Perverse Sheaves on Semi-abelian Varieties: Properties and Applications

Laurentiu Maxim

(joint work with Yongqiang Liu and Botong Wang)

University of Wisconsin-Madison

Cohomology jump loci

Let X be a smooth connected complex quasi-projective variety with $b_1(X) > 0$. The (identity component of the) moduli space of rank-one \mathbb{C} -local systems on X is defined as:

$$\operatorname{Char}(X) := \operatorname{Hom}(H_1(X,\mathbb{Z})/\operatorname{Torsion},\mathbb{C}^*) \cong (\mathbb{C}^*)^{b_1(X)}$$

Definition

The *i*-th cohomology jumping locus of X is defined as:

$$\mathcal{V}^i(X) = \{
ho \in \operatorname{Char}(X) \mid H^i(X, L_{
ho})
eq 0 \},$$

where L_{ρ} is the rank-one \mathbb{C} -local system on X associated to the representation $\rho \in \operatorname{Char}(X)$.

 $\mathcal{V}^{i}(X)$ are closed subvarieties of $\operatorname{Char}(X)$ and homotopy invariants of X.

The jump loci $\mathcal{V}^i(X)$ can be defined for any finite CW complex X.

- (a) If X is a finite connected CW complex, then $\mathcal{V}^0(X) = \{\mathbb{C}_X\}$ is a point, the trivial rank-one local system.
- (b) If X is a closed oriented manifold of real dimension n, Poincaré duality yields $H^i(X, L_{\rho})^{\vee} \cong H^{n-i}(X, L_{\rho^{-1}})$, for all *i*.
- (c) For all ρ ∈ Char(X) with associated rank-one local system L_ρ, one has χ(X) = χ(X, L_ρ).

Sample computations

Example

(a) If
$$X = S^1$$
, Poincaré duality yields:
 $\mathcal{V}^i(X) = \begin{cases} \{\mathbb{C}_X\}, & \text{if } i = 0, 1\\ \emptyset, & \text{otherwise.} \end{cases}$
(b) If $X = (S^1)^n$, Künneth Theorem yields
 $\mathcal{V}^i(X) = \begin{cases} \{\mathbb{C}_X\}, & \text{if } 0 \le i \le n\\ \emptyset, & \text{otherwise.} \end{cases}$
(c) If $X = \Sigma_g$ is a smooth complex projective curve of genus
 $g \ge 2$, then $\chi(X) = 2 - 2g \ne 0$, and Poincaré duality yields:
 $\mathcal{V}^i(X) = \begin{cases} \{\mathbb{C}_X\}, & \text{if } i = 0, 2, \\ \operatorname{Char}(X), & \text{if } i = 1, \\ \emptyset, & \text{otherwise.} \end{cases}$

A complex *abelian variety* of dimension *g* is a compact complex torus $\mathbb{C}^g / \mathbb{Z}^{2g}$ which is also a complex projective variety. A *semi-abelian variety G* is an abelian complex algebraic group which is an extension

$$1 \rightarrow T \rightarrow G \rightarrow A \rightarrow 1$$
,

where A is an abelian variety of dimension g and $T \cong (\mathbb{C}^*)^m$ is an algebraic affine torus of dimension m. In particular,

$$\pi_1(G) \cong \mathbb{Z}^{m+2g}$$
, with dim $G = m + g$.

Definition

Let X be a smooth complex quasi-projective variety. The Albanese map of X is a morphism alb : $X \to Alb(X)$ from X to a semi-abelian variety Alb(X) such that for any morphism $f : X \to G$ to a semi-abelian variety G, there exists a unique morphism $g : Alb(X) \to G$ such that the following diagram commutes:

Alb(X) is called the *Albanese variety* associated to X.

lf

$$1 \to (\mathbb{C}^*)^m \to \operatorname{Alb}(X) \to (S^1)^{2g} \to 1,$$

then:

g = dim_C H^{1,0}, with H^{1,0} the weight (1,0) part of H¹(X; C).
m = dim_C H^{1,1}, with H^{1,1} the weight (1,1) part of H¹(X; C). The Albanese map induces an isomorphism on the free part of H₁:

$$H_1(X,\mathbb{Z})/\text{Torsion} \stackrel{\cong}{\longrightarrow} H_1(\text{Alb}(X),\mathbb{Z}).$$

In particular,

 $\operatorname{Char}(X) \cong \operatorname{Char}(\operatorname{Alb}(X)).$

By the projection formula, for any $\rho \in \operatorname{Char}(X) \cong \operatorname{Char}(\operatorname{Alb}(X))$:

