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Abstract. Using compactifications in the logarithmic cotangent bundle, we obtain a
formula for the Chern classes of the pushforward of Lagrangian cycles under an open
embedding with normal crossing complement. This generalizes earlier results of Aluffi
and Wu-Zhou. The first application of our formula is a geometric description of Chern-
Mather classes of an arbitrary very affine variety, generalizing earlier results of Huh
which held under the smooth and schön assumptions. As the second application, we
confirm an involution formula relating sectional maximum likelihood (ML) degrees and
ML bidegrees, which was conjectured by Huh and Sturmfels in 2013.

1. Introduction

Maximum likelihood estimation in statistics leads to the problem of finding the critical
points of a likelihood function on an algebraic variety. The number of critical points
of a general likelihood function is called the maximum likelihood (ML) degree of the
algebraic variety. It is well-known that the ML degree is closely related to the topology
of the variety. More precisely, if the variety is smooth, its ML degree can be computed
as the Euler characteristic of an open subset of the variety, and if the variety is singular,
the ML degree can be computed as the Euler characteristic of a certain constructible
function which measures the complexity of singularities (see [11], [16] and Corollary 1.7).

Some natural generalizations of the ML degree are the ML bidegrees and the sectional
ML degrees. In [12], Huh and Sturmfels conjectured that the ML bidegrees and the
sectional ML degrees of a variety determine each other under some involution formulas,
and proved the case when the variety is smooth and Schön. The main goal of this paper
is to confirm their Involution Conjecture in full generality.

If a variety is smooth and Schön, Huh proved that its Chern-Schwartz-MacPherson
(CSM) classes determine the ML bidegrees ([11, Theorem 2], see also [12, page 101]).
So the conjecture follows in this case from Aluffi’s involution formula which relates the
Euler characteristics of general linear sections of a projective variety to its CSM class ([4,
Theorem 1.1]). To generalize Huh’s result to arbitrary varieties, we need to establish
a similar relation between CSM classes and the ML bidegrees, which we achieve in
Theorem 1.6. In fact, we show that the correct substitute for the CSM classes of a
smooth very affine variety are the Chern-Mather classes, i.e., the CSM class associated
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to the local Euler obstruction function. The key step in the proof of Theorem 1.6 is a new
geometric formula computing the CSM classes of any constructible function on a smooth
quasi-projective variety (see Theorem 1.1). Our geometric formula involves logarithmic
conic Lagrangian cycles, and reduces to earlier works of Ginsburg ([9, Theorem 3.2]).

Let X be a smooth complex algebraic variety, and let D ⊂ X be a normal crossing
divisor. Denote the complement X \ D by U , and let j : U ↪→ X be the open inclu-
sion. Let Ω1

X(logD) be the sheaf of algebraic one-forms with logarithmic poles along
D, and denote the total space of the corresponding vector bundle by T ∗(X,D). Clearly,
T ∗(X,D) contains T ∗U as an open subset. Given a conic Lagrangian cycle Λ in T ∗U ,

we denote its closure in T ∗(X,D) by Λ
log

.
Recall that, by using a microlocal interpretation of MacPherson’s Chern class trans-

formation (see [9, 5]), one can associate Chern classes cEi (Λ) ∈ Ai(X), i = 1, . . . , k, in
Chow homology to any conic irreducible k-dimensional subvariety of a rank k vector
bundle E on X (see Section 2.2 for a brief description of this construction). With these
notations, we prove the following.

Theorem 1.1. Let F � be any constructible sheaf complex on U . Then

cT
∗(X,D)
∗

(
CC(F �)

log
)

= cT
∗X
∗
(
CC(Rj∗F �)

)
∈ A∗(X),

where CC(−) denotes the characteristic cycle of −, and if CC(F �) =
∑

k nkΛk, then

CC(F �)
log

:=
∑

k nkΛk
log

.

Remark 1.2. When the conic Lagrangian cycle Λ is equal to the zero section of T ∗U ,
this result is well known, e.g., see [1, 3]. For an arbitrary conic Lagrangian cycle, the
equality of the top Chern class in Theorem 1.1 was proved by Zhou and the last author
in [19].

Recall that an affine variety Z is called very affine, if it admits a closed embedding
to an affine torus (C∗)n for some n. In this paper, for a very affine variety we always
assume that such a closed embedding is chosen. A master function1 on (C∗)n is of the
form

mw := xw1
1 · · ·xwn

n ,

where (x1, . . . , xn) are the coordinate functions on (C∗)n and w = (w1, . . . , wn) ∈ Zn. If,
more generally, w ∈ Cn, then mw is a multivalued function. Nevertheless, the critical
points of mw|Zreg are well defined, where Zreg denotes the smooth locus of Z. In fact,
the critical points do not depend on the choice of local branches of the function, and
they are equal to the degeneration points of the restriction of the holomorphic 1-form

d logmw = w1
dx1
x1

+ · · ·+ wn
dxn
xn

to Zreg. The total space of all critical points of the master functions defines a closed
subvariety of Zreg × Cn:

X◦(Z) = {(z,w) ∈ Zreg × Cn | z is a critical point of mw|Zreg}.
1Such master function is also called a likelihood function in [11]. In this paper, we reserve the notion

of likelihood function for the ones also containing the factor (1 − x1 − · · · − xn)u0 , which is consistent
with the conventions in [12].
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Using the natural compactifications (C∗)n ⊂ Pn and Cn ⊂ Pn, we can consider Zreg×Cn

as a locally closed subvariety of Pn × Pn. Let X(Z) be the closure of X◦(Z) in Pn × Pn.
As the first application of Theorem 1.1, we prove a geometric formula relating the

Chern-Mather classes of Z and the bidegrees of X(Z), generalizing [11, Theorem 1.2].

Theorem 1.3. Given a very affine variety Z ⊂ (C∗)n of dimension d, let X(Z) be
defined as above. Then

[X(Z)] =
d∑
i=0

vi[Pi × Pn−i] ∈ A∗(Pn × Pn),

where

cMa(Z) =
d∑
i=0

(−1)d−ivi[Pi] ∈ A∗(Pn).

