
ON THE MILNOR CLASSES OF COMPLEX HYPERSURFACES
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Abstract. We revisit known results about the Milnor class of a singular com-

plex hypersurface, and rephrase some of them in a way that allows for a better
comparison with the topological formula of Cappell and Shaneson for the L-

class of such a hypersurface. Our approach is based on Verdier’s specialization

property for the Chern-MacPherson class, and simple constructible function
calculus.

1. Introduction

It is well-known that for a compact complex hypersurface X with only isolated
singularities the sum of the Milnor numbers at the singular points measures (up to
a sign) the difference between the topological Euler characteristic of X and that of
a non-singular hypersurface linearly equivalent to X, provided such a hypersurface
exists. This led Parusiński to a generalization of the notion of Milnor number
to non-isolated hypersurface singularities (see [17]), which in the case of isolated
singularities reduces to the sum of Milnor numbers at the singular points.

For a (possibly singular) compact complex hypersurface X, the Euler charac-
teristic χ(X) equals the degree of the zero-dimensional component of the Chern-
MacPherson homology class c∗(X) ([16]). On the other hand, the Euler character-
istic of a non-singular hypersurface linearly equivalent to X is just the degree of
the Poincaré dual of the Chern class of the virtual tangent bundle of X, that is,
the degree of the Fulton-Jonson class cFJ∗ (X) ([11, 12]). Thus, Parusiński’s Milnor
number equals (up to a sign) the degree of the homology class cFJ∗ (X) − c∗(X).
It is therefore natural to try to understand the higher-degree components of this
difference class, which usually is called the Milnor class of X. The study of the Mil-
nor class also comes up naturally while searching for a Verdier-type Riemann-Roch
theorem for the Chern-MacPherson classes (see [21, 23, 24]); indeed, the Milnor
class measures the defect of commutativity in a Verdier-Riemann-Roch diagram for
MacPherson’s Chern class transformation.

While the problem of understanding the Milnor class in terms of invariants of
singularities can be formulated in more general contexts (e.g., for local complete
intersections, or regular embeddings in arbitrary codimension, see [20, 21]), in this
note we restrict ourselves, for simplicity, only to the case of hypersurfaces (i.e.,
regular embeddings in codimension 1) in complex manifolds. We recall known
results about the Milnor class of a singular hypersurface, and rephrase some of
these results in a way that, we believe, reflects better the geometry of the singular
locus in terms of its stratification. For more comprehensive surveys on Milnor
classes, the interested reader is advised to consult [2, 3, 18, 23].
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The approach presented in this note is based on a well-known specialization ar-
gument ([22]), and simple calculus of constructible functions as developed in [9].
While this approach is not new (see [19, 20, 21] for similar considerations), the
formulation of our main results (Thm.4.3, Cor.4.4 and Thm.4.6) has the advantage
of being conceptually very simple, and it allows for a better comparison with the
topological formula of Cappell-Shaneson [7, 8] for the L-classes of singular hyper-
surfaces. Indeed, we also explore a Chern-class analogue of Goresky-MacPherson’s
homology L-class [13], defined via the constructible function associated to the in-
tersection chain complex of a variety (see [9]). This class, which for a variety X
is denoted by Ic∗(X), encodes very detailed information about the geometry of a
fixed Whitney stratification of X. In the case of hypersurfaces, we compare this
class with the Fulton-Johnson class, and derive a formula for their difference in
terms of invariants of the singular locus.

2. Canonical bases for the group of constructible functions

Let X be a topological space with a finite partition V into a disjoint union of
finitely many connected subsets V satisfying the frontier condition:

W ∩ V̄ 6= ∅ =⇒W ⊂ V̄ .

The main examples of such spaces are complex algebraic or compact complex an-
alytic varieties with a fixed Whitney stratification. Consider on V the following
partial order:

W ≤ V ⇐⇒ W ⊂ V̄ .
We also write W < V if W ≤ V and W 6= V .

