Toric varieties, characteristic classes and lattice point counting

> LAURENTIU MAXIM University of Wisconsin-Madison

(joint with J. Schürmann)

LAURENTIU MAXIM University of Wisconsin-Madison

Motivation: Counting lattice points in Polytopes

• Lattice Polytope:

$$P := conv(S) \subset M_{\mathbb{R}} \cong \mathbb{R}^n,$$

for $S \subset M \cong \mathbb{Z}^n$ a finite set in a lattice M.

- assume P is full-dimensional, i.e., dim P = n.
- *Problem*: Calculate $#(\ell P \cap M)$, for $\ell \in \mathbb{Z}_{>0}$.
- Geometric Approach:
 - consider the associated (possibly singular) projective toric variety X_P with Cartier divisor D_P.
 - Ehrhart polynomial of *P*:

$$\operatorname{Ehr}_{P}(\ell) := \#(\ell P \cap M) = \sum_{k \geq 0} a_{k} \ell^{k},$$

with

$$a_k = rac{1}{k!} \int_{X_P} [D_P]^k \cap td_k(X_P).$$

• So computing $\#(\ell P \cap M)$ amounts to the computation of the (homology) Todd classes $td_*(X_P)$. LAURENTIL MAXIM University of Wisconsin-Madison

Cones

- $M \simeq \mathbb{Z}^n$ *n*-dimensional lattice in \mathbb{R}^n .
- $N = \operatorname{Hom}(M, \mathbb{Z})$ the dual lattice.
- natural pairing: $\langle \cdot, \cdot \rangle : M \times N \to \mathbb{Z}$.
- A cone $\sigma \subset N_{\mathbb{R}} := N \otimes \mathbb{R}$ is a subset

$$\sigma = \operatorname{cone}(S) := \{ \sum_{u \in S} \lambda_u \cdot u \mid \lambda_u \ge 0 \},\$$

for some finite set $S \subset N$.

- For each *ray* (i.e., 1-dimensional face) ρ of σ, let u_ρ be the unique generator of the semigroup ρ ∩ N.
- The {u_ρ}_{ρ∈σ(1)} are the generators of σ, with σ(1) the collection of rays of σ.
- A cone σ is called
 - *smooth* if it is generated by a subset of a \mathbb{Z} -basis of N.
 - *simplicial* if its generators are linearly independent over \mathbb{R} .

- dual cone of σ is: $\check{\sigma} = \{ m \in M_{\mathbb{R}} \mid \langle m, u \rangle \ge 0, \forall u \in \sigma \}.$
- cone $\sigma \rightsquigarrow$ affine toric variety $U_{\sigma} := Spec(\mathbb{C}[M \cap \check{\sigma}]).$
- **Example**: If $0 \le r \le n$ and $\sigma = cone(e_1, \cdots, e_r) \subset \mathbb{R}^n$, then:

$$\begin{split} \check{\sigma} &= cone(e_1^*, \cdots, e_r^*, \pm e_{r+1}^*, \cdots, \pm e_n^*) \\ U_{\sigma} &= Spec\left(\mathbb{C}[x_1, \cdots, x_r, x_{r+1}^{\pm 1}, \cdots x_n^{\pm 1}]\right) \simeq \mathbb{C}^r \times (\mathbb{C}^*)^{n-r}. \end{split}$$
 In particular, $U_{\{0\}} = (\mathbb{C}^*)^n$.

• A fan Σ in $N_{\mathbb{R}}$ is a finite collection of cones so that:

- if $\sigma \in \Sigma$, then any face of σ is also in Σ .
- if $\sigma_1, \sigma_2 \in \Sigma$, then $\sigma_1 \cap \sigma_2$ is a face of each.
- fan $\Sigma \rightsquigarrow$ toric variety X_{Σ} defined as:

$$X_{\Sigma} = \bigcup_{\sigma \in \Sigma} U_{\sigma},$$

with U_{σ_1} and U_{σ_2} glued along $U_{\sigma_1 \cap \sigma_2}$.