Here, the Chern-Mather class cMa(Z) is defined as c∗(EuZ), where c∗ is the MacPher-
son Chern class transformation and EuZ is the local Euler obstruction function of Z,
regarded as a constructible function on Pn.

Remark 1.4. In the original statement of [11, Theorem 2], the total space of critical
points X◦(Z) is defined as a subvariety of Z × Pn−1, and hence X(Z) is a subvariety of
Pn × Pn−1. When Z is not equal to the ambient space (C∗)n, our definition of X(Z)
is a cone of the one in [11]. Hence, in this case, the two constructions define the same
sequence of numbers vi. We choose the new construction because it gives the correct
formula even when Z is equal to the ambient space (C∗)n, as well as due to our use of
CSM classes of conic cycles (see (8)). In fact, to understand the Chern classes of conic
cycles Λ in a vector bundle E, one will lose track of all conic cycles supported on the
zero section of the vector bundle if taking the projective cones P(Λ) ⊂ P(E) instead of
taking the closure Λ ⊂ E = P(E⊕C). For the same reason, in the later definition of the
likelihood correspondence variety LY , we take the closure and define it as a subvariety
of Pn × Pn+1 instead of Pn × Pn as in [12].

Before stating the remaining results, we recall the definitions of the ML degrees, ML
bidegrees and sectional ML degrees.

Let Y be an irreducible subvariety of (C∗)n, and let Y ◦ = Y \ H, where H = {x1 +
· · · + xn = 1} and (xi)i=1,...,n are the coordinate functions of (C∗)n.2 For a data point
u = (u0, u1, . . . , un) ∈ Cn+1, the associated (multivalued) likelihood function is defined
as

`u := xu11 · · ·xunn (1− x1 − · · · − xn)u0 .

Assume that Y ◦ is nonempty. Then the ML degree of Y , denoted by MLdeg(Y ), is
defined as the number of critical points of `u|Y ◦reg for a generic data point u.

The likelihood correspondence variety LY is defined analogously to X(Y ). Firstly, we
define

L◦Y := {(y,u) ∈ Y ◦reg × Cn+1 | y is a critical point of `u|Y ◦reg}.
2A more natural way to think of Y ◦ is to realize it as a closed subvariety of (C∗)n+1 with the

additional coordinate x0 = 1 − x1 − · · · − xn. Comparing to [12, Page 69], our coordinate function xi

is equal to pi

p+
for i = 0, . . . , n.
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Then we let LY be the closure of L◦Y in Pn × Pn+1. The ML bidegrees of Y are defined
as the bidegrees of LY ⊂ Pn × Pn+1. More precisely, the i-th ML bidegree bi of Y is
determined by

[LY ] =
dimY∑
i=0

bi[Pi × Pn+1−i] ∈ A∗(Pn × Pn+1).

In particular, the 0-th bidegree is equal to the ML degree, that is, b0 = MLdeg(Y ).
The sectional ML degrees are defined to be the ML degrees of iterated hyperplane

sections of Y . More precisely, the i-th sectional ML degree of Y is defined by

si := MLdeg(Y ∩ Ln−i).
where Ln−i is a general affine subspace of Cn of codimension i. In particular, s0 is the
ML degree of X and sdim(X) is the degree of X.

In the next theorem, we confirm the involution formulas conjectured by Huh and
Sturmfels [12, Conjecture 3.15] relating the ML bidegrees and the sectional ML degrees.

Theorem 1.5. Let Y ⊂ (C∗)n be an irreducible very affine variety of dimension d, which
is not contained in the hyperplane H := {x1 + · · ·+ xn = 1}. Then

BY (p, u) =
u · SY (p, u− p)− p · SY (p, 0)

u− p
, SY (p, u) =

u ·BY (p, u + p) + p ·BY (p, 0)

u + p
,

where
SY (p, u) = (s0 · pd + s1 · pd−1u + · · ·+ sd · ud) · pn−d

and
BY (p, u) = (b0 · pd + b1 · pd−1u + · · ·+ bd · ud) · pn−d.

When Y ◦ = Y \ H is smooth and Schön, the above theorem is proved by Huh ([11],
see also [12, page 101]).

By using Aluffi’s involution formula [4], we reduce the above Theorem 1.5 to the
following result, relating Chern-Mather classes and ML bidegrees.

Theorem 1.6. Let Y and H be defined as in Theorem 1.5, and let Y ◦ = Y \H. Suppose
the total Chern-Mather class of Y ◦ is given by

cMa(Y
◦) =

dimY∑
i=0

(−1)dimY−iαi[Pi] ∈ A∗(Pn).

Then, the sequence α0, . . . , αdimY consists of the ML bidegrees of Y . In other words,

BY (p, u) =
dimY∑
i=0

αi p
n−iui.

Since the degree zero part of the Chern-Schwartz-MacPherson class (viewed in A∗(Pn))
computes the Euler characteristic, and since α0 is equal to the ML degree, an immediate
consequence of Theorem 1.6 is the following corollary, which is proved implicitly in [16].

Corollary 1.7. Let Y be an irreducible subvariety of (C∗)n. Assume that Y ◦ = Y \ H
is nonempty. Then

MLdeg(Y ) = (−1)dimY χ(EuY ◦).
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The paper is organized as follows. Section 2 is devoted to presenting background
material on constructible functions, constructible sheaves, and their characteristic cycles,
on the microlocal interpretation of the MacPherson’s Chern classes, as well as on Aluffi’s
involution formula relating CSM classes to sectional Euler characteristics. Theorem 1.1
is proved in Section 3. Applications of Theorem 1.1 are discussed in Section 4, where
Theorems 1.3, 1.5 and 1.6 are proved and examples using numerical algebraic geometry
are worked out.

Throughout the paper, we work in the category of algebraic varieties defined over C.
In particular, a vector bundle corresponds to a locally free coherent sheaf.

Acknowledgements. The authors thank Jörg Schürmann for his comments on an
earlier version of the manuscript. Rodriguez thanks Daniel Corey for his comments on
the Schön property. Maxim is partially supported by the Simons Foundation (Col-
laboration Grant #567077), and by the Romanian Ministry of National Education
(CNCS-UEFISCDI grant PN-III-P4-ID-PCE-2020-0029). Wang is partially supported
by a Sloan fellowship. Wu is supported by an FWO postdoctoral fellowship.