Let FV(X) be the abelian group of V-constructible functions on X, that is,
functions α : X → Z such that α|V is constant for all V ∈ V. This is a free abelian
group with basis

B1 := { 1V | V ∈ V },
so that any α ∈ FV(X) can be written as

(2.1) α =
∑
V ∈V

α(V ) · 1V .

In what follows, we will discuss two more canonical bases on FV(X), see [9] for
complete details. First, the collection

B2 := { 1V̄ | V ∈ V }

is also a basis for FV(X), since

1V̄ =
∑
W≤V

1W

and the transition matrix A = (aW,V ), with aW,V := 1 for W ≤ V and 0 otherwise,
is upper triangular with respect to ≤, with all diagonal entries equal to 1 (so A is
invertible). In this basis, a constructible function α ∈ FV(X) can be expressed by
the identity (cf. [9][Prop.2.1])

(2.2) α =
∑
V

α(V ) · 1̂V̄ ,
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where for each V ∈ V, 1̂V̄ is defined inductively by the formula

1̂V̄ = 1V̄ −
∑
W<V

1̂W̄ .

Note that if there is a stratum S ∈ V which is dense in X, i.e., S̄ = X, so V ≤ S
for all V ∈ V, then (2.2) can be rewritten as

(2.3) α = α(S) · 1X +
∑
V <S

(α(V )− α(S)) · 1̂V̄ .

If moreover α|S = 0, this reduces further to

(2.4) α =
∑
V <S

α(V ) · 1̂V̄ .

In order to describe the third basis for the group of constructible functions, as-
sume moreover that X is a topological pseudomanifold with a stratification V by
finitely many oriented strata of even dimension. Then, by definition, the strata
of V satisfy the frontier condition, and V is locally topologically trivial along each
stratum V , with fibers the cone on a compact pseudomanifold LV,X , the link of
V in X. Each stratum V , and also its closure V̄ , get an induced stratification of
the same type. Important examples are provided by a complex algebraic (or ana-
lytic) Whitney stratification of a reduced complex algebraic (or compact complex
analytic) variety.

For each V ∈ V, let ICV̄ be the intersection cohomology complex ([14]) associ-
ated to the closure of V in X. This is a V-constructible complex of sheaves (i.e.,
the restrictions of its cohomology sheaves to strata W < V are locally constant),
satisfying the normalization property that ICV̄ |V = QV (following Borel’s index-
ing conventions). After extending by zero, we regard all these intersection chain
sheaves as complexes on X. Let us fix for each W ∈ V a point w ∈W with inclusion
iw : {w} ↪→ X. We now define a constructible function icV̄ ∈ FV(X) by taking
stalkwise the Euler characteristic for the complex ICV̄ . That is, for w ∈ W < V
we let

(2.5) icV̄ (w) := χ(i∗wICV̄ ) = χ(IH∗(c◦LW,V )) def= Iχ(c◦LW,V ),

where c◦LW,V denotes the open cone on the link LW,V of W in V̄ , and Iχ(−) stands
for the intersection homology Euler characteristic. Moreover,

(2.6) icV̄ |V = 1V .

Since clearly supp(icV̄ ) = V̄ , it is now easy to see that the collection

B3 := { icV̄ | V ∈ V }

is another distinguished basis of FV(X). Indeed, by (2.6), the transition matrix to
the basis {1V } is upper triangular with respect to ≤, with all diagonal entries equal
to 1, so it is invertible. The advantage of working with the latter basis is that it
carries more information about the geometry of the chosen stratification.

Assume now that X has an open dense stratum S ∈ V so that V ≤ S for all
V ∈ V, e.g., X is an irreducible reduced complex algebraic (resp. compact complex
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analytic) variety. For each V ∈ V \ {S} define inductively

(2.7) îc(V̄ ) := icV̄ −
∑
W<V

îc(W̄ ) · Iχ(c◦LW,V ) ∈ FV(X).

