Perverse Sheaves on Semi-abelian Varieties: Properties and Applications

Laurentiu Maxim

(joint work with Yongqiang Liu and Botong Wang)

University of Wisconsin-Madison

Laurentiu Maxim

Cohomology jump loci

Let X be a smooth connected complex quasi-projective variety with $b_1(X) > 0$. The (identity component of the) moduli space of rank-one C-local systems on X is defined as:

 $\operatorname{Char}(X) := \operatorname{\mathsf{Hom}}(H_1(X,{\mathbb Z})/\mathsf{Torsion},{\mathbb C}^*) \cong ({\mathbb C}^*)^{b_1(X)}$

Definition

The *i-th cohomology jumping locus of* X is defined as:

 $\mathcal{V}^i(X) = \{ \rho \in \text{Char}(X) \mid H^i(X, L_\rho) \neq 0 \},$

where L_0 is the rank-one C-local system on X associated to the representation $\rho \in \text{Char}(X)$.

 $\mathcal{V}^i(X)$ are closed subvarieties of $\mathrm{Char}(X)$ and homotopy invariants of X .

The jump loci $\mathcal{V}^i(X)$ can be defined for any finite CW complex $X.$

- (a) If X is a finite connected CW complex, then $\mathcal{V}^0(X) = \{ \mathbb{C}_X \}$ is a point, the trivial rank-one local system.
- (b) If X is a closed oriented manifold of real dimension n , Poincaré duality yields $H^i(X, L_\rho)^\vee \cong H^{n-i}(X, L_{\rho^{-1}})$, for all *i*.
- (c) For all $\rho \in \text{Char}(X)$ with associated rank-one local system L_{ρ} , one has $\chi(X) = \chi(X, L_{\rho}).$

Sample computations

Example

\n- (a) If
$$
X = S^1
$$
, Poincaré duality yields:
\n- $\mathcal{V}^i(X) = \begin{cases} \{ \mathbb{C}_X \}, & \text{if } i = 0, 1 \\ \emptyset, & \text{otherwise.} \end{cases}$
\n- (b) If $X = (S^1)^n$, Künneth Theorem yields $\mathcal{V}^i(X) = \begin{cases} \{ \mathbb{C}_X \}, & \text{if } 0 \leq i \leq n \\ \emptyset, & \text{otherwise.} \end{cases}$
\n- (c) If $X = \Sigma_g$ is a smooth complex projective curve of genus $g \geq 2$, then $\chi(X) = 2 - 2g \neq 0$, and Poincaré duality yields:
\n- $\mathcal{V}^i(X) = \begin{cases} \{ \mathbb{C}_X \}, & \text{if } i = 0, 2, \\ \text{Char}(X), & \text{if } i = 1, \\ \emptyset, & \text{otherwise.} \end{cases}$
\n

A complex *abelian variety* of dimension g is a compact complex torus $\mathbb{C}^{\mathcal{B}}/\mathbb{Z}^{2\mathcal{B}}$ which is also a complex projective variety. A semi-abelian variety G is an abelian complex algebraic group which is an extension

$$
1 \to T \to G \to A \to 1,
$$

where A is an abelian variety of dimension g and $\mathcal{T} \cong (\mathbb{C}^\ast)^m$ is an algebraic affine torus of dimension m . In particular,

$$
\pi_1(G) \cong \mathbb{Z}^{m+2g}
$$
, with dim $G = m + g$.

Definition

Let X be a smooth complex quasi-projective variety. The Albanese map of X is a morphism alb : $X \to Alb(X)$ from X to a semi-abelian variety $\mathrm{Alb}(X)$ such that for any morphism $f: X \to G$ to a semi-abelian variety G, there exists a unique morphism $g : Alb(X) \rightarrow G$ such that the following diagram commutes:

 $\mathrm{Alb}(X)$ is called the Albanese variety associated to X.

If

$$
1 \to (\mathbb{C}^*)^m \to \mathsf{Alb}(X) \to (S^1)^{2g} \to 1,
$$

then:

 $\epsilon g = \dim_\mathbb{C} H^{1,0}$, with $H^{1,0}$ the weight $(1,0)$ part of $H^1(X;\mathbb{C})$. $m = \dim_{\mathbb{C}} H^{1,1}$, with $H^{1,1}$ the weight $(1,1)$ part of $H^1(X;\mathbb{C})$. The Albanese map induces an isomorphism on the free part of H_1 :

$$
H_1(X,\mathbb{Z})/\text{Torsion} \stackrel{\cong}{\longrightarrow} H_1(\text{Alb}(X),\mathbb{Z}).
$$

