDAMENTAL GROUPS OF ARRANGEMENTS

Let A1 “ tH X C2uHPA be a generic planar section of A. Then the
arrangement group, GpAq “ π1pMpAqq, is isomorphic to
π1pMpA1qq.

So let A be an arrangement of n affine lines in C2. Taking a
generic projection C2 Ñ C yields the braid monodromy
α “ pα1, . . . , αsq, where s “ #tmultiple pointsu and the braids
αr P Pn can be read off an associated braided wiring diagram,

‚

‚ ‚
‚

4
3
2
1

The group GpAq has a presentation with meridional generators
x1, . . . , xn and commutator relators xiαjpxiq

´1.
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EXAMPLE

‚ z2 ´ z3

z1 ´ z2

z1 ´ z3

G “ P3 – F2 ˆ Z

‚ ‚

‚

‚

z2 ´ z4 z1 ´ z2

z1 ´ z4

z2 ´ z3

z1 ´ z3 z3 ´ z4

G “ P4 – F3 ¸ P3
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POLYNOMIAL COVERS

Let X be a path-connected space. A simple Weierstrass
polynomial of degree n on X is a map f : X ˆ C Ñ C given by

f px , zq “ zn `

n
ÿ

i“1

aipxqzn´i ,

with continuous coefficient maps ai : X Ñ C, and with no multiple
roots for any x P X .

Let E “ Epf q “ tpx , zq P X ˆ C | f px , zq “ 0u.

The restriction of pr1 : X ˆ C Ñ X to E defines an n-fold cover
π “ πf : E Ñ X , the polynomial covering map associated to f .

E

π
  

� � // X ˆ C

pr1{{
X

ALEX SUCIU (NORTHEASTERN) HYPERPLANE ARRANGEMENTS 1 TONGJI UNIV., AUGUST 11, 2025 15 / 32



CONFIGURATION SPACES

Let ConfnpCq “ tz P Cn | zi ‰ zj for i ‰ ju and
UConfnpCq “ ConfnpCq{Sn.

Since f : X ˆ C Ñ C has no multiple roots, the coefficient map
a “ pa1, . . . ,anq : X Ñ Cn takes values in

Bn :“ Cnz∆n “ UConfnpCq.

Over UConfnpCq, there is a canonical n-fold polynomial covering
map, πn : Epfnq Ñ UConfnpCq, determined by the W-polynomial

fnpx , zq “ zn `
ÿn

i“1
xizn´i .

We get a pullback diagram of covers,

Epf q

πf
��

// Epfnq

πn
��

X a // Bn
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BRAID GROUPS

Let Bn be the Artin braid group on n strands. Then
Bn “ π1pUConfnpCqq.

We let ψn : Bn ãÑ AutpFnq be the Artin representation.

The coefficient homomorphism, α “ a˚ : π1pX q Ñ Bn, is
well-defined up to conjugacy.

Polynomial covers are those covers π : E Ñ X for which the
characteristic homomorphism χ : π1pX q Ñ Sn factors through the
canonical surjection τn : Bn ↠ Sn,

Bn

τn

��
π1pX q

χ //

α
<<

Sn
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THE ROOT MAP

Now assume that the W-polynomial f completely factors as

f px , zq “
źn

i“1
pz ´ bipxqq,

with continuous roots bi : X Ñ C.

Since f is simple, the root map b “ pb1, . . . ,bnq : X Ñ Cn takes
values in ConfnpCq.

Over ConfnpCq, there is a canonical n-fold cover,
πQn

: EpQnq Ñ ConfnpCq, where

Qnpw , zq “ pz ´ w1q ¨ ¨ ¨ pz ´ wnq.

We get a pullback diagram of covers,

Epf q

πf
��

// EpQnq

πQn
��

X b // ConfnpCq
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BRAID BUNDLES

Let Pn “ kerpτn : Bn ↠ Snq be the pure braid group. Then
Pn “ π1pConfnpCqq.

The map β “ b˚ : π1pX q Ñ Pn is well-defined up to conjugacy.

The polynomial covers which are trivial covers are precisely those
for which α “ ιn ˝ β, where ιn : Pn ãÑ Bn is the inclusion map.

THEOREM (COHEN–S. 1997)

Let f : X ˆ C Ñ C be a simple W-polynomial. Let Y “ X ˆ CzEpf q and
let p : Y Ñ X be the restriction of pr1 : X ˆ C Ñ X to Y .

The map p : Y Ñ X is a locally trivial bundle, with structure group
Bn and fiber Cn “ Cztn pointsu. Upon identifying π1pCnq with Fn,
the monodromy of this bundle is ψn ˝ α : π1pX q Ñ AutpFnq.