 $H^{i}(X, L_{\rho}) \cong H^{i}(X, \mathbb{C}_{X} \otimes L_{\rho}) \cong H^{i}(Alb(X), (\mathbb{R} \operatorname{alb}_{*} \mathbb{C}_{X}) \otimes L_{\rho}).$

Hence,

 $\mathcal{V}^i(X) = \mathcal{V}^i(\mathrm{Alb}(X), R \operatorname{alb}_* \mathbb{C}_X).$

If alb is proper (e.g., X is projective), the BBDG decomposition theorem yields that $R \operatorname{alb}_* \mathbb{C}_X$ is a direct sum of (shifted) *perverse sheaves*.

This motivates the study of *cohomology jumping loci of constructible complexes* (resp., *perverse sheaves*) *on semi-abelian varieties*.

Definition

Let $\mathcal{F} \in D^b_c(G, \mathbb{C})$ be a bounded constructible complex of \mathbb{C} -sheaves on a semi-abelian variety G. The *i*-th cohomology jumping locus of \mathcal{F} is defined as:

$$\mathcal{V}^{i}(G,\mathcal{F}):=\{
ho\in\operatorname{Char}(G)\mid \mathbb{H}^{i}(G,\mathcal{F}\otimes_{\mathbb{C}}L_{
ho})
eq 0\}.$$

Theorem (Budur-Wang)

Each $\mathcal{V}^i(G, \mathcal{F})$ is a finite union of translated subtori of $\operatorname{Char}(G)$.

Mellin transformation

Char(G) = Spec Γ_G , with $\Gamma_G := \mathbb{C}[\pi_1(G)] \cong \mathbb{C}[t_1^{\pm 1}, \cdots, t_{m+2g}^{\pm 1}]$. Let \mathcal{L}_G be the (universal) rank 1 local system of Γ_G -modules on G, defined by mapping the generators of $\pi_1(G) \cong \mathbb{Z}^{m+2g}$ to the multiplication by the corresponding variables of Γ_G .

Definition

The *Mellin transformation* $\mathcal{M}_* : D^b_c(G, \mathbb{C}) \to D^b_{coh}(\Gamma_G)$ is given by

 $\mathcal{M}_*(\mathcal{F}) := \mathsf{Ra}_*(\mathcal{L}_{\mathsf{G}} \otimes_{\mathbb{C}} \mathcal{F}),$

where $a: G \to pt$ is the constant map, and $D^b_{coh}(\Gamma_G)$ denotes the bounded coherent complexes of Γ_G -modules.

Theorem (Gabber-Loeser, Liu-M.-Wang)

If G = T is a complex affine torus, then:

 $\mathcal{F} \in \mathsf{Perv}(\mathcal{T},\mathbb{C}) \iff H^i(\mathcal{M}_*(\mathcal{F})) = 0 \text{ for all } i \neq 0.$

(By the projection formula) cohomology jump loci of \mathcal{F} are determined by those of $\mathcal{M}_*(\mathcal{F})$, i.e.,

 $\mathcal{V}^{i}(G,\mathcal{F}) = \mathcal{V}^{i}(\mathcal{M}_{*}(\mathcal{F})),$

where if R is a Noetherian domain and E^{\bullet} is a bounded complex of R-modules with finitely generated cohomology, we set

$$\mathcal{V}^i(E^{ullet}) := \{\chi \in \operatorname{Spec} R \mid H^i(F^{ullet} \otimes_R R/\chi)
eq 0\},$$

with F^{\bullet} a bounded above finitely generated *free* resolution of E^{\bullet} . So understanding $\mathcal{V}^{i}(G, \mathcal{F})$ becomes a commutative algebra problem!

Theorem (Liu-M.-Wang)

For any \mathbb{C} -perverse sheaf \mathcal{P} on a semi-abelian variety G, the cohomology jump loci of \mathcal{P} satisfy the following properties: (i) Propagation property:

 $\mathcal{V}^{-m-g}(G,\mathcal{P})\subseteq\cdots\subseteq\mathcal{V}^0(G,\mathcal{P})\supseteq\mathcal{V}^1(G,\mathcal{P})\supseteq\cdots\supseteq\mathcal{V}^g(G,\mathcal{P}).$

Moreover, $\mathcal{V}^i(G, \mathcal{P}) = \emptyset$ if $i \notin [-m - g, g]$.