Then any V-constructible function α ∈ FV(X) can be represented with respect to
the basis {icV̄ |V ∈ V} by the following identity (see [9][Thm.3.1]):

(2.8) α = α(s) · icX +
∑
V <S

(α(v)− α(s) · Iχ(c◦LV,Y )) · îc(V̄ ).

Note that in the particular case when α|S = 0, i.e., supp(α) ⊂ X \ S, (2.8) reduces
to the identity:

(2.9) α =
∑
V <S

α(V ) · îc(V̄ ),

which will become very important in the context of computing Milnor classes of
singular complex hypersurfaces. Also, if we plug α = 1X in equation (2.8), we
obtain under the assumptions in this paragraph the following comparison formula
(also valid if we replace X by the closure of any given stratum of V):

(2.10) 1X = icX +
∑
V <S

(1− Iχ(c◦LV,Y )) · îc(V̄ ).

3. Chern classes of singular varieties

For the rest of the paper we specialize to the complex algebraic (respectively,
compact complex analytic) context, with X a reduced complex algebraic (resp.,
compact complex analytic) variety. There are several “generalizations” of the Chern
class of complex manifolds to the context of such singular varieties. Among these
we mention here the Chern-MacPherson class [16] and the Fulton-Johnson class
[11, 12]. Both of them coincide with the Poincaré dual of the Chern class if the
variety is smooth.

3.1. The Chern-MacPherson class. The group Fc(X) of complex algebraically
(resp. analytically) constructible functions is defined as the direct limit of groups
FV(X), with respect to the directed system {V} of Whitney stratifications of X.
Moreover, there is a functorial pushdown transformation of constructible functions,
namely, a proper complex algebraic (resp. analytic) map f : X → Y induces a
group homomorphism

f∗ : Fc(X)→ Fc(Y ),

defined by
f∗(α)(y) := χ(α|f−1(y)),

for χ : Fc(X) → Z the constructible function which for a closed algebraic (resp.,
analytic) subspace Z of X is given by

χ(1Z) := χ(H∗(Z)) = χ(Z).

In particular, for such a closed subset Z ⊂ X we have that

f∗(1Z)(y) = χ(Z ∩ f−1(y)).

The fact that the pushdown f∗ is well-defined requires a stratification of the mor-
phism f (see [16]).
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The Chern class transformation of MacPherson [16] is the group homomorphism

c∗ : Fc(X)→ HBM
2∗ (X; Z)

which commutes with proper pushdowns, and is uniquely characterized by this
property together with the normalization axiom asserting that c∗(1X) = c∗(TX)∩
[X] if X is a complex algebraic (resp. analytic) manifold. Here c∗(TX) is the Chern
cohomology class of the tangent bundle TX. Also HBM

2∗ (−) stands for the even-
dimensional Borel-Moore homology. The Chern-MacPherson class of X is then
defined as

c∗(X) := c∗(1X) ∈ HBM
2∗ (X; Z).

If X is compact, the degree of c∗(X) is just χ(X), the topological Euler character-
istic of X. Similarly, we set

Ic∗(X) := c∗(icX),

which is another possible extension of Chern classes of manifolds to the singular
setting. Of course, if X is smooth then c∗(X) = Ic∗(X), but in general they differ
for singular varieties, their difference being a measure of the singular locus, which,
moreover, is computable in terms of the geometry of the stratification. Indeed, by
applying c∗ to the identity (2.10), we obtain the following comparison formula:

(3.1) c∗(X)− Ic∗(X) =
∑
V <S

(1− Iχ(c◦LV,Y )) · Îc∗(V̄ ).

If X is compact, the degree of Ic∗(X) is just Iχ(X), the intersection homology
Euler characteristic of X.