•
$$\begin{cases} U_{\sigma_0} = Spec(\mathbb{C}[x, y]) = \mathbb{C}^2_{(x, y)} \\ U_{\sigma_1} = Spec(\mathbb{C}[x^{-1}, x^{-1}y]) = \mathbb{C}^2_{(x^{-1}, x^{-1}y)} \\ U_{\sigma_2} = Spec(\mathbb{C}[y^{-1}, xy^{-1}]) = \mathbb{C}^2_{(y^{-1}, xy^{-1})} \end{cases}$$

• $X_{\Sigma} = \mathbb{P}^2_{\mathbb{C}}$ of coordinates $(z_0 : z_1 : z_2)$, with $x = \frac{z_1}{z_0}$, $y = \frac{z_2}{z_0}$.

- U_{0} = (C^{*})ⁿ is an affine open subset of X_Σ.
- action of T_N = (C^{*})ⁿ on itself extends to an algebraic action of T_N on X_Σ with finitely many orbits, one for each σ ∈ Σ.
- cone $\sigma \rightsquigarrow$ orbit $O_{\sigma} \rightsquigarrow$ orbit closure $V_{\sigma} := \bar{O}_{\sigma}$.
- ray $\rho \in \Sigma(1) \rightsquigarrow$ irreducible T_N -invariant divisor $V_\rho \subset X_{\Sigma}$.
- geometry of X_{Σ} depends on the properties of the fan Σ , e.g.:
 - X_{Σ} is smooth iff all cones of Σ are smooth.
 - X_{Σ} is simplicial (i.e., orbifold) iff all cones of Σ are simplicial.
 - X_{Σ} is compact iff Σ is a complete fan, i.e., $\bigcup_{\sigma \in \Sigma} \sigma = N_{\mathbb{R}}$.

Lattice polytopes, Fans and Toric Varieties: $P \rightsquigarrow \Sigma_P \rightsquigarrow X_P$

- $P \subset M_{\mathbb{R}} = \mathbb{R}^n$ full-dimensional lattice polytope.
- each facet F (codimension one face of P) has a unique inward-pointing facet normal with ray generator u_F.
- $P \rightsquigarrow inner normal fan \Sigma_P := \{ \sigma_Q \mid Q \text{ face of } P \}$, with

$$Q \rightsquigarrow \sigma_Q := \operatorname{cone}\left(u_F \mid F \supseteq Q\right)$$

• toric variety $X_P := X_{\Sigma_P}$.

$$X_P = \mathbb{P}^2_{\mathbb{C}}$$

• facet
$$F \rightsquigarrow ray \rho_F = cone(u_F) \rightsquigarrow divisor V_F := \overline{O}_{\rho_F}$$
.

• *P* has a unique *facet presentation*:

$$P = \{ m \in M_{\mathbb{R}} \mid \langle m, u_F \rangle \ge -a_F, \forall F \text{ facet of } P \}$$

• $D_P := \sum_F a_F V_F$ is ample Cartier divisor, so X_P is projective.

• if *P* is *simple* (each vertex is the intersection of dim(*P*) facets) then *X*_{*P*} is simplicial.

Counting lattice points. Pick's formula.

• Danilov:

$$\#(P \cap M) = \chi(X_P, \mathcal{O}(D_P)) \stackrel{(RR)}{=} \int_{X_P} ch(\mathcal{O}(D_P)) \cap td_*(X_P)$$
$$= \sum_{k \ge 0} \frac{1}{k!} \int_{X_P} [D_P]^k \cap td_k(X_P).$$