If f completely factors into linear factors, the structure group
reduces to Pn, and the monodromy factors as ψn ˝ ιn ˝ β.
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BRAID MONODROMY OF PLANE ALGEBRAIC CURVES

Let C be a reduced algebraic curve in C2, defined by a polynomial
f “ f pz1, z2q of degree n.

Let π : C2 Ñ C be a linear projection, and let Y “ ty1, . . . , ysu be
the set of points in C for which the fibers of π contain singular
points of C, or are tangent to C.

WLOG, we may assume that π “ pr1 is generic with respect to C.
That is, for each k , the line Lk “ π´1pyk q contains at most one
singular point vk of C and does not belong to the tangent cone of C
at vk , and, moreover, all tangencies are simple.

Let L “
Ť

Lk .
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?
π

C

C2
C

r r r

r r r
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In the chosen coordinates, the defining polynomial f of C may be
written as f px , zq “ zn `

řn
i“1 aipxqzn´i .

Since C is reduced, for each x R Y, the equation f px , zq “ 0 has n
distinct roots. Thus, f is a simple W-polynomial over CzY, and

π “ πf : CzpC X Lq Ñ CzY

is the associated polynomial n-fold cover.

Note that Y pf q “ ppCzYq ˆ CqzpCzpC X Lqq “ C2zpC Y Lq.

Thus, the restriction of pr1 to Y pf q,

p : C2zpC Y Lq Ñ CzY,

is a bundle map, with structure group Bn, fiber Cn, and
monodromy homomorphism α “ a˚ : π1pCzYq Ñ Bn.
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BRAID MONODROMY PRESENTATION

The homotopy exact sequence of fibration p : C2zpC Y Lq Ñ CzY:

1 // π1pCnq // π1pC2zpC Y Lqq
p˚ // π1pCzYq // 1 .

This sequence is split exact, with action given by the braid
monodromy homomorphism α : π1pCzYq Ñ Autpπ1pCnqq.

Order the points of Y by decreasing real part, and pick the
basepoint y0 in CzY with Repy0q ą maxtRepyk qu.

Choose loops ξk : r0, 1s Ñ CzY based at y0, and going around yk .

Setting xk “ rξk s, identify π1pCzY, y0q with Fs “ xx1, . . . , xsy.
Similarly, identify π1pCn, ŷ0q with Fn “ xt1, . . . , tny.

Then π1pC2zpC Y Lq, ŷ0q “ Fn ¸α Fs.

ALEX SUCIU (NORTHEASTERN) HYPERPLANE ARRANGEMENTS 1 TONGJI UNIV., AUGUST 11, 2025 23 / 32



The corresponding presentation is

π1pC2zpC Y Lqq “ xt1, . . . tn, x1 . . . , xs | x´1
k tixk “ αpxk qptiqy.

The group π1pC2zCq is the quotient of π1pC2zpC Y Lqq by the
normal closure of Fs “ xx1, . . . , xsy. Thus,

π1pC2zCq “ xt1, . . . , tn | ti “ αpxk qptiqy.

This presentation can be simplified by Tietze-II moves to eliminate
redundant relations. This yields the braid monodromy presentation

π1pC2zCq “ xt1, . . . , tn | ti “ αpxk qptiq, i “ j1, . . . , jmk ´1; k “ 1, . . . , sy.

where mk is the multiplicity of the singular point yk .

(Libgober 1986) The 2-complex modeled on this presentation is
homotopy equivalent to C2zC.
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THE MILNOR FIBRATION(S) OF AN ARRANGEMENT

Let A be a central hyperplane arrangement in Cd .

For each H P A, let fH : Cd Ñ C be a linear form with kernel H.

For each choice of multiplicities m “ pmHqHPA with mH P N, let

Qm :“ QmpAq “
ź

HPA
f mH
H ,

a homogeneous polynomial of degree N “
ř

HPA mH .

The map Qm : Cd Ñ C restricts to a map Qm : MpAq Ñ C˚.

This is the projection of a smooth, locally trivial bundle, known as
the Milnor fibration of the multi-arrangement pA,mq,

FmpAq // MpAq
Qm // C˚.
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The typical fiber, FmpAq “ Q´1
m p1q, is called the Milnor fiber of the

multi-arrangement.

FmpAq is a Stein manifold. It has the homotopy type of a finite cell
complex, with gcdpmq connected components, of dim d ´ 1.

The (geometric) monodromy is the diffeomorphism

h : FmpAq Ñ FmpAq, z ÞÑ e2πi{Nz.

If all mH “ 1, the polynomial Q “ QpAq is the usual defining
polynomial, and F pAq is the usual Milnor fiber of A.
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EXAMPLE

Let A be the single hyperplane t0u inside C. Then MpAq “ C˚,
QmpAq “ zm, and FmpAq “ tm-roots of 1u.