3.2. The Fulton-Johnson class. Let us assume that X is a local complete in-
tersection embedded in a complex manifold M with inclusion X

i
↪→ M . If NXM

denotes the normal cone of X in M , then the virtual tangent bundle of X, that is,

(3.2) TvirX := [i∗TM −NXM ] ∈ K0(X),

is a well-defined element in the Grothendieck group of vector bundles on X (e.g., see
[12][Ex.4.2.6]), so one can associate to the pair (M,X) an intrinsic homology class,
cFJ∗ (X) ∈ HBM

2∗ (X; Z), called the Fulton-Johnson class and defined by ([11, 12]):

(3.3) cFJ∗ (X) := c∗(TvirX) ∩ [X].

Of course, if X is also smooth, then TvirX coincides with the (class of the) usual
tangent bundle of X, and cFJ∗ (X) is in this case just the Poincaré dual of c∗(TX).

4. Milnor classes of hypersurfaces

This section is devoted to comparing the two notions of Chern classes mentioned
in the previous section. For simplicity, we restrict to the case when X is a hyper-
surface in a complex manifold M . As already mentioned, the Chern-MacPherson
class and the Fulton-Johnson class coincide if X is smooth. However, they differ in
the singular case. For example, if X has only isolated singularities, the difference is
(up to a sign) the sum of the Milnor numbers attached to the singular points. For
this reason, the difference cFJ∗ (X)− c∗(X) is usually called the Milnor class of X,
and is denoted by M(X).1 The Milnor class is a homology class supported on the

1The definition of the Milnor class usually includes a sign, but for simplicity we choose to
ignore it here.
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singular locus of X, and it has been recently studied by many authors using quite
different methods, e.g., see [1, 2, 3, 4, 5, 6, 19, 18, 20, 21, 23]. For example, it was
computed in [19] (see also [18, 23]) as a weighted sum in the Chern-MacPherson
classes of closures of singular strata of X, the weights depending only on the normal
information to the strata. The approach we follow here is that of [20, 21], and re-
lies only on the simple calculus of constructible functions, as outlined in Section 2,
together with a well-known specialization argument due to Verdier ([22]).

Assume in what follows that X is a reduced complex analytic hypersurface,
which is globally defined as the zero-set of a holomorphic function f : M → D with
a critical value at 0 ∈ D, for M a compact complex manifold and D the open unit
disc about 0 ∈ C. For each point x ∈ X, we have a corresponding Milnor fibration
with fiber

Mf,x := Bδ(x) ∩ f−1(t)
for appropriate choices of 0 < |t| � δ � 1.

Denote by L the trivial line bundle on M , obtained by pulling back by f the
tangent bundle of C. Then the virtual tangent bundle of X can be identified with

(4.1) TvirX = [TM |X − L|X ].

For each t 6= 0 small enough, each fiber Xt := f−1(t) is a compact complex
manifold. Moreover, by compactness, given a regular neighborhood U of X in M ,
there is a sufficiently small t so that Xt ⊂ U . Denote by it the corresponding
inclusion map. Also, let r : U → X be the obvious deformation retract. Verdier’s
specialization map in homology is then defined as the composition

(4.2) ψH = r∗ ◦ it∗ : H∗(Xt)→ H∗(X).

There is also a specialization map defined on the level of constructible functions
[22],

(4.3) ψCF : Fc(M)→ Fc(X),

which is just the constructible function version of Deligne’s nearby cycle functor
[10] for constructible complexes of sheaves. This is defined by the formula

(4.4) ψCF (α)(x) = χ(α · 1Mf,x
).

In particular,

(4.5) ψCF (1M ) = µX ∈ Fc(X),

where µX : X → Z is the constructible function defined by the rule:

(4.6) µX(x) := χ(Mf,x),

for all x ∈ X. This definition justifies the analogy with the nearby cycle functor
defined on the level of constructible complexes of sheaves.

Verdier’s specialization property for the Chern-MacPherson classes asserts that
for any α ∈ Fc(M) we have ([22]):

(4.7) ψHc∗(α|Xt
) = c∗(ψCF (α)).