(ii) Codimension lower bound: for any $i \ge 0$,

 $\operatorname{codim} \mathcal{V}^i(\mathcal{G}, \mathcal{P}) \geq i \text{ and } \operatorname{codim} \mathcal{V}^{-i}(\mathcal{G}, \mathcal{P}) \geq i.$

Remark ((Hyper)cohomology concentration)

Let \mathcal{P} be a \mathbb{C} -perverse sheaf so that not all $\mathbb{H}^{j}(G, \mathcal{P})$ are zero. Let $k_{+} := \max\{j \mid \mathbb{H}^{j}(G, \mathcal{P}) \neq 0\}$ and $k_{-} := \min\{j \mid \mathbb{H}^{j}(G, \mathcal{P}) \neq 0\}$. The propagation property is equivalent to: $k_{+} \geq 0$, $k_{-} \leq 0$ and $\mathbb{H}^{j}(G, \mathcal{P}) \neq 0 \iff k_{-} \leq j \leq k_{+}$. (If G = A is an abelian variety, a similar result was proved by Weissauer.) Corollary (Kramer, Liu-M.-Wang, Franecki-Kapranov)

For any \mathbb{C} -perverse sheaf \mathcal{P} on a semi-abelian variety G,

 $\mathbb{H}^i(G,\mathcal{P}\otimes_{\mathbb{C}}L_\rho)=0$

for any generic rank-one \mathbb{C} -local system L_{ρ} and all $i \neq 0$. In particular, (for such generic ρ)

$$\chi(G,\mathcal{P}) = \chi(G,\mathcal{P}\otimes_{\mathbb{C}} L_{\rho}) = \dim_{\mathbb{C}} \mathbb{H}^0(G,\mathcal{P}\otimes_{\mathbb{C}} L_{\rho}) \geq 0.$$

Moreover, the equality holds if and only if $\mathcal{V}^0(G, \mathcal{P}) \neq \operatorname{Char}(G)$.

Corollary (Liu-M.-Wang)

Let X be a smooth quasi-projective variety of complex dimension n. Assume that $R \operatorname{alb}_* \mathbb{C}_X[n]$ is a perverse sheaf on $\operatorname{Alb}(X)$ (e.g., alb is proper and semi-small). Then:

(1) Propagation property:

$$\mathcal{V}^{2n}(X)\subseteq\cdots\mathcal{V}^{n+1}(X)\subseteq\mathcal{V}^n(X)\supseteq\mathcal{V}^{n-1}(X)\supseteq\cdots\supseteq\mathcal{V}^0(X)=\{\mathbb{C}_X\}$$

(2) Codimension lower bound: for any $i \ge 0$,

$$\operatorname{codim} \mathcal{V}^{n-i}(X) \ge i \text{ and } \operatorname{codim} \mathcal{V}^{n+i}(X) \ge i.$$

- (3) Generic vanishing: $H^i(X, L_{\rho}) = 0$ for generic $\rho \in Char(X)$ and all $i \neq n$.
- (4) Signed Euler characteristic property: $(-1)^n \cdot \chi(X) \ge 0$.
- (5) Betti property: $b_i(X) > 0$ for any $i \in [0, n]$, and $b_1(X) \ge n$.

 $b_1(X) - \dim \mathcal{V}^0(X) =: \operatorname{codim} \mathcal{V}^0(X) \ge n$, so $b_1(X) \ge n$.

Corollary (Liu-M.-Wang)

Let X be a smooth quasi-projective variety with proper Albanese map (e.g., X is projective), and assume that X is homotopy equivalent to a torus. Then X is isomorphic to a semi-abelian variety.

Hint: Use the BBDG decomposition theorem and the propagation package to show that $alb : X \rightarrow Alb(X)$ is an isomorphism.

Definition (Denham-Suciu-Yuzvinsky)

A connected finite CW complex X, with $H := H_1(X, \mathbb{Z})$, is an *abelian duality space of dimension n* if:

(a)
$$H^i(X, \mathbb{Z}[H]) = 0$$
 for $i \neq n$,

(b) $H^n(X, \mathbb{Z}[H])$ is a (non-zero) torsion-free \mathbb{Z} -module.

In what follows we work with the full character variety

 $\operatorname{Char}(X) = \operatorname{Hom}(H, \mathbb{C}^*).$

Using properties of the Mellin transformation, we get:

Theorem (Liu-M.-Wang)

Let X be an n-dimensional smooth complex quasi-projective variety, which is homotopy equivalent to an n-dimensional CW complex (e.g., X is affine). Suppose the Albanese map alb is proper and semi-small (e.g., a closed embedding), or alb is quasi-finite. Then X is an abelian duality space of dimension n.

