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Hopf Conjecture

♣ Curvature conditions restrict the topology of a smooth manifold.

Sample Theorem (Berger, Klingenberg, Brendle-Schoen)

If a simply-connected Riemannian manifold has sectional curvature
satisfying 1/4 < sec(X ) ≤ 1, then it is homeomorphic to a sphere.
Moreover, it is diffeomorphic to the standard sphere.

Conjecture (Hopf, 1931)

Let X be a closed Riemannian manifold of real dimension 2n, with
sectional curvature sec(X ). Then:

sec(X ) ≤ 0 =⇒ (−1)n · χ(X ) ≥ 0

sec(X ) < 0 =⇒ (−1)n · χ(X ) > 0

sec(X ) ≥ 0 =⇒ χ(X ) ≥ 0

sec(X ) > 0 =⇒ χ(X ) > 0
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Singer Conjecture

Definition

A connected CW complex X is called aspherical if its universal
cover X̃ is contractible. (E.g., abelian varieties, ball quotients, etc.)

Remark

(Cartan-Hadamard) If X is a closed Riemannian manifold with
sec(X ) ≤ 0, then X is aspherical.

Conjecture (Singer)

If X is a closed aspherical topological manifold of real dimension
2n, then all L2-Betti numbers of X̃ vanish except (possibly) in
degree n, hence (−1)n · χ(X ) ≥ 0.
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What’s known?

♣ The Singer and Hopf (sec ≤ 0) conjectures are true for:

n = 1: by the uniformization theorem for Riemann surfaces

n = 2 & sec ≤ 0, via Gauss-Bonnet (Chern & Milnor)

aspherical compact complex surfaces, via Enriques–Kodaira
classification (Johnson-Kotschick)

if X compact Kähler:

hyperbolic manifolds, e.g., sec < 0 (Gromov)
nonelliptic manifolds, e.g., sec ≤ 0 (Cox-Xavier, Jost-Zuo)
if X carries a holomorphic 1-form with finitely many zeros
(Llosa Isenrich-Py)

· · ·
♣ new perspectives in recent works of Liu-M.-Wang,
Arapura-Wang, M., Albanese-Di Cerbo-Lombardi, ...
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Relation to (semi)positivity

♣ In the Kähler context, curvature constraints are related to
(semi)positivity of the complex (co)tangent bundle.

Definition

A vector bundle E is ample (resp. nef) if the line bundle O(1) on
P(E ) is ample (resp. nef).

Example

If E is globally generated, then E is nef.
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Proposition (Demailly-Peternell-Schneider)

If X is a compact Kähler manifold, then:

sec(X ) < 0 =⇒ T ∗X is ample

sec(X ) ≤ 0 =⇒ T ∗X is nef (KX is nef, X is minimal)

sec(X ) > 0 =⇒ TX is ample (X ∼= Pn by Mori, Siu-Yau)

sec(X ) ≥ 0 =⇒ TX is nef (classified by Campana-Peternell
Conjecture).

Theorem (Fulton-Lazarsfeld, Demailly-Peternell-Schneider)

Let E be a rank r nef (resp., ample) vector bundle on a Kähler
manifold X . For any r -dim. conic subvariety C of E , one has

C · ZE ≥ 0 (resp., > 0),

where ZE is the zero section of E , and C · ZE is the intersection
number of cycles in E .
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♣ In the Kähler context, the Singer-Hopf conjecture can be
approached in relation to the (semi)positivity of T ∗X .
♣ If X is a compact Kähler manifold of cx. dim. n,

(−1)n · χ(X ) =

∫
X
cn(T

∗X ) = T ∗
XX · T ∗

XX ,

with T ∗
XX the zero section of T ∗X . So, if

T ∗X is nef, e.g., sec(X ) ≤ 0: (DPS) =⇒ (−1)n · χ(X ) ≥ 0

T ∗X is ample, e.g., sec(X ) < 0: (FL) =⇒ (−1)n · χ(X ) > 0

♣ So the Singer-Hopf conjecture in the Kähler setting reduces to:

Conjecture (Liu-M.-Wang)

If X is an aspherical compact Kähler manifold then T ∗X is nef.