2. Preliminaries

In this section, we collect relevant background material on constructible functions,
constructible sheaves and their characteristic cycles, we give a brief overview of the
microlocal interpretation of MacPherson’s Chern classes, and recall Aluffi’s involution
formula relating CSM classes to sectional Euler characteristics.

2.1. Constructible sheaves. Constructible functions. Characteristic cycles.
Denote by Db

c(X) the bounded derived category of C-constructible complexes (with re-
spect to some stratification) on the smooth complex algebraic variety X. By associating
characteristic cycles to constructible complexes on X (e.g., see [6, Definition 4.3.19] or
[13, Chapter IX]), one gets a functor

CC : K0(D
b
c(X)) −→ L(X)

on the Grothendieck group of C-constructible complexes, where L(X) is the free abelian
group spanned by the irreducible conic Lagrangian cycles in the cotangent bundle T ∗X.
Recall that any element of L(X) is of the form

∑
k nk · T ∗Zk

X, for some nk ∈ Z and Zk
closed irreducible subvarieties of X. Here, if Z is a closed irreducible subvariety of X
with smooth locus Zreg, its conormal bundle T ∗ZX is defined as the closure in T ∗X of

T ∗Zreg
X := {(z, ξ) ∈ T ∗X | z ∈ Zreg, ξ ∈ T ∗zX, ξ|TzZreg = 0}.

One can then define a group isomorphism

T : L(X) −→ Z(X)

to the group Z(X) of algebraic cycles on X by:∑
k

nk · T ∗Zk
X 7−→

∑
k

(−1)dimZknkZk.
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Let F (X) be the group of algebraically constructible functions on X, i.e., the free
abelian group generated by indicator functions 1Z of closed irreducible subvarieties Z of
X. There is a unique linear map

χ : F (X) −→ Z
called the Euler characteristic, defined on generators by χ(1Z) := χ(Z).

An important example of a constructible function on X is the MacPherson local Euler
obstruction function EuZ of an irreducible subvariety Z of X, see [14]. The local Euler
obstruction function is a measure of the singularities of Z, and it takes the value 1 on
the smooth locus Zreg.

The relation between constructible complexes and constructible functions is made ex-
plicit by the following construction. To any constructible complex F � ∈ Db

c(X), one
associates a constructible function χst(F �) ∈ F (X) by taking stalkwise Euler character-
istics, i.e.,

χst(F �)(x) := χ(F �
x)

for any x ∈ X. For example, χst(i!CZ) = 1Z , for Z a closed irreducible subvariety of X.
Note that if ϕ = χst(F �), then χ(ϕ) = χ(X,F �).

Since the Euler characteristic is additive with respect to distinguished triangles, one
gets an induced group homomorphism (in fact, an epimorphism)

χst : K0(D
b
c(X)) −→ F (X).

Moreover, since the class map Db
c(X) → K0(D

b
c(X)) is onto, χst is already an epimor-

phism on Db
c(X).

If Z is a closed subvariety of X, we may regard the function EuZ as being defined on
all of X by setting EuZ(x) = 0 for x ∈ X \Z. In particular, one may consider the group
homomorphism

(1) Eu : Z(X) −→ F (X)

defined on an irreducible cycle Z by the assignment Z 7→ EuZ , and then extended by
Z-linearity. A well-known result (e.g., see [6, Theorem 4.1.38] and the references therein)
states that the homomorphism Eu : Z(X)→ F (X) is an isomorphism.

The Euler obstruction function appears in the formulation of the local index theorem,
which in the notations of this section asserts the existence of the following commutative
diagram (e.g., see [18, Section 5.0.3] and the references therein):

(2) K0(D
b
c(X))

CC
��

χst
// F (X)

Eu−1∼=
��

L(X)
T

∼=
// Z(X)

In particular, one can associate a characteristic cycle to any constructible function ϕ ∈
F (X) by the formula

CC(ϕ) := T−1 ◦ Eu−1(ϕ).

For example, if Z is a closed irreducible subvariety of X, one has:

(3) CC(EuZ) = (−1)dimC Z · T ∗ZX.
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Note also that
CC(F �) = CC(χst(F �))

for any constructible complex F � ∈ Db
c(X).

It is well known (e.g., see [18, Section 2.3]) that all the usual functors in sheaf theory,
which respect the corresponding category of constructible complexes of sheaves, induce
by the epimorphism χst well-defined group homomorphisms on the level of constructible
functions. Moreover, if f : X → Y is a morphism of complex algebraic varieties, then
one has the equality (see, e.g., [15, formula (112)] and the references therein)

Rf! = Rf∗ : K0(D
b
c(X)) −→ K0(D

b
c(Y )),

which also implies for the induced group homomorphisms of complex algebraically con-
structible functions the equality

(4) f! = f∗ : F (X) −→ F (Y ).

Here we note that f∗ : F (X) −→ F (Y ) can be described more explicitly as:

1Z 7−→
(
y 7−→ χ(f−1(y) ∩ Z), y ∈ Y

)
.

Finally, by (2), all these functors can also be considered as functors on conic Lagrangian
cycles in the cotangent bundle T ∗X (with support in a certain subvariety, if needed).

2.2. CSM classes. Microlocal interpretation. We work in the complex algebraic
context, with A∗ the Chow group and H∗ the Borel-Moore homology.

In [14], MacPherson extended the definition of Chern classes to singular complex
algebraic varieties. More precisely, he defined a natural transformation

c∗ : F (−) −→ A∗(−)

from the functor of constructible functions (with proper morphisms) to Chow (or Borel-
Moore) homology, such that if X is a smooth variety then c∗(1X) = c(TX)∩ [X]. Here,
c(TX) denotes the total (cohomology) Chern class of the tangent bundle TX, and [X]
is the fundamental class. For any locally closed irreducible subvariety Z of a complex
algebraic variety X, the class

cSM(Z) := c∗(1Z) ∈ A∗(X)

is usually referred to as the Chern-Schwartz-MacPherson (CSM) class of Z in X. Simi-
larly, the class

cMa(Z) := c∗(EuZ) ∈ A∗(X)

is called the Chern-Mather class of Z, where we regard EuZ as a constructible function
on X by setting the value zero on X \ Z.