EXAMPLE

Let A be a pencil of 3 lines through the origin of C2. Then F pAq is a
thrice-punctured torus, and h is an automorphism of order 3:

A

F pAq

h

F pAq

More generally, if A is a pencil of n lines in C2, then F pAq is a Riemann
surface of genus

`n´1
2

˘

, with n punctures.
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Let Bn be the Boolean arrangement, with QmpBnq “ zm1
1 ¨ ¨ ¨ zmn

n .
Then MpBnq “ pC˚qn and

FmpBnq “ kerpQmq – pC˚qn´1 ˆ Zgcdpmq.

Let A “ tH1, . . . ,Hnu be an essential arrangement. The inclusion
ι : MpAq Ñ MpBnq restricts to a bundle map

FmpAq //

��

MpAq
QmpAq //

ι
��

C˚

FmpBnq // MpBnq
QmpBnq // C˚

Thus,
FmpAq “ MpAq X FmpBnq.
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THE BOUNDARY MANIFOLD OF AN ARRANGEMENT

Let A be a (central) arrangement of hyperplanes in Cd (d ě 2).

Let PpAq “ tPpHquHPA, and let νpV q be a regular neighborhood of
the algebraic hypersurface V “

Ť

HPA PpHq inside CPd´1.

Let U “ CPd´1z intpνpV qq be the exterior of PpAq.

The boundary manifold of A is BU “ BνpV q: a compact,
orientable, smooth manifold of dimension 2d ´ 3.

EXAMPLE

Let A be a pencil of n hyperplanes in Cd , defined by Q “ zn
1 ´ zn

2 .
If n “ 1, then BU “ S2d´3. If n ą 1, then BU “ 7n´1S1 ˆ S2pd´2q.

EXAMPLE

Let A be a near-pencil of n planes in C3, defined by
Q “ z1pzn´1

2 ´ zn´1
3 q. Then BU “ S1 ˆ Σn´2, where Σg “ 7gS1 ˆ S1.
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By Lefschetz duality: HqpBU,Zq – HqpU,Zq ‘ H2d´q´3pU,Zq

Let A “ H˚pU,Zq; then Ǎ “ HomZpA,Zq is an A-bimodule, with
pa ¨ f qpbq “ f pbaq and pf ¨ aqpbq “ f pabq.

THEOREM (COHEN–S. 2006)

The ring pA “ H˚pBU;Zq is the “double” of A, that is: pA “ A ‘ Ǎ, with
pa, f q ¨ pb, gq “ pab, ag ` fbq, and grading pAq “ Aq ‘ Ǎ2d´q´3.

When d “ 3, the boundary manifold BU is a 3-dimensional
graph-manifold WΓ, where

Γ is the incidence graph of A, with V pΓq “ L1pAq Y L2pAq and
EpΓq “ tpL,Pq | P P Lu.
Vertex manifolds Wv “ S1 ˆ

`

S2z
Ť

tv ,wuPEpΓq D2
v ,w

˘

are glued
along edge manifolds We “ S1 ˆ S1 via flip maps.

b1pWΓq “ |A| ` b1pΓq ´ 1.

THEOREM (JIANG–YAU 1993)

UpAq – UpA1q ñ WΓ – WΓ1 ñ Γ – Γ1 ñ LpAq – LpA1q.
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THE BOUNDARY OF THE MILNOR FIBER

Let pA,mq be a multi-arrangement in Cd .

Define F mpAq “ FmpAq X D2d to be the closed Milnor fiber of
pA,mq. Clearly, FmpAq deform-retracts onto F mpAq.

The boundary of the Milnor fiber of pA,mq is the compact,
smooth, orientable, p2d ´ 3q-manifold BF mpAq “ FmpAq X S2d´1.

The pair pF m, BF mq is pd ´ 2q-connected. In particular, if d ě 2,
then BF m is connected, and π1pBF mq Ñ π1pF mq is surjective.

FIGURE: Closed Milnor fiber for QpAq “ xy
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EXAMPLE

Let Bn be the Boolean arrangement in Cn. Recall F “ pC˚qn´1.
Hence, F “ T n´1 ˆ Dn´1, and so BF “ T n´1 ˆ Sn´2.

Let A be a near-pencil of n planes in C3. Then BF “ S1 ˆ Σn´2.

The Hopf fibration π : Cd zt0u Ñ CPd´1 restricts to regular, cyclic
n-fold covers, π : F Ñ U and π : BF Ñ BU, which fit into the ladder

Zn

��

Zn

��

Zn //

��

C˚

��

C˚

��
BF

π
��

// F

π
��

» // F

π

��

// M //

π

��

Cd zt0u

π
��

BU // U » // U U // CPd´1
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