In particular,

 $Char(X) \cong Char(Alb(X)).$

By the projection formula, for any $\rho \in \text{Char}(X) \cong \text{Char}(A\mathsf{lb}(X))$:

 $H^i(X, L_\rho)\cong H^i(X, \mathbb{C} _X\otimes L_\rho)\cong H^i\left(\mathrm{Alb}(X), \left(R\mathop{\mathsf{alb}}_*\mathbb{C} _X\right)\otimes L_\rho\right).$

Hence,

 $\mathcal{V}^i(X) = \mathcal{V}^i(\mathsf{Alb}(X), R\mathsf{alb}_*\mathbb{C}_X).$

If alb is proper (e.g., X is projective), the BBDG decomposition theorem yields that R alb_{*} \mathbb{C}_X is a direct sum of (shifted) *perverse* sheaves.

This motivates the study of cohomology jumping loci of constructible complexes (resp., perverse sheaves) on semi-abelian varieties.

Definition

Let $\mathcal{F}\in D^b_c(\mathcal{G},\mathbb{C})$ be a bounded constructible complex of $\mathbb C$ -sheaves on a semi-abelian variety G . The *i-th cohomology jumping locus of* $\mathcal F$ is defined as:

$$
\mathcal{V}^i(G,\mathcal{F}) := \{ \rho \in \mathrm{Char}(G) \mid \mathbb{H}^i(G,\mathcal{F} \otimes_{\mathbb{C}} L_{\rho}) \neq 0 \}.
$$

Theorem (Budur-Wang)

Each $V^i(G, \mathcal{F})$ is a finite union of translated subtori of $\mathrm{Char}(G)$.

Mellin transformation

 $\mathrm{Char}(G)=\mathsf{Spec}\, \mathsf{\Gamma}_G$, with $\mathsf{\Gamma}_G:=\mathbb{C}[\pi_1(G)]\cong \mathbb{C}[t_1^{\pm 1},\cdots,t_{m+2g}^{\pm 1}].$ Let \mathcal{L}_G be the (universal) rank 1 local system of Γ_G -modules on G, defined by mapping the generators of $\pi_1(G) \cong \mathbb{Z}^{m+2g}$ to the multiplication by the corresponding variables of Γ_G .

Definition

The *Mellin transformation* $\mathcal{M}_* : D^b_c(G, \mathbb{C}) \to D^b_{coh}(\Gamma_G)$ *is given by*

 $\mathcal{M}_*(\mathcal{F}) := \mathsf{Ra}_*(\mathcal{L}_G \otimes_{\mathbb{C}} \mathcal{F}),$

where \emph{a} : $G\rightarrow \emph{pt}$ is the constant map, and $D_{coh}^b(\Gamma_G)$ denotes the bounded coherent complexes of Γ_G -modules.

Theorem (Gabber-Loeser, Liu-M.-Wang)

If $G = T$ is a complex affine torus, then:

 $\mathcal{F} \in \mathsf{Perv}(\mathcal{T}, \mathbb{C}) \iff \mathsf{H}^i(\mathcal{M}_*(\mathcal{F})) = 0$ for all $i \neq 0$.

Laurentiu Maxim

(By the projection formula) cohomology jump loci of $\mathcal F$ are determined by those of $\mathcal{M}_*(\mathcal{F})$, i.e.,

 $\mathcal{V}^i(\mathsf{G},\mathcal{F})=\mathcal{V}^i(\mathcal{M}_*(\mathcal{F})),$

where if R is a Noetherian domain and E^{\bullet} is a bounded complex of R-modules with finitely generated cohomology, we set

$$
\mathcal{V}^i(E^{\bullet}) := \{ \chi \in \operatorname{Spec} R \mid H^i(F^{\bullet} \otimes_R R/\chi) \neq 0 \},
$$

with F^{\bullet} a bounded above finitely generated free resolution of E^{\bullet} . So understanding $\mathcal{V}^i(G,\mathcal{F})$ becomes a commutative algebra problem!

Theorem (Liu-M.-Wang)

For any $\mathbb C$ -perverse sheaf $\mathcal P$ on a semi-abelian variety G, the cohomology jump loci of P satisfy the following properties: (i) Propagation property:

 ${\mathcal V}^{-m-g}(G,{\mathcal P})\subseteq \cdots \subseteq {\mathcal V}^0(G,{\mathcal P})\supseteq {\mathcal V}^1(G,{\mathcal P})\supseteq \cdots \supseteq {\mathcal V}^g(G,{\mathcal P}).$

Moreover, $V^i(G, \mathcal{P}) = \emptyset$ if $i \notin [-m-g, g]$.

(ii) Codimension lower bound: for any $i > 0$,

codim $\mathcal{V}^i(\mathcal{G}, \mathcal{P}) \geq i$ and codim $\mathcal{V}^{-i}(\mathcal{G}, \mathcal{P}) \geq i$.