Results of Ginsburg [9] and Sabbah [17] showed that McPherson’s Chern class trans-
formation c∗ factors through the group of conic Lagrangian cycles in the cotangent
bundle. This construction was revisited more recently in [2], as well as in [5], also in the
equivariant context.

In this section, we recall the construction of MacPherson’s Chern class transformation
in terms of characteristic cycles, following the approach of [2, 5].

Let X be a smooth complex algebraic variety, and let E be a rank r vector bundle on
X. Let E := P(E ⊕ 1) be the projective bundle, which is a fiber-wise compactification
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of E (here 1 denotes the trivial line bundle on X). Then E may be identified with the
open complement of P(E) in E. Let π : E → X and π̄ : E → X be the projections,
and let ξ := c1(OE(1)). Pullback via π̄ realizes A∗(E) as a A∗(X)-module. Moreover,
as shown in [8, Theorem 3.3], each α ∈ Ai(E) can be uniquely written as:

(5) α =
r∑
j=0

ξj ∩ π̄∗αj,

for αj ∈ Ai−r+j(X).
An irreducible conic r-dimensional subvariety (r = rank E) Λ ⊂ E determines an

r-dimensional cycle Λ in E and, by formula (5), knowledge of [Λ] ∈ Ar(E) is equivalent
to knowledge of a collection of r + 1 classes on X. We denote these classes by

cE0 (Λ), . . . , cEr (Λ)

with cEj (Λ) ∈ Aj(X), and call them the Chern classes of Λ. The terminology is justi-
fied by the following result (see [2, Lemma 4.3], [5, Proposition 3.3] and the references
therein), applied to the cotangent bundle T ∗X and elements of L(X):

Proposition 2.1. For any constructible function ϕ ∈ F (X), the Chern classes of the
characteristic cycle CC(ϕ) equal the signed MacPherson Chern classes of ϕ, namely:

(6) cT
∗X

j (CC(ϕ)) = (−1)j · cj(ϕ) ∈ Aj(X), j = 0, . . . , dim(X),

where cj(ϕ) denotes the j-th component of MacPherson’s Chern class c∗(ϕ).

Remark 2.2. The signs appearing in (6) may of course be already absorbed in the
definition of the cj(Λ). This is in fact the way Ginzburg describes these classes in the
Appendix of [9].

For future reference, let us introduce the following notation for the signed MacPherson
Chern classes appearing in Proposition 2.1. For ϕ ∈ F (X), set:

(7) č∗(ϕ) =
∑
j≥0

čj(ϕ) :=
∑
j≥0

(−1)jcj(ϕ).

In particular, if ϕ = 1Z or ϕ = EuZ , we get a corresponding signed CSM class čSM(Z)
and, respectively, a signed Chern-Mather class čMa(Z) of a locally closed irreducible
subvariety Z ⊂ X.

There is an alternative way of recovering the Chern classes of lagrangian cycles, which
makes use of C∗-equivariant Chow groups.

Consider the C∗-action on the vector bundle E by fiberwise dilation, and the triv-
ial action on 1. This induces a C∗-action on E, such that the inclusion E ⊂ E is
C∗-equivariant (and the trivial action on P(E)). The natural projection π : E → X is
equivariant, where C∗ acts trivially on X. Let AC∗

∗ (E) and AC∗
∗ (X) be the C∗-equivariant

Chow groups of E and X, respectively. Since C∗ acts trivially on X, we have an iso-
morphism

AC∗
∗ (X) ∼= A∗(X)[t],
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where t := c1(OP∞(−1)). Moreover, the inclusion i : X ↪→ E of the zero section induces
isomorphisms (e.g., see [5, Lemma 2.5]):

i∗ = (π∗)−1 : AC∗
∗ (E) −→ AC∗

∗−r(X),

with r = rank E.
An r-dimensional C∗-invariant cycle Λ in E determines as above an r-dimensional

cycle Λ in E. By comparing the class [Λ] of Λ in the equivariant Chow group AC∗
∗ (E)

i∗∼=
AC∗
∗−r(X) with the class [Λ] in the ordinary Chow group A∗(E), one gets the following

identification of [5, Proposition 2.7]:

(8) i∗([Λ])|t7→1 = cE0 (Λ) + cE1 (Λ) . . .+ cEr (Λ).

Formula (8) yields immediately the following.

Lemma 2.3. Let φ : E1 → E2 be a bundle map of rank r vector bundles over X. If Λ
is an r-dimensional C∗-invariant cycle in E2 such that the C∗-invariant subset φ−1(Λ)
in E1 is also pure r-dimensional, then

cE1
j (φ∗Λ) = cE2

j (Λ),

for each j = 0, . . . , r.

2.3. Aluffi’s inversion formula. Let X be a locally closed set in Pn, so that the
function 1X is constructible on Pn. Then

cSM(X) := c∗(1X) =
∑
j≥0

cj[Pj] ∈ A∗(Pn).

Let
γX(t) :=

∑
j≥0

cjt
j

be the polynomial of degree ≤ n obtained from cSM(X) by replacing Pj by tj. Let
Xj = X∩Ln−j, where Ln−j is a generic linear subspace of codimension j in Pn. Consider
the generating polynomial of degree ≤ n of the Euler characteristics of these sections,
defined as

χX(t) :=
∑
j≥0

χ(Xj) · (−t)j.

In [4], Aluffi showed that for any locally closed set X in Pn, the polynomials γX(t)
and χX(t) carry precisely the same information. In order to formulate the result from
loc. cit., consider the following linear transformation:

p(t) 7−→ I(p) :=
t · p(−t− 1) + p(0)

t + 1
,

and note that if p(t) is a polynomial, then I(p) is a polynomial of the same degree.
Furthermore, I is an involution, whose effect is to perform a sign-reversing symmetry
about t = −1/2 of the non-constant part of p. The main result of [4] is the following:

Theorem 2.4. For every locally closed set X in Pn, the involution I interchanges γX(t)
and χX(t), i.e.,

γX = I(χX), χX = I(γX).
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More generally, consider a constructible function ϕ on Pn. Assuming that

c∗(ϕ) =
∑
j≥0

cj[Pj] ∈ A∗(Pn),

we define

γϕ(t) :=
∑
j≥0

cjt
j.