Example

The class of Kähler manifolds whose cotangent bundles are nef is
closed under taking products, finite unramified covers, and
subvarieties (e.g. smooth subvarieties of abelian varieties).
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Remark

(−1)n · χ(X ) = χ(X ,CX [n]) = T ∗
XX · T ∗

XX

CX [n] ∈ Perv(X ) with CC (CX [n]) = T ∗
XX .

More generally,

Theorem (Liu-M.-Wang)

If X is a compact Kähler manifold with T ∗X nef, and
P ∈ Perv(X ), then χ(X ,P) ≥ 0.

♣ proof uses 2 ingredients:

Kashiwara index theorem: χ(X ,P) = CC (P) · T ∗
XX , where

CC is the characteristic cycle.

Demailly-Peternell-Schneider theorem, using that CC (P) is an
effective cycle for P ∈ Perv(X ).
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Conjecture (Liu-M.-Wang, Arapura-Wang)

If X is an aspherical compact Kähler manifold and P ∈ Perv(X ),
then χ(X ,P) ≥ 0.

Remark

The theorem and conjecture apply to any bounded constructible
complex on X with an effective characteristic cycle, e.g., the
IC -complex, a characteristic complex, or the DT-sheaf for any
closed irreducible subvariety Z ⊆ X .

Corollary

If T ∗X is nef, and Z ⊆ X is a closed irreducible subvariety, then:

(−1)dimZ · χIH(Z ) ≥ 0.

(−1)dimZ · χ(Z ,EuZ ) ≥ 0, where EuZ is the local Euler
obstruction function of MacPherson.

χvir (Z ) := χ(Z , νZ ) ≥ 0, where νZ is Behrend’s function and
χvir (Z ) is the DT invariant.
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Remark

If X is an aspherical complex projective manifold, the Shafarevich
conjecture implies that the universal cover X̃ is Stein.

Theorem (Kratz)

If X is a complex projective manifold whose universal cover X̃ is a
bounded domain in a Stein manifold, then T ∗X is nef.

♣ It is not true that if X̃ is a Stein manifold then T ∗X is nef (Y.
Wang, 2022). However, the known such examples are not
aspherical (Di Cerbo-Pardini, 2023).
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Conjecture (M.)

If X is a complex projective manifold with universal cover X̃ a
Stein manifold, then X admits a finite morphism f : X → Y to a
complex projective manifold Y with T ∗Y nef.

The conjecture is motivated by the following result, and it reduces
Singer-Hopf in the projective context to the Shafarevich conjecture:

Theorem (M.)

Let X be a complex projective manifold and let F � be a
constructible complex on X with effective characteristic cycle.
Assume X admits a finite morphism f : X → Y to a complex
projective manifold Y with nef cotangent bundle (e.g., Y has
non-positive sectional curvature). Then χ(X ,F �) ≥ 0.
Moreover, the inequality is strict if T ∗Y is ample (e.g., Y has
negative sectional curvature).
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Hodge refinements of the Singer-Hopf Conjecture

♣ If X is a compact complex manifold , then

χ(X ) =
∑
p≥0

(−1)p · χp(X ),

with χp(X ) := χ(X ,Ωp
X ), and χp(X ) = (−1)nχn−p(X ) by Serre

duality.

Conjecture (Arapura-M.-Wang)

If X is a compact Kähler manifold of dimension n which is
aspherical or has a nef cotangent bundle, then for any 0 ≤ p ≤ n
one has:

(−1)n−p · χp(X ) ≥ 0.

♣ If p = n, Kollár’s conjecture: χ(X ,KX ) ≥ 0
(for π1(X ) generically large)
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Known cases of the conjecture

♣ The conjecture is true in the following cases:

Kähler hyperbolic manifolds, e.g., sec < 0 (Gromov)

Kähler nonelliptic manifolds, e.g., sec ≤ 0 (Jost-Zuo)

If albX : X → Alb(X ) is semi-small, by a Nakano-type generic
vanishing theorem for Ωp