Remark ((Hyper)cohomology concentration)

Let ${\mathcal P}$ be a ${\mathbb C}$ -perverse sheaf so that not all $\mathbb{H}^j({\mathsf G},{\mathcal P})$ are zero. Let $k_+:=\max\{j\mid \mathbb{H}^j(\mathsf{G}, \mathcal{P})\neq 0\}$ and $k_-:=\min\{j\mid \mathbb{H}^j(\mathsf{G}, \mathcal{P})\neq 0\}.$ The propagation property is equivalent to: $k_+ \geq 0$, $k_- \leq 0$ and $\mathbb{H}^j(\mathit{G},\mathcal{P}) \neq 0 \;\;\Longleftrightarrow\;\; k_- \leq j \leq k_+.$ (If $G = A$ is an abelian variety, a similar result was proved by Weissauer.)

Corollary (Kramer, Liu-M.-Wang, Franecki-Kapranov)

For any $\mathbb C$ -perverse sheaf $\mathcal P$ on a semi-abelian variety G ,

 $\mathbb{H}^i(\mathsf{G}, \mathcal{P}\otimes_\mathbb{C} \mathsf{L}_\rho)=0$

for any generic rank-one $\mathbb C$ -local system L_{ρ} and all $i \neq 0$. In particular, (for such generic ρ)

$$
\chi(G,\mathcal{P})=\chi(G,\mathcal{P}\otimes_{\mathbb{C}}\mathcal{L}_{\rho})=\dim_{\mathbb{C}}\mathbb{H}^0(G,\mathcal{P}\otimes_{\mathbb{C}}\mathcal{L}_{\rho})\geq 0.
$$

Moreover, the equality holds if and only if $\mathcal{V}^0(G,\mathcal{P}) \neq \mathrm{Char}(G)$.

Corollary (Liu-M.-Wang)

Let X be a smooth quasi-projective variety of complex dimension n. Assume that R alb_{*} $\mathbb{C}_X[n]$ is a perverse sheaf on Alb(X) (e.g., alb is proper and semi-small). Then:

(1) Propagation property:

$$
\mathcal{V}^{2n}(X) \subseteq \cdots \mathcal{V}^{n+1}(X) \subseteq \mathcal{V}^{n}(X) \supseteq \mathcal{V}^{n-1}(X) \supseteq \cdots \supseteq \mathcal{V}^{0}(X) = \{ \mathbb{C}_X \}
$$

(2) Codimension lower bound: for any $i > 0$,

codim $\mathcal{V}^{n-i}(X) \geq i$ and codim $\mathcal{V}^{n+i}(X) \geq i$.

- (3) Generic vanishing: $H^{i}(X, L_{\rho}) = 0$ for generic $\rho \in \text{Char}(X)$ and all $i \neq n$.
- (4) Signed Euler characteristic property: $(-1)^n \cdot \chi(X) \geq 0$.
- (5) Betti property: $b_i(X) > 0$ for any $i \in [0, n]$, and $b_1(X) \ge n$.

 $b_1(X) - \dim \mathcal{V}^0(X) =: \mathrm{codim}\mathcal{V}^0(X) \geq n$, so $b_1(X) \geq n$.

Corollary (Liu-M.-Wang)

Let X be a smooth quasi-projective variety with proper Albanese map (e.g., X is projective), and assume that X is homotopy equivalent to a torus. Then X is isomorphic to a semi-abelian variety.

Hint: Use the BBDG decomposition theorem and the propagation package to show that alb : $X \rightarrow Alb(X)$ is an isomorphism.

Definition (Denham-Suciu-Yuzvinsky)

A connected finite CW complex X, with $H := H_1(X, \mathbb{Z})$, is an abelian duality space of dimension n if:

(a)
$$
H^i(X, \mathbb{Z}[H]) = 0
$$
 for $i \neq n$,

(b) $H^{n}(X,\mathbb{Z}[H])$ is a (non-zero) torsion-free \mathbb{Z} -module.

In what follows we work with the *full* character variety

 $Char(X) = Hom(H, \mathbb{C}^*)$.

Using properties of the Mellin transformation, we get:

Theorem (Liu-M.-Wang)

Let X be an n-dimensional smooth complex quasi-projective variety, which is homotopy equivalent to an n-dimensional CW complex (e.g., X is affine). Suppose the Albanese map alb is proper and semi-small (e.g., a closed embedding), or alb is quasi-finite. Then X is an abelian duality space of dimension n.