Let ϕj be the restriction of ϕ to a generic codimension j linear subspace Ln−j, and we
consider ϕj as a constructible function on Pn with support contained in Ln−j. Then we
define

χϕ(t) :=
∑
j≥0

χ(ϕj) · (−t)j.

Since the constructible functions of the form 1X for irreducible closed subvarieties X ⊂
Pn form a basis of F (Pn), i.e., the abelian group of all constructible functions on Pn,
Theorem 2.4 can be reformulated as the following corollary.

Corollary 2.5. For any constructible function ϕ on Pn, the involution I interchanges
γϕ(t) and χϕ(t), i.e.,

γϕ = I(χϕ), χϕ = I(γϕ).

3. Characteristic cycles and the universal graph embedding

In this section we prove Theorem 1.1.
In [9, Section 3], Ginsburg gave explicit pushforward formula for conic Lagrangian

cycles on an open embedding of the complement of a hypersurface. The formula uses
explicitly the defining equation of the hypersurface. First, we modify Ginsburg’s con-
struction to obtain a global formula, which does not depend on the choice of local defining
equations.

Let X be a smooth complex algebraic variety and let D =
∑r

i=1Di be a sum of
effective divisors. Let U = X \D. For each i, denote the total space of OX(Di) by Li,
and denote the bundle map by πi : Li → X. Since Di is effective, there is a tautological
section of Li defining the divisor Di, which we denote by si : X → Li.

Let E be the total space of the vector bundle OX(D1)⊕ · · · ⊕ OX(Dr). Then,

E = L1 ×X L2 ×X · · · ×X Lr,

and we denote the bundle map by π : E → X. Putting the sections si together gives a
section of E:

s : X ↪→ E, x 7→ (s1(x), s2(x), . . . , sr(x)).

Pulling back the zero section X ↪→ Li through the (vector bundle) morphism E → Li

gives a smooth divisor on E, which we denote by Fi. Let F =
∑r

i=1 Fi. The following
lemma is tautological.

Lemma 3.1. Under the above notations, F is a simple normal crossing divisor on E.
Moreover, s∗iFi = Di and s∗F = D.
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Next, we consider the local picture. Suppose that on some open set U ⊆ X, there exist
regular functions fi, i = 1, . . . , r, such that the zero locus of each fi is equal to Di. Notice
that the section si of Li is defined as the section “1” of OX(Di). Thus, 1

fi
· 1 defines a

nonzero section of Li on U , and ( 1
f1
, . . . , 1

fr
) gives a local trivialization E|U ' U × Cr.

Under this trivialization, the section s can be written as the graph-embedding:

s : U ↪→ U × Cr, x 7→ (x, f1(x), . . . , fr(x)).

Let t = (t1, . . . , tr) be the coordinates of the factor Cr, and we write Cr
t to emphasize the

chosen coordinates. Under the local trivialization E|U ' U × Cr, we have the induced
local trivializations for the logarithmic cotangent bundle

T ∗(E,F)|U×Cr ' T ∗U × Cr
t × Cr

s

where Cr
t × Cr

s is the total space of the logarithmic cotangent bundle of Cr
t with re-

spect to the coordinate divisors, and s = (s1, . . . , sr) with each si corresponding to the
logarithmic tangent vector −ti∂ti .

Using the section s : X → E, we can identify X as the closed subvariety s(X) of E,
and hence open subvarieties of X as a locally closed subvarieties of E. By the above
trivialization, we have

(9) T ∗(E,F)|U = s∗(T ∗(E,F)|U×Cr) ' T ∗U × Cr
s.

Let Λ ⊆ T ∗U be an irreducible conic Lagrangian cycle. Following [9, §2.1], locally on
U◦ := U \D, we can define an (n+ r)-cycle in T ∗U◦ × Cr

s:

(10) Λ]|U◦ :=

{(
x, ξ +

r∑
i=1

sid log fi(x), s

)∣∣∣∣∣(x, ξ) ∈ Λ and si 6= 0 for all i

}
.

It follows from the next lemma that the definition of Λ]|U◦ does not depend on the choice
of the functions fi and the local cycles glue together to a global (n+ r)-cycle

Λ] ⊆ T ∗U × Cr ' T ∗(E,F)|U .
Moreover, it also follows from the next lemma that Λ] is a conic cycle.

Lemma 3.2. Under the above notations, let V = E \F. Pulling back one-forms defines
a surjective bundle map

q : U ×V T ∗V = T ∗V |U → T ∗U.

Then, over the open set U◦ = U \D, we have an equality of algebraic cycles

Λ]|U◦ = (q−1Λ)|U◦ .

Proof. Recall that, locally on U◦, the section s : X → E is given by

s(x) = (x, f1(x), . . . , fr(x)).

Thus, as the dual map of q, the pushfoward map on tangent bundle is of the form

(11) q∨ : TU → s∗TV = TV |X , v 7→ v +
r∑
i=1

dfi(v)s∗(∂ti)
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for any tangent vector v in TU . Locally on U◦, under the above coordinate system,

T ∗V = T ∗U × T ∗Cr = T ∗U × Cr
t × Cr

s.