• if
$$n = 2$$
:
 $td_*(X_P) = [X_P] + \frac{1}{2} \sum_F [V_F] + [pt],$

so by evaluating \int_{X_P} , get *Pick's formula*:

$$\#(P\cap M)=A$$
rea $(P)+rac{\#(\partial P\cap M)}{2}+1.$

homology *Hirzebruch classes* of *X* (Brasselet-Schürmann-Yokura):

$$\mathcal{T}_{y*}, \, \widehat{\mathcal{T}}_{y*} : \mathcal{K}_0(\mathit{var}/X) \to \mathcal{H}^{\mathcal{B}M}_{2*}(X) \otimes \mathbb{Q}[y],$$

so that

$$T_{y*}(X) := T_{y*}([id_X]), \ \widehat{T}_{y*}(X) := \widehat{T}_{y*}([id_X]),$$

and if X compact and * = 0:

$$egin{aligned} \chi_y(X) &:= \sum_{j,p} \, (-1)^j \dim_{\mathbb{C}} Gr^p_F H^j(X,\mathbb{C}) \cdot (-y)^p \ &= \int_X \mathcal{T}_{y*}(X) = \int_X \widehat{\mathcal{T}}_{y*}(X). \end{aligned}$$

• if X is smooth and $\{\alpha\}$ are the Chern roots of TX, then:

$$T_{y*}(X) = \prod_{\alpha} Q_y(\alpha) \cap [X], \qquad Q_y(\alpha) = \frac{\alpha(1 + ye^{-\alpha})}{1 - e^{-\alpha}}.$$

$$\widehat{T}_{y*}(X) = \prod_{\alpha} \widehat{Q}_{y}(\alpha) \cap [X], \quad \widehat{Q}_{y}(\alpha) = \frac{\alpha(1 + ye^{-\alpha(1+y)})}{1 - e^{-\alpha(1+y)}}.$$

$$\widehat{Q}_{y}(lpha) = egin{cases} 1+lpha & y=-1\ rac{lpha}{1-e^{-lpha}} & y=0\ rac{lpha}{ an an lpha lpha} & y=1. \end{cases}$$

• So, if X is smooth:

۲

$$\widehat{T}_{y*}(X) = egin{cases} c^*(X) \cap [X] & y = -1 \ td^*(X) \cap [X] & y = 0 \ L^*(X) \cap [X] & y = 1. \end{cases}$$

If X is a singular toric variety, then:

$\widehat{T}_{y*}(X)$		
y = -1	y = 0	y = 1
		X proj. simplicial
$c_*(X)\otimes \mathbb{Q}$	$td_*(X)$	$L_*(X)$
$c_*(X) := c_*(1_X)$	$td_*(X) := td_*([\mathcal{O}_X])$	$L_*(X) := L_*([IC_X])$
$c_*: \operatorname{Cons}(X) \to H_*(X)$	$\mathit{td}_*: \mathit{K}_0(\mathrm{Coh}(X)) ightarrow \mathit{H}_*(X)$	
MacPherson	Baum-Fulton-MacPherson	Milnor-Thom

Problem: Compute these classes for a given toric variety $X = X_{\Sigma}$.

Proposition (M-Schürmann)

If $X := X_{\Sigma}$ is a toric variety, then:

$$T_{y*}(X) = \sum_{p=0}^{\dim(X)} td_*([\widetilde{\Omega}_X^p]) \cdot y^p,$$

where $\widetilde{\Omega}_X^p$ is the sheaf of Zariski p-forms (e.g., $\widetilde{\Omega}_X^{\dim(X)} \cong \omega_X$ is the canonical sheaf of X, while $\widetilde{\Omega}_X^0 \cong \mathcal{O}_X$ is the structure sheaf).

Theorem A (M-Schürmann)

If $X = X_{\Sigma}$ is a toric variety, and for $\sigma \in \Sigma$ we let $V_{\sigma} := \bar{O}_{\sigma}$, then:

$$egin{aligned} & T_{y*}(X) = \sum_{\sigma \in \Sigma} \, (1+y)^{\dim(O_\sigma)} \cdot td_*([\omega_{V_\sigma}]). \ & td_*([\omega_X]) = \sum_{\sigma \in \Sigma} \, (-1)^{\operatorname{codim}(O_\sigma)} \cdot td_*(V_\sigma). \ & \widehat{T}_{y*}(X) = \sum_{\sigma \in i} \, (-1-y)^{\dim(O_\sigma)-i} td_i(V_\sigma). \end{aligned}$$

Note: $td_k([\omega_X]) = (-1)^{\dim(X)-k} td_k(X)$.