In particular, by letting α = 1M and using (4.5), we have that

(4.8) ψHc∗(Xt) = c∗(µX).

We can now state the following easy (known) consequence:



MILNOR CLASSES OF HYPERSURFACES 7

Proposition 4.1.

(4.9) M(X) = c∗(µ̃X),

where µ̃X ∈ Fc(X) is the constructible function supported on the singular locus
of X, whose value at x ∈ X is defined by the Euler characteristic of the reduced
cohomology of the corresponding Milnor fiber, i.e.,

(4.10) µ̃X(x) := χ(H̃∗(Mf,x)).

Proof. First note that, since Xt is smooth,

(4.11) ψHc∗(Xt) = ψHc
FJ
∗ (Xt) = cFJ∗ (X),

where the last equality follows from the fact that the homology specialization map
σH carries (the dual of) the Chern classes of TM |Xt

and L|Xt
into (the dual of)

the Chern classes of TM |X and L|X , respectively (cf. [22]).
On the other hand,

(4.12) c∗(X) = c∗(µX)− c∗(µ̃X),

so the desired identity follows by combining (4.8) and (4.11).
�

Remark 4.2. Note that µ̃X is the constructible function analogue of Deligne’s
vanishing cycle functor defined on constructible sheaves. Indeed,

(4.13) µ̃X = φCF (1M ),

where φCF := ψCF − i∗, for i∗ : Fc(M) → Fc(X) the pullback (restriction) of
constructible functions defined by i∗(α) := α ◦ i.

We are now ready to prove the main result of this note:

Theorem 4.3. Let M be a compact complex manifold, and X a reduced hypersur-
face defined by the zero-set of a holomorphic function f : M → D with a critical
value at the origin. Fix a Whitney stratification V on X, and for each stratum
V ∈ V fix a point v ∈ V with corresponding Milnor fiber Mf,v. Then the Milnor
class of X, i.e., the class

M(X) := cFJ∗ (X)− c∗(X) ∈ H∗(X),

can be computed by the following formula:

M(X) =
∑

V ∈V, V⊂Sing(X)

χ(H̃∗(Mf,v)) ·
(
c∗(V̄ )− c∗(V̄ \ V )

)
=

∑
V ∈V, V⊂Sing(X)

χ(H̃∗(Mf,v)) · ĉ∗(V̄ ),

where for a stratum V ∈ V we let ĉ∗(V̄ ) be defined inductively as

ĉ∗(V̄ ) := c∗(V̄ )−
∑
W<V

ĉ∗(W̄ ).

If, moreover, X is irreducible and we let S denote the dense open stratum in X,
then:

(4.14) M(X) =
∑
V <S

χ(H̃∗(Mf,v)) · Îc∗(V̄ ),
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where for each V ∈ V, Îc∗(V̄ ) is defined inductively by

Îc∗(V̄ ) := Ic∗(V̄ )−
∑
W<V

Iχ(c◦LW,V ) · Îc∗(W̄ ),

for LW,V the link of W in V .2

Proof. Recall that by Prop. 4.1 we have:

(4.15) M(X) = c∗(µ̃X).

Moreover, the function µ̃X : X → Z is constructible with respect to the Whitney
stratification V. Therefore, as in (2.1) and (2.2), we can write:

µ̃X =
∑
V ∈V

µ̃X(v) · 1V

=
∑
V ∈V

µ̃X(v) · (1V̄ − 1V̄ \V )

=
∑
V ∈V

µ̃X(v) · 1̂V̄ .

Since smooth points have contractible Milnor fibers, only strata contained in the
singular locus of X contribute to the above sums. The first part of the theorem
follows from (4.15) by applying the Chern-MacPherson transformation c∗ to the
last two of the above equalities.

If X is irreducible with dense open stratum S, then as (2.9) we can write

µ̃X =
∑
V <S

µ̃X(v) · îc(V̄ ).