Then as the dual map of (11), the bundle map q at a fiber T ∗xV (x ∈ U) is of the form

(12) q : T ∗V |U → T ∗U, ξ +
r∑
i=1

λidti 7→ ξ +
r∑
i=1

λidfi,

where ξ ∈ T ∗xU .
Now, we show that Λ]|U◦ ⊂ (q−1Λ)|U◦ , or equivalently, q(Λ]|U◦) ⊂ Λ. Since Λ is conic,

for any point x ∈ U◦ and v ∈ T ∗xU such that the pairing between v and any element in
Λ ∩ T ∗xU is zero, by (10) we need to show that

q

(
ξ +

r∑
i=1

sid log fi +
r∑
i=1

si(−d log ti)

)
(v) = 0

for any ξ ∈ Λ ∩ T ∗xU . In fact, by (12), we have

q

(
ξ +

r∑
i=1

sid log fi +
r∑
i=1

si(−d log ti)

)
(v) =

(
ξ +

r∑
i=1

sid log fi

)
(v)−

r∑
i=1

si
dfi
ti

(v)

=ξ(v) +
r∑
i=1

si

(
dfi
fi

(v)− dfi
ti

(v)

)
=ξ(v)

=0

where the second last equality follows from the fact that the image of s : U → V is cut
out by equations ti = fi for 1 ≤ i ≤ r and the last equality follows from the assumption
that the pairing between v and any element in Λ ∩ T ∗xU is zero.

Therefore, we have proved the inclusion that Λ]|U◦ ⊂ (q−1Λ)|U◦ . Since Λ is irreducible,
the inclusion is between two irreducible closed (n + r)-cycles in T ∗U◦ × Cr

s. Hence the

inclusion must be an equality, that is, Λ]|U◦ = (q−1Λ)|U◦ . �

The above lemma shows that the global cycle Λ] ⊂ T ∗(E,F)|U is well-defined, and

(13) Λ] = q−1Λ.

Lemma 3.3. If D =
∑r

i=1Di is a simple normal crossing divisor on X, then the pullback
map of logarithmic forms, p, is a surjective map of vector bundles over X:

s∗T ∗(E,F) = T ∗(E,F)|X T ∗(X,D)

X

p

In particular, as restriction of p, the pullback map q : T ∗V |U → T ∗U is also a surjective
map of vector bundles.
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Proof. This follows from the fact that s induces an embedding of log pairs s : (X,D)→
(E,F). In other words, the image of s : X → E intersects the divisor F transversally in
the stratified sense.

More precisely, we will show that there are (analytic) local coordinates of E, such that
F is defined by the product of a subset of the coordinates and the image of s : X →
E is cut out by a disjoint subset of coordinates. Then the desired statement follows
immediately.

Choose a small analytic neighborhood U of a given point y ∈ X, such that there
exist holomorphic functions f1, . . . , fr on U defining the divisors D1, . . . , Dr. Let x =
(x1, . . . , xn) be a set of coordinates of U . Without loss of generality, we assume that
y ∈ D1 ∩ · · · ∩ Dr0 and y /∈ Di for i > r0. Since D is simple normal crossing, we can
assume that fi = xi for 1 ≤ i ≤ r0. Then, locally, the embedding s|U : U → E|U = U×Cr

t

is given by

x 7→ (x, f1(x), . . . , fr(x)) = (x, x1, . . . , xr0 , f(xr0+1), . . . , f(xr)).

The variables (x, t) = (x1, . . . , xn, t1, . . . , tr) is a set of coordinates of E|U = U × Cr
t .

Thus,

(14)
(
t1, . . . , tr0 , xr0+1, . . . , xr, t1 − x1, . . . , tr0 − xr0 , tr0+1 − fr0+1, . . . , tr − fr

)
also form a set of coordinates of E|U = U ×Cr

t . Since U is centered at y with y /∈ Di for
i > r0, we can assume that U does not intersect Di for i > r0. Now, the image of s|U is
cut out by

t1 − x1 = 0, · · · , tr0 − xr0 = 0, tr0+1 − fr0+1 = 0, · · · , tr − fr = 0,

and the divisor F in E|U is defined by t1 · · · tr0 = 0. Therefore, the set of coordinates
(14) satisfy the desired property. �

Remark 3.4. Suppose D is simple normal crossing but not smooth. If we take E to be
the line bundle OX on X, then we can similarly define an irreducible divisor F of E, the
graph embedding s : X → E, and the projection

p : T ∗(E,F)|X → T ∗(X,D).

However, in this case, the map p will not be surjective. For example, assume dimX = 2
and (x1, x2) are locally coordinates of X such that locally D is defined by x1x2 = 0.
One can easily see that the image of p on the fiber T ∗(X,D)|(0,0) is 1-dimensional and
spanned by d log(x1x2). Therefore, it is necessary to introduce a variable ti to each
irreducible component Di.

Similar to the construction in [9, Section 3], we define Λ] to be the closure of Λ] inside
s∗T ∗(E,F) = T ∗(E,F)|X .

Corollary 3.5. Let Λ ⊆ T ∗U be a conic Lagrangian cycle. If D =
∑r

i=1Di is simple
normal crossing, then

Λ] = p−1(Λ
log

),

where Λ
log

is the closure of Λ inside T ∗(X,D).
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Proof. By Lemma 3.3, we have the following cartesian square

T ∗V |U T ∗U

T ∗(E,F)|X T ∗(X,D),

q

p

where V = E \F and both horizontal maps are surjective maps of vector bundles. Since

p−1(Λ
log

) is closed and it contains Λ], the inclusion Λ] ⊂ p−1(Λ
log

) follows. On the other

hand, both Λ] and p−1(Λ
log

) are irreducible (n + r)-cycles in T ∗(E,F)|X . Hence, they

must be equal to each other, that is, Λ] = p−1(Λ
log

). �

For the rest of this section, we assume that the divisor D =
∑r

i=1Di is simple normal
crossing. Consider the following diagram of vector bundles on X,

(15)

T ∗X T ∗E|X T ∗X

T ∗(E,F)|X T ∗(X,D),

π∗

ι

p′

φE φ

p

where both φ and φE are defined by considering a one-form as a logarithmic one form,
the map p′ is the pullback map of one-forms by s, the map π∗ is the pullback map of
one-forms by π : E→ X, and ι := φE ◦ π∗.

Since our local description of Λ] in (10) is the same as Ginsburg’s Λ]
s, we have the

following theorem.

Theorem 3.6 ([9, Theorem 3.2], see also [7, Theorems 3.4]). Let F � be any constructible
complex on U , with characteristic cycle CC(F �) =

∑
k nkΛk. Then, as cycles,

CC(Rj∗(F �)) =
∑
k

nkι
∗Λ]

k.