Example (Very affine manifolds)

Let X be an *n*-dimensional very affine manifold, i.e., a smooth closed subvariety of a complex affine torus $T = (\mathbb{C}^*)^m$ (e.g., the complement of an essential hyperplane / toric arrangement). Then X is an abelian duality space of dimension *n*. (Here, alb is proper and semi-small.)

Theorem (Denham-Suciu-Yuzvinsky, Liu-M.-Wang)

Let X be an abelian duality space X of dimension n. Then: (i) Propagation property: $\mathcal{V}^n(X) \supseteq \mathcal{V}^{n-1}(X) \supseteq \cdots \supseteq \mathcal{V}^0(X)$. (ii) Codimension lower bound: for any $i \ge 0$,

$$\operatorname{codim} \mathcal{V}^{n-i}(X) = b_1(X) - \dim \mathcal{V}^{n-i}(X) \ge i.$$

(iii) Generic vanishing: $H^{i}(X, L_{\rho}) = 0$ for ρ generic and all $i \neq n$. (iv) Signed Euler characteristic property:

 $(-1)^n\chi(X)\geq 0.$

(v) Betti property: $b_i(X) > 0$, for $0 \le i \le n$, and $b_1(X) \ge n$.

The following provides a new topological characterization of compact complex tori and, resp., abelian varieties in terms of homological duality properties:

Theorem (Liu-M.-Wang)

Let X be a compact Kähler manifold. Then X is an abelian duality space if and only if X is a compact complex torus. In particular, abelian varieties are the only complex projective manifolds that are abelian duality spaces.

Theorem (Schnell)

If A is an abelian variety and $\mathcal{F} \in D^b_c(A, \mathbb{C})$, then:

 $\mathcal{F} \in \operatorname{Perv}(A, \mathbb{C}) \iff \forall i \in \mathbb{Z} : \operatorname{codim} \mathcal{V}^i(A, \mathcal{P}) \ge |2i|.$

If $1 \to T \to G \to A \to 1$ defines a semi-abelian variety G, and $\Gamma_G := \mathbb{C}[\pi_1(G)], \ \Gamma_T = \mathbb{C}[\pi_1(T)]$ and $\Gamma_A = \mathbb{C}[\pi_1(A)]$, then Spec Γ_G , Spec Γ_T and Spec Γ_A are affine tori fitting into a short exact sequence of linear algebraic groups

$$1 \rightarrow \operatorname{Spec} \Gamma_A \rightarrow \operatorname{Spec} \Gamma_G \xrightarrow{p} \operatorname{Spec} \Gamma_T \rightarrow 1.$$

Definition

Let V be an irreducible subvariety of Spec Γ_G . Define: torus dimension: dim_t V = dim p(V), abelian dimension: dim_a V = $\frac{1}{2}$ (dim V - dim_t V), semi-abelian dimension: dim_{sa} V = dim_t V + dim_a V. codim_t V = m - dim_t V, codim_a V = g - dim_a V, codim_t V = m + g - dim_t V.

Remark

• If G = T is a complex affine torus: $\dim_{sa}(V) = \dim(V)$, $\operatorname{codim}_{sa}(V) = \operatorname{codim}(V)$, $\dim_a(V) = \operatorname{codim}_a(V) = 0$.

2 If
$$G = A$$
 is an abelian variety:
 $\dim_{sa}(V) = \dim_{a}(V) = \frac{1}{2}\dim(V),$
 $\operatorname{codim}_{sa}(V) = \operatorname{codim}_{a}(V) = \frac{1}{2}\operatorname{codim}(V)$

Theorem (Liu-M.-Wang)

A constructible complex $\mathcal{F} \in D^b_c(G, \mathbb{C})$ is perverse on $G \iff$ (i) $\operatorname{codim}_a \mathcal{V}^i(G, \mathcal{F}) \ge i$ for any $i \ge 0$, and (ii) $\operatorname{codim}_{sa} \mathcal{V}^i(G, \mathcal{F}) \ge -i$ for any $i \le 0$.

Corollary

$$\mathcal{F} \in D^b_c(T, \mathbb{C})$$
 is perverse on a complex affine torus $T \iff$
(i) For any $i > 0$: $\mathcal{V}^i(T, \mathcal{F}) = \emptyset$, and
(ii) For any $i \le 0$: $\operatorname{codim} \mathcal{V}^i(T, \mathcal{F}) \ge -i$.

Thank you !