Corollary

(a) (Ehler's formula) The (rational) MacPherson-Chern class $c_*(X)$ of a toric variety $X = X_{\Sigma}$ is computed by:

$$c_*(X) = \sum_{\sigma \in \Sigma} [V_\sigma].$$

(b) The Todd class $td_*(X)$ of a toric variety satisfies:

$$td_*(X) = \sum_{\sigma \in \Sigma} td_*([\omega_{V_\sigma}]) = \sum_{\sigma,i} (-1)^{\dim(O_\sigma)-i} td_i(V_\sigma).$$

(c) The L-classes of a projective simplicial toric variety is given by:

$$L_*(X) = \sum_{\sigma,i} (-2)^{\dim(O_{\sigma})-i} \cdot td_i(V_{\sigma}).$$

Corollary

If $X = X_{\Sigma}$ is a compact toric variety, then: (a) The Hirzebruch polynomial $\chi_y(X)$ is computed by:

$$\chi_y(X) = \sum_{\sigma \in \Sigma} (-1 - y)^{\dim(O_\sigma)}.$$

(b) The Euler characteristic e(X) is computed by:

e(X) = number of maximal cones of Σ .

(c) The signature of a projective simplicial toric variety is given by:

$$sign(X) = \sum_{\sigma \in \Sigma} (-2)^{\dim(O_{\sigma})}.$$

Corollary (Generalized Pick formula)

If $X = X_P$ is the projective toric variety associated to a full-dimensional lattice polytope $P \subset M_{\mathbb{R}} \cong \mathbb{R}^n$, and $\ell \in \mathbb{Z}_{>0}$ then:

$$\sum_{Q \leq P} (1+y)^{\dim(Q)} \cdot \# (\operatorname{Relint}(\ell Q) \cap M) = \int_{X_P} e^{\ell [D_P]} \cap T_{y*}(X_P)$$
$$\stackrel{n=2}{=} (1+y)^2 \cdot \operatorname{Area}(P) + \frac{1-y^2}{2} \# (\partial P \cap M) + \chi_y(P).$$

Remark (y = 0)

$$\#(\ell P \cap M) = \sum_{Q \leq P} \#(\operatorname{Relint}(\ell Q) \cap M) = \int_{X_P} e^{\ell[D_P]} \cap td_*(X_P).$$

- Our results above hold for any *polytopal subcomplex* P' ⊂ P (e.g., P' = ∂P), and the associated torus-invariant closed algebraic subset X := X_{P'} of X_P.
- Theorem: The Ehrhart polynomial of the polytopal subcomplex P' ⊂ P is computed by:

$$\operatorname{Ehr}_{P'}(\ell) := \#(\ell P' \cap M) = \sum_{k \ge 0} a_k \ell^k,$$

with

$$a_k = rac{1}{k!} \int_X [D_P|_X]^k \cap td_k(X).$$

• Corollary: $(\ell = 0)$

$$\chi(P') := \sum_{Q \leq P'} (-1)^{\dim Q} = \chi_0(X) = \int_X td_*(X) = \chi(X, \mathcal{O}_X).$$

Definition

The *mock* (naive) *Hirzebruch class* of a *simplicial* toric variety $X = X_{\Sigma}$ is defined as:

$$\widehat{T}^{(m)}_{y*}(X) = \left(\prod_{
ho\in \mathbf{\Sigma}(1)} \widehat{Q}_y([V_
ho])
ight) \cap [X],$$

where $\widehat{Q}_{y}(\alpha) = \frac{\alpha(1+ye^{-\alpha(1+y)})}{1-e^{-\alpha(1+y)}}.$

Remark

If X is smooth, then:
$$\widehat{T}_{y*}(X) = \widehat{T}_{y*}^{(m)}(X)$$
.