Proof. Given an irreducible conic Lagrangian cycle Λ ⊂ T ∗U , by (9),

T ∗(E,F)|U ∼= T ∗U × Cr
s.

Under this trivialization, our definition of Λ] is the same as the total space of Λ]
s in [7,

Equation (3.3)]. Moreover, ι is a map of vector bundles over X, and under the above
trivialization

ι : T ∗xX → T ∗x (E,F), ξ → (ξ, 0, . . . , 0),

for any x ∈ U . Thus, the image of ι is exactly cut out by equations s1 = · · · = sr = 0.
Therefore, our ι∗Λ] is exactly equal to lims→(0,...,0) Λ]

s, as defined in [7]. Therefore, the
desired equality follows from [7, Theorem 3.4]. �

We are ready to prove the first main theorem 1.1.
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Proof of Theorem 1.1. Let F � be a constructible complex on U , and assume that its
characteristic cycle is of the form CC(F �) =

∑
k nkΛk. By Corollary 3.5 and Theo-

rem 3.6,

CC(Rj∗(F �)) =
∑
k

nkι
∗p∗
(

Λk
log
)
.

By the commutative diagram (15), since p′ ◦ π∗ = id, we have ι∗p∗ = φ∗ and the above
equation becomes

CC(Rj∗(F �)) =
∑
k

nkφ
∗
(

Λk
log
)
.

By Lemma 2.3 we have:

cT
∗X
∗

(
φ∗
(

Λk
log
))

= cT
∗(X,D)
∗

(
Λk

log
)
.

Therefore,

cT
∗X
∗ (CC(Rj∗(F �))) = cT

∗(X,D)
∗

(∑
k

nkΛk
log

)
= cT

∗(X,D)
∗

(
CC(F �)

log
)
,

and we have finished the proof. �

4. Applications and Examples

In this section, we make use of Theorem 1.1 for proving Theorems 1.3, 1.5 and 1.6.
First, we apply Theorem 1.1 to provide a dictionary between the class of the closure

of the total space of critical points X(Z) ⊂ Pn×Pn and the Chern-Mather class cMa(Z).

Proof of Theorem 1.3. To apply Theorem 1.1, we let X = Pn with homogeneous co-
ordinates [p1, . . . , pn, p+]. Let Di = {pi = 0} for 0 ≤ i ≤ n, D =

∑n
i=0Di and

U = X \D = (C∗)n.
First of all, we notice that the logarithmic cotangent bundle E := T ∗(Pn, D) is a

trivial rank n vector bundle. Thus, we can identify the compactification E with Pn×Pn,
with the first factor being the base and the second being the fiber. Given a very affine
variety Z ⊂ U = (C∗)n, we have by definition that

(16) X◦(Z) = T ∗Zreg
(C∗)n.

Let Λ = T ∗Z(C∗)n be the closure of T ∗Zreg
(C∗)n in T ∗(C∗)n. Then Λ is a conic Lagrangian

cycle in T ∗(C∗)n. Taking the closure of (16) in E = T ∗(Pn, D), we have an equality of
algebraic cycles:

X(Z) ∩ E = Λ
log
.

The closure of X(Z) ∩ E in E is exactly X(Z). Hence, by (5), if

cT
∗(Pn,D)
∗ (Λ

log
) =

d∑
i=0

vi[Pi] ∈ A∗(Pn),

with d = dimZ, then

[X(Z)] =
d∑
i=0

vi[Pi × Pn−i] ∈ A∗(Pn × Pn).
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Next consider EuZ as a constructible function on Pn, with value equal to zero outside
Z. In view of (4), this corresponds to the pushforward of Λ under the open inclusion
j : (C∗)n ↪→ Pn. Let φ : T ∗Pn → T ∗(Pn, D) be the natural bundle map appearing in
diagram (15). Then we have by Theorem 1.1, Proposition 2.1, Lemma 2.3 and (3) the
following equalities in A∗(Pn):

cT
∗(Pn,D)
∗ (Λ

log
) =cT

∗Pn

∗ (φ∗Λ
log

)

=(−1)d · cT ∗Pn

∗ (CC(EuZ))

=(−1)d · čMa(Z).

This is equivalent to saying that

cMa(Z) =
d∑
i=0

(−1)d−ivi[Pi] ∈ A∗(Pn),

which finishes the proof of Theorem 1.3. �

The next result, Theorem 1.6, is a stepping stone towards proving the Huh-Sturmfels
conjecture of Theorem 1.5.

Proof of Theorem 1.6. First, we consider the compactification (C∗)n ⊂ Pn, with homo-
geneous coordinates [p1, . . . , pn, p+] such that xi = pi

p+
. Then the hyperplane H ⊂ Pn is

defined by p+ − p1 − · · · − pn = 0, or equivalently, p0 = 0 with p+ = p0 + · · ·+ pn.
Let U = (C∗)n \ H, and let X = Pn. Then the boundary divisor D = X \ U is equal

to the union of all coordinate hyperplanes and H, which is a simple normal crossing
divisor. Notice that for any u ∈ Cn+1, the holomorphic 1-form

d log lu = u1d log x1 + · · ·+ und log xn + u0d log(1− x1 − · · · − xn)

on U extends to a logarithmic 1-form on X, that is, a global section of Ω1
X(logD).

Moreover, since the mixed Hodge structure on H1(U,Q) is of (1, 1)-type, there is a
natural isomorphism

H1(U,C) ∼= H0(X,Ω1
X(logD)),

and hence dimH0(X,Ω1
X(logD)) = n+ 1. On the other hand, the 1-forms d log lu form

a vector space of dimension n+ 1. Thus, there is a one-to-one correspondence between
the 1-forms d log lu and the global sections of Ω1

X(logD). Under this correspondence,
H0(X,Ω1

X(logD)) has a natural basis, given by

d log x1, . . . , d log xn, and d log(1− x1 − · · · − xn).

Since the vector bundle Ω1
X(logD) is globally generated, the evaluation map

H0(X,Ω1
X(logD))⊗C OX → Ω1

X(logD)

is surjective. Identifying H0(X,Ω1
X(logD)) with Cn+1 using the above basis, we denote

the corresponding map on the total spaces by

ρ : X × Cn+1 → T ∗(X,D).