Example (Very affine manifolds)

Let X be an *n*-dimensional very affine manifold, i.e., a smooth closed subvariety of a complex affine torus $\mathcal{T} = (\mathbb{C}^*)^m$ (e.g., the complement of an essential hyperplane / toric arrangement). Then X is an abelian duality space of dimension n. (Here, alb is proper and semi-small.)

Theorem (Denham-Suciu-Yuzvinsky, Liu-M.-Wang)

Let X be an abelian duality space X of dimension n. Then: (i) Propagation property: $V^n(X) \supseteq V^{n-1}(X) \supseteq \cdots \supseteq V^0(X)$. (ii) Codimension lower bound: for any $i \geq 0$,

$$
\mathrm{codim}\mathcal{V}^{n-i}(X)=b_1(X)-\dim\mathcal{V}^{n-i}(X)\geq i.
$$

(iii) Generic vanishing: $H^{i}(X, L_{\rho}) = 0$ for ρ generic and all $i \neq n$. (iv) Signed Euler characteristic property:

$$
(-1)^n\chi(X)\geq 0.
$$

(v) Betti property: $b_i(X) > 0$, for $0 \le i \le n$, and $b_1(X) > n$.

The following provides a new topological characterization of compact complex tori and, resp., abelian varieties in terms of homological duality properties:

Theorem (Liu-M.-Wang)

Let X be a compact Kähler manifold. Then X is an abelian duality space if and only if X is a compact complex torus. In particular, abelian varieties are the only complex projective manifolds that are abelian duality spaces.

Theorem (Schnell)

If A is an abelian variety and $\mathcal{F} \in D^b_c(A,\mathbb{C})$, then:

$\mathcal{F} \in \mathsf{Perv}(A, \mathbb{C}) \iff \forall i \in \mathbb{Z} : \mathrm{codim}\mathcal{V}^i(A, \mathcal{P}) \geq |2i|.$

If $1 \rightarrow T \rightarrow G \rightarrow A \rightarrow 1$ defines a semi-abelian variety G, and $\Gamma_G := \mathbb{C}[\pi_1(G)]$, $\Gamma_{\tau} = \mathbb{C}[\pi_1(\tau)]$ and $\Gamma_A = \mathbb{C}[\pi_1(A)]$, then Spec Γ_G , Spec Γ_T and Spec Γ_A are affine tori fitting into a short exact sequence of linear algebraic groups

$$
1 \to \operatorname{Spec} \Gamma_A \to \operatorname{Spec} \Gamma_G \xrightarrow{\rho} \operatorname{Spec} \Gamma_{\mathcal{T}} \to 1.
$$

Definition

Let V be an irreducible subvariety of $Spec \Gamma_G$. Define: torus dimension: dim_t $V = \dim p(V)$, abelian dimension: dim_a $V = \frac{1}{2}$ $\frac{1}{2}$ (dim V – dim_t V), semi-abelian dimension: dim_{sa} $V = \dim_t V + \dim_s V$. $\text{codim}_{\tau}V = m - \dim_{\tau}V$, $\text{codim}_{\tau}V = \varrho - \dim_{\tau}V$. $\text{codim}_{\mathfrak{s}\mathfrak{s}}V = m + g - \dim_{\mathfrak{s}\mathfrak{s}}V.$

Remark

1 If $G = T$ is a complex affine torus: $\dim_{sa}(V) = \dim(V)$, $\operatorname{codim}_{\mathfrak{so}}(V) = \operatorname{codim}(V)$, $\dim_{\mathfrak{g}}(V) = \operatorname{codim}_{\mathfrak{g}}(V) = 0$.

9 If
$$
G = A
$$
 is an abelian variety:
\n
$$
\dim_{sa}(V) = \dim_a(V) = \frac{1}{2} \dim(V),
$$
\n
$$
\operatorname{codim}_{sa}(V) = \operatorname{codim}_a(V) = \frac{1}{2} \operatorname{codim}(V).
$$

Theorem (Liu-M.-Wang)

A constructible complex $\mathcal{F}\in D^b_c(\mathit{G},\mathbb{C})$ is perverse on $G \iff$ (i) $\operatorname{codim}_a \mathcal{V}^i(G, \mathcal{F}) \geq i$ for any $i \geq 0$, and (ii) $\operatorname{codim}_{\mathsf{sa}} \mathcal{V}^i(G, \mathcal{F}) \geq -i$ for any $i \leq 0$.

Corollary

$$
\mathcal{F} \in D_c^b(T, \mathbb{C}) \text{ is perverse on a complex affine torus } T \iff
$$

(i) For any $i > 0$: $V^i(T, \mathcal{F}) = \emptyset$, and
(ii) For any $i \leq 0$: $\text{codim } V^i(T, \mathcal{F}) \geq -i$.

Laurentiu Maxim

Thank you !