Theorem B (M-Schürmann)

Let $X = X_{\Sigma}$ be a simplicial toric variety. Then:

$$\widehat{\mathcal{T}}_{y*}(X) = \widehat{\mathcal{T}}_{y*}^{(m)}(X) + \sum_{\sigma \in \mathbf{\Sigma}_{ ext{sing}}} \mathcal{A}_y(\sigma) \cap \, \widehat{\mathcal{T}}_{y*}^{(m)}(V_\sigma)$$

with

$$\mathcal{A}_{y}(\sigma) := rac{1}{m_{\sigma}} \cdot \sum_{g \in P_{\sigma}^{\circ} \cap \mathsf{N}} \prod_{
ho \in \sigma(1)} rac{1 + y \cdot a_{
ho}(g) \cdot e^{-[V_{
ho}](1+y)}}{1 - a_{
ho}(g) \cdot e^{-[V_{
ho}](1+y)}},$$

where, for a cone $\sigma = cone(\rho_1, \cdots, \rho_k)$ with generators u_1, \cdots, u_k ,

$$P_{\sigma} := \{ \sum_{i=1}^{k} \lambda_{i} u_{i} \mid 0 \leq \lambda_{i} < 1 \} , \quad P_{\sigma}^{\circ} := \{ \sum_{i=1}^{k} \lambda_{i} u_{i} \mid 0 < \lambda_{i} < 1 \},$$

 $m_{\sigma} := \#(P_{\sigma} \cap N)$, and $a_{
ho}(g) \neq 1$ are roots of unity of order m_{σ} .

Corollary

Since X_{Σ} is smooth in codimension one,

$$\widehat{T}_{y*}(X) = [X] + \frac{1-y}{2} \sum_{\rho \in \Sigma(1)} [V_{\rho}] + l.o.t.$$

If Σ is complete, then the degree-zero term is $\chi_{\gamma}(X) \cdot [pt]$.

Remark

- The proof of thm uses the Cox geometric quotient realization X = W/G of a simplicial toric variety, together with the Lefschetz-Riemann-Roch theorem.
- The mock classes $\widehat{T}_{y*}^{(m)}(V_{\sigma})$ can be regarded as tangential data for the fixed point sets of the action, while the coefficient $\mathcal{A}_{y}(\sigma)$ encodes normal data information.

Remark

- Can get a closed expression for the Ehrhart polynomial of a lattice *n*-simplex in ℝⁿ.
- Indeed, the above formula becomes very concrete in this case, since the associated toric variety is a (fake) weighted projective space, whose cohomology ring has only one generator.

Example (Weighted Projective Spaces)

If r > 1 and n > 1, the *n*-dimensional weighted projective space $X = \mathbb{P}(1, \dots, 1, r)$ has a unique isolated singularity.

$$\widehat{T}_{y*}(X) = \widehat{T}_{y*}^{(m)}(X) + \frac{1}{r} \sum_{\lambda^r = 1, \lambda \neq 1} \left(\frac{1 + \lambda y}{1 - \lambda}\right)^n \cdot [pt]$$

$$sign(X) = \int_X L_{y*}^{(m)}(X) + \frac{1}{r} \sum_{\substack{\lambda^r = 1, \lambda \neq 1 \\ \neq 0 \text{ for } \mathbb{P}(1,1,3)}} \left(\frac{1 + \lambda}{1 - \lambda}\right)^n$$

$$\chi_a(X) = \int_X td_{y*}^{(m)}(X) + \frac{1}{r} \sum_{\substack{\lambda^r = 1, \lambda \neq 1 \\ \neq 0 \text{ for } \mathbb{P}(1,1,2)}} \left(\frac{1}{1 - \lambda}\right)^n$$

THANK YOU !!!

LAURENTIU MAXIM University of Wisconsin-Madison