By applying c∗, we obtain the desired identity (4.14) from (4.15).
�

As a consequence, the Chern-MacPherson class and the Fulton-Johnson class
coincide in dimensions greater than the dimension of the singular locus. And it can
be seen from any of the above formulae that if X has only isolated singularities, the
Milnor class is (up to a sign) just the sum of the Milnor numbers at the singular
points.

By combining (3.1) and (4.14) we also obtain a comparison formula for the
Fulton-Johnson class cFJ∗ (X) and the Chern class Ic∗(X) defined via the intersec-
tion cohomology chain sheaf.

Corollary 4.4. If X as above is a reduced irreducible hypersurface with dense open
stratum S, then

(4.16) IM(X) := cFJ∗ (X)− Ic∗(X) =
∑
V <S

Îc∗(V̄ ) · (χ(Mf,v)− Iχ(c◦LV,X)) .

Note that by constructible function calculus, we have that

(4.17) IM(X) = c∗(ĨµX),

2By the functoriality of c∗, we can regard all classes c∗(V̄ ), ĉ∗(V̄ ) and Îc∗(V̄ ) associated to

a stratum V ∈ V as homology classes in H∗(X). This is the reason why we apply the Chern-
MacPherson transformation c∗ only to closed subvarieties of X.
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for ĨµX : X → Z the V-constructible function whose value at v ∈ V is given by

(4.18) ĨµX(v) = χ(Mf,v)− Iχ(c◦LV,X).

By its definition, ĨµX is supported on the singular locus of X, so (2.9) can be used
directly to prove (4.16).

Remark 4.5. Our formula (4.16) should be compared to the topological formula
of Cappell and Shaneson ([7, 8]) for the Goresky-MacPherson L-class ([13]) of an
irreducible reduced complex hypersurface X ⊂M as above, namely,

(4.19) L∗(TvirX)− L∗(X) =
∑
V <S

L∗(V̄ ) · σ(lk(V )),

where σ(lk(V )) ∈ Z is a certain signature invariant associated to the link pair
of the stratum V in (M,X). Here L∗(TvirX) := L∗(TvirX) ∩ [X], with L∗ the
L-polynomial of Hirzebruch ([15]) defined in terms of the power series x/tanh(x).
The comparison is motivated by the fact that the L-class of a singular variety X is a
topological invariant associated to the intersection cohomology complex of the vari-
ety. We should point out that the Cappell-Shaneson formula holds in much greater
generality, namely for real codimension two PL embeddings with even codimension
strata, and its proof relies on powerful algebraic cobordism decompositions of self-
dual sheaves. However, we believe that in the context of complex algebraic/analytic
geometry, a simpler proof could be given by using a specialization argument similar
to the one presented here.

More generally, assume that i : X ↪→ M is a regular embedding in codimension
one of complex algebraic (resp. compact complex analytic) spaces with M smooth.
Then X is locally defined in M by one equation {f = 0}, and the specialization
map ψCF : Fc(M)→ Fc(X) is still well-defined, as it is independent of the chosen
local equation for X. In particular, we still have that ψCF (1M ) = µ, whose value
at a point x ∈ X is given by the Euler characteristic of a local Milnor fiber at x.
In other words, if {f = 0} is a defining equation for X near x, then

(4.20) µ̃X(x) := χ(H̃∗(Mf,x)),

for Mf,x the corresponding Milnor fiber. Then arguments similar to those used in
this section apply to this more general situation, and yield the following result (cf.
[21][Cor.0.2] for equation (4.21) below)):

Theorem 4.6. Let i : X ↪→ M be a regular embedding in codimension one of
complex algebraic (resp. compact complex analytic) spaces with M smooth. Then,