The likelihood correspondence LY is defined as the closure in Pn × Pn+1 of

L◦Y :=
{

(p, u) ∈ Y ◦reg × Cn+1 | p is a critical point of lu|Y ◦reg
}
,
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where Y ◦ = Y \ H. Thus, by definition, we have

L◦Y = ρ−1
(
T ∗Y ◦regU

)
.

Taking closure in X × Cn+1 = Pn × Cn+1, we have

(17) LY ∩ (Pn × Cn+1) = ρ−1
(
T ∗Y ◦U

log
)
.

Since Pn×Cn+1 is a trivial vector bundle over Pn, its fiber-wise compactification is equal
to Pn × Pn+1. Since LY ∩ (Pn ×Cn+1) is a conic subvariety of Pn ×Cn+1 and its closure
in Pn × Pn+1 is equal to LY , we get by (5) that, if

cP
n×Cn+1

∗
(
LY ∩ (Pn × Cn+1)

)
=

dimY∑
i=0

αi[Pi] ∈ A∗(Pn),

then

[LY ] =
dimY∑
i=0

αi[Pi × Pn+1−i] ∈ A∗(Pn × Pn+1).

Now, considering EuY ◦ as a constructible function on X = Pn with value zero outside
Y ◦ and denoting its signed Chern-Schwartz-MacPherson class by čMa(Y

◦) ∈ A∗(Pn), we
have

cP
n×Cn+1

∗
(
LY ∩ (Pn × Cn+1)

)
=cT

∗(X,D)
∗

(
T ∗Y ◦U

log
)

=(−1)dimY · čMa(Y
◦),

where the first equality follows from (17) and Lemma 2.3, and the second equality follows
from Theorem 1.1, Proposition 2.1 and (3). Finally, combining the above three displayed
equations, we can conclude Theorem 1.6. �

We are now ready to prove the Huh-Sturmfels conjecture.

Proof of Theorem 1.5. Let ϕ = EuY ◦ , considered as a constructible function on Pn. By
Theorem 1.6 and Corollary 1.7, respectively, we have

BY (p, u) = (−1)dimY γϕ

(
−u

p

)
pn, and SY (p, u) = (−1)dimY χϕ

(
u

p

)
pn,

with γϕ and χϕ as defined in Section 2.3. By Corollary 2.5, we have

SY (p, u) =(−1)dimY χϕ

(
u

p

)
pn

=(−1)dimY

u
p
γϕ(−u

p
− 1) + γϕ(0)
u
p

+ 1
pn

=(−1)dimY
uγϕ(−u+p

p
) + pγϕ(0)

u + p
pn

=
u

u + p
BY (p, u + p) +

p

u + p
BY (p, 0),
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which is one of the involution formulas. The other involution formula can be checked by
similar computations. �

Now we give two examples of the Huh-Sturmfels involution.

Example 4.1 (Singular cubic 3-folds). For a focused family of examples, we choose the
following singular cubic 3-folds in (C∗)5. We assume X is defined by f1 = x1+· · ·+x5−1
and a cubic polynomial f2 of the form

f2 = (x2 + x3 + x4 + x5)
3 − L · (x1 + x2 + x3 + x4)

2

where L is some linear polynomial. The singular locus of X is independent of L; it is

V (x1 + · · ·+ x5 − 1, x2 + x3 + x4 + x5, x1 − x3 − x4 − x5) ∩ (C∗)5.

L BYk and SYk
2x1 + 3x2 + 5x3 + 7x4 19 p4 + 15 p3u + 9 p2u2 + 3 p u3

19 p4 + 27 p3u + 15 p2u2 + 3 p u3

x0 + x1 11 p4 + 12 p3u + 9 p2u2 + 3 p u3

11 p4 + 24 p3u + 15 p2u2 + 3 p u3

x0 6 p4 + 6 p3u + 6 p2u2 + 3 p u3

6 p4 + 15 p3u + 12 p2u2 + 3 p u3

x1 6 p4 + 8 p3u + 7 p2u2 + 3 p u3

6 p4 + 18 p3u + 13 p2u2 + 3 p u3

x4 5 p4 + 7 p3u + 7 p2u2 + 3 p u3

5 p4 + 17 p3u + 13 p2u2 + 3 p u3

x1 + x2 + x3 + x4 + x5 5 p4 + 5 p3u + 5 p2u2 + 3 p u3

5 p4 + 13 p3u + 11 p2u2 + 3 p u3

Table 1. ML Bidegrees and sectional degrees of singular cubics

Example 4.2 (Independence models). The next example is motivated by statistics.
Consider the variety of order k rank one 2× 2× · · · × 2 tensors, which we denote by Yk.
In algebraic statistics this variety is known as an independence model, and is known to
have ML degree one.

We use numerical algebraic geometry to determine the ML bidegrees of Yk. The re-
sults are recorded in Table 4.2. Specifically, we use a parameterization and a numerical
implementation of [10, Algorithm 18]. By Theorem 1.5, we also find the sectional ML
degrees. In this example, computing the sectional ML degrees using numerical compu-
tation is more difficult because we don’t have a nice parameterization of Yk ∩ L where
L is a generic linear space. In general, our computations and the OEIS suggest these
formulas:

BYk(p, u) = pn +
k∑
i=1

(
i!

(
k

i

)
pn−iui

)
and SYk(p, u) = pn +

k∑
i=1

i!

(
k

i

)
· pn−1u+ · · · .

https://oeis.org/search?q=1%2C4%2C15%2C64&language=english&go=Search
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k =dim(Yk) n = 2k − 1 BYk and SYk
2 4 p3 + 2 p2u + 2 p u2

p3 + 4 p2u + 2 p u2

3 8 p7 + 3p6u + 6p5u2 + 6p4u3

p7 + 15p6u + 18p5u2 + 6p4u3

4 16 p15 + 4p14u + 12p13u2 + 24p12u3 + 24p11u4

p15 + 64p14u + 132p13u2 + 96p12u3 + 24p11u4

Table 2. ML Bidegree for rank one tensors
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