X ’s (Popa-Schnell)

if T ∗X is globally generated (since albX is an immersion)

aspherical compact complex surfaces, via Enriques–Kodaira
classification, Winkelnkemper’s inequality and Riemann-Roch
(Arapura-M.-Wang, Albanese-Di Cerbo-Lombardi)

smooth projective curves and surfaces with T ∗X nef, via
Riemann-Roch, positivity for T ∗X , and BMY inequality
(Arapura-M.-Wang).
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Theorem (Arapura-M.-Wang, Albanese-Di Cerbo-Lombardi)

Let X be an aspherical smooth complex compact surface. Then
χ(X ,Ω2

X ) = χ(X ,OX ) ≥ 0 and χ(X ,Ω1
X ) ≤ 0

♣ Ingredients:

with χ = χ(X ), σ = σ(X ), one gets by Riemann-Roch

χ(X ,Ω2
X ) = χ(X ,OX ) =

1

4
(χ+ σ), χ(X ,Ω1

X ) =
1

2
(σ − χ)

Johnson-Kotschick: Winkelnkemper’s inequality χ ≥ |σ| holds,
unless X is a ruled surface over a curve of genus ≥ 2 (none of
these is aspherical).
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Theorem (Arapura-M.-Wang)

Let X be a complex projective manifold of dimension n ≤ 4 with
T ∗X nef. Then

χ(X ,KX ) = (−1)n · χ(X ,OX ) ≥ 0.

♣ Ingredients:

Riemann-Roch

Demailly-Peternell-Schneider for T ∗X

BMY inequality
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Hopf conjecture for sec ≥ 0

Conjecture (Hopf, 1931)

If X is an even-dimensional closed Riemannian manifold with
sec(X ) ≥ 0, then χ(X ) ≥ 0. If sec(X ) > 0, then χ(X ) > 0.

♣ proved in dim. 2 (via Gauss-Bonnett) and 4 (via Bonnet-Myers)
♣ very few examples of spaces with sec > 0
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(Semi)positivity for the tangent bundle

♣ Recall that if X is a compact Kähler manifold with sec(X ) ≥ 0,
then TX is nef.

Proposition (Demailly-Peternell-Schneider)

If X is a compact Kähler manifold with TX nef, then χ(X ) ≥ 0.

♣ Recall that
χ(X ) =

∑
p≥0

(−1)p · χp(X ),

with χp(X ) := χ(X ,Ωp
X ).

Conjecture (Arapura-M.-Wang)

If X is a compact Kähler manifold of dimension n with TX nef,
then for any 0 ≤ p ≤ n one has

(−1)p · χp(X ) ≥ 0
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♣ Demailly-Peternell-Schneider: it suffices to assume X is a Fano
manifold (i.e., a complex projective manifold with K−1

X ample).

Lemma

If the complex projective manifold X has a cellular decomposition
(e.g., X is rational homogenous), then (−1)p · χp(X ) > 0 for all
p ≤ dimX .

Example

If TX is globally generated, the conjecture holds. Indeed, a smooth
projective variety with TX globally generated is a homogeneous
variety, so it has a cellular decomposition.

More generally, the conjecture can be reduced to:

Conjecture (Campana-Peternell)

Any Fano manifold with nef tangent bundle is rational
homogeneous (i.e., G/P, with G a semi-simple Lie group and P a
parabolic subgroup).
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Theorem (Arapura-M.-Wang)

If X is a compact Kähler manifold of dimension n with
non-negative bisectional curvature (e.g., non-negative sectional
curvature), then for 0 ≤ p ≤ n one has

(−1)p · χp(X ) ≥ 0.

♣ If X has non-negative bisectional curvature then TX is nef, so
the theorem proves a special case of the conjecture.
♣ Ingredients of the proof:

X Fano =⇒ X is simply-connected

Mok’s classification of compact Kähler manifolds with
non-negative bisectional curvature implies that X admits a
cellular decomposition.
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Other open questions

The conjecture of Arapura-M.-Wang can also be deduced from the
following weaker conjectures:

Conjecture (Arapura-M.-Wang)

If X is a Fano manifold with TX nef, then hp,q(X ) = 0, ∀p ̸= q.

Conjecture (Arapura-M.-Wang)

If X is a Fano manifold with TX nef, then X admits a holomorphic
vector field with only isolated zeros.

♣ True if TX is globally generated (by Bott’s residue formula and
Bertini’s theorem).
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Thank you !
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