(4.21) M(X) = c∗(NXM)−1 ∩ c∗(µ̃X),

with µ̃ the constructible function supported on the singular locus of X, whose value
at a point x ∈ X is given by the Euler characteristic of the reduced cohomology of
a local Milnor fiber at x. So, if we assume X irreducible with dense open stratum
S, then in the notations of Thm.4.3 we get:

M(X) =
∑
V <S

c∗(NXM)−1 ∩
(
c∗(V̄ )− c∗(V̄ \ V )

)
· µ̃X(v)

=
∑
V <S

c∗(NXM)−1 ∩ ĉ∗(V̄ ) · µ̃X(v)
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=
∑
V <S

c∗(NXM)−1 ∩ Îc∗(V̄ ) · µ̃X(v).

Similar considerations apply to IM(X). (Again, by functoriality, we regard all
classes defined on the closure of a given stratum as homology classes in X.)

We conclude this note by recalling some functoriality results for the Milnor class
of hypersurfaces (see [21, 25] for complete details). More precisely, we are concerned
with the behavior of the Milnor class under a proper pushdown. Similar results were
obtained in [9] for the Chern-MacPherson classes c∗(−) and Ic∗(−), respectively.

Let us consider the cartesian diagram

X̃
j−−−−→ M̃

f

y yπ
X

i−−−−→ M

with M and M̃ compact analytic manifolds, and π : M̃ → M a proper morphism.
Also assume that i and j are regular closed embeddings of (local) codimension one,
with M irreducible. Then it’s easy to see that NX̃M̃ ' f∗(NXM). Therefore, by
(4.21) and the projection formula, one has that

f∗M(X̃) = f∗(c∗(NX̃M̃)−1 ∩ c∗(µ̃X̃))

= f∗(f∗c∗(NXM)−1 ∩ c∗(µ̃X̃))

= c∗(NXM)−1 ∩ f∗c∗(µ̃X̃).

Next, by the functoriality of c∗ and the definition of µ̃X̃ in (4.13) we obtain

f∗c∗(µ̃X̃) = c∗f∗(µ̃X̃) = c∗f∗φCF (1M̃ ) = c∗φCF (π∗(1M̃ )),

where the last identity follows by proper base change. Assume now that π (hence
also f) is an Euler morphism, i.e., the Euler characteristics of all its fibers are the
same (e.g., π is smooth), and denote this value by χf . Then π∗(1M̃ ) = χf · 1M ,
and it follows in this case that

(4.22) f∗M(X̃) = χf · M(X).

But in the case of a general morphism we have that

(4.23) f∗M(X̃) = χf · M(X) + c∗(NXM)−1 ∩ c∗φCF (α),

for α := π∗(1M̃ )− χf · 1M , with χf the Euler characteristic of the generic fiber of
π. Note that α is supported on the critical locus of the morphism π.

To this end, we note that the above considerations can also be used to study the
push-forward of the class IM(X̃) in the case when X̃ is pure-dimensional and X
is irreducible and reduced. Let us choose a stratification V on X with dense open
stratum S, so that f∗(1X̃), f∗(icX̃) ∈ FV(X) (e.g., choose Ṽ and V complex Whitney
stratifications on X̃ and X, respectively, so that f is a stratified submersion, and
1X , icX̃ ∈ FṼ(X)). Then, since

IM(X̃) =M(X̃) + (c∗(X̃)− Ic∗(X̃)),

a formula for f∗IM(X̃) can be derived by using (4.23), together with the formulae
from [9][Prop.3.4, Prop.3.6] for the push-forward of the Chern classes c∗(X̃) and
Ic∗(X̃), respectively. We leave the details as an exercise for the interested reader.
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We only want to point out that for an Euler morphism (with smooth generic fiber),
we obtain the following formula:
(4.24)
f∗IM(X̃) = χf · IM(X) +

∑
V <S

(
χf · Iχ(c◦LV,X)− Iχ(f−1(c◦LV,X))

)
· îc(V̄ ).

where χf is the Euler characteristic of the generic fiber F of f (and π).
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