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MULTIVARIABLE ALEXANDER INVARIANTS
OF HYPERSURFACE COMPLEMENTS

ALEXANDRU DIMCA AND LAURENTIU MAXIM

Abstract. We start with a discussion on Alexander invariants, and then prove
some general results concerning the divisibility of the Alexander polynomials
and the supports of the Alexander modules, via Artin’s vanishing theorem for
perverse sheaves. We conclude with explicit computations of twisted cohomol-
ogy following an idea already exploited in the hyperplane arrangement case,
which combines the degeneration of the Hodge to de Rham spectral sequence
with the purity of some cohomology groups.

1. Introduction

Alexander invariants in the form of Alexander modules, characteristic varieties
and Alexander polynomials have been recently intensively studied, in particular in
relation to the twisted cohomology of hypersurface arrangement complements; see
for instance [1], [4], [5], [6], [18], [20], [21], [22], [25], [32], [33], [36], [42], [47].

In section 2, after giving the basic definitions introducing the Alexander mod-
ules Aq(U) and Aq(U) of an affine hypersurface arrangement complement U , we
investigate in Proposition 2.4 the relation between the first nontrivial Alexander
polynomial in one variable and the corresponding Alexander polynomial in several
variables. Proposition 2.5 expresses the relation between the characteristic vari-
eties defined using the Fitting ideals and the characteristic varieties defined using
the jumping loci of the cohomology with rank one local coefficients. Example 2.8
treats the simplest local situations: the normal crossing case and the case of isolated
non-normal crossing singularities, whose study was initiated by A. Libgober in [36].

In section 3, Theorem 3.1 relates the Alexander invariants of the affine hyper-
surface arrangement complement U = Cn+1 \X to the Alexander invariants of the
complement U∞ of the corresponding link at infinity. Theorems 3.2, 3.6 and Corol-
lary 3.5 estimate the support of the Alexander modules Aq(U) in terms of local
properties of the projective closure V = X.

In section 4, we recall and slightly extend the idea of combining the degeneration
of the Hodge to de Rham spectral sequence with the purity of some cohomology
groups (used first by Esnault, Schechtman and Viehweg in [25] and by Schechtman,
Terao and Varchenko in [47]); see Corollary 4.1 and Proposition 4.5. Examples
4.8 and 4.10 illustrate this approach by looking at some arrangements of lines and
conics in the plane. Though these examples may be treated using the results by
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Cogolludo in [4], we feel that our approach is more general and hence more likely
to extend to other situations.

In the last section we consider the complement U0 of an arbitrary projective
hypersurface arrangement V , and, after a short general discussion, we revisit from
a new perspective a useful result by Randell saying what happens to the twisted
cohomology of a plane curve complement when we add an extra line; see Corollary
5.1. Coming back to dimension n ≥ 2, Example 5.3 discusses the already interesting
case when V is irreducible and has only isolated singularities. This case leads, in
particular, to examples where for m = n, n+1 and some rank one local coefficients
Lβ on U0 one has

dimHm(U0,Lβ) > dimHm(U0, C).
By the minimality property of hyperplane arrangement complements, it is known
that the above inequality is impossible for such type of complements, [23]. We
conclude by a detailed study of the case when V has two irreducible components,
each of them having only isolated singularities.

Throughout the paper we usually work with complex coefficients C, although the
study of finite field coefficients is very important, due for instance to torsion open
questions; see [8], [41]. Our choice is imposed by the analytic tools used in the last
two sections. Most of the results in the previous sections hold over arbitrary fields.

2. Multivariable Alexander invariants

2.1. Algebraic preliminaries. Let R be a commutative ring with unit, which is
Noetherian and a unique factorization domain (e.g., the ring of complex Laurent
polynomials in s variables, s ≥ 1). Let A be a finitely generated R-module, and M
an (n × m) presentation matrix of A associated to an exact sequence

Rm → Rn → A → 0.

The i-th elementary ideal Ei(A) of A is the ideal in R generated by the (n−i)×(n−i)
minor determinants of M , with the convention that Ei(A) = R if i ≥ n, and
Ei(A) = 0 if n − i > m. Let ∆i(A) be the generator of the smallest principal ideal
in R containing Ei(A), i.e., the greatest common divisor of all elements of Ei(A).
∆i(A) is called the i-th characteristic polynomial of A. Note that ∆i+1(A) divides
∆i(A) in R for all i since Ei(A) ⊂ Ei+1(A). In particular, if R is a principal ideal
domain (e.g., the ring of complex Laurent polynomials in one variable), then Ei(A)
is a principal ideal generated exactly by ∆i(A).

As an example, for any ring R, assume that A = Rs⊕R/(λ1)⊕· · ·⊕R/(λr), where
λj (j = 1, 2, · · · , r) are nonzero elements in R such that λj+1|λj . Then we have
∆i(A) is 0, λi−s+1 · · ·λr, or 1, according to whether 0 ≤ i ≤ s−1, s ≤ i ≤ s+r−1,
or s + r ≤ i.

The support Supp(A) of A is the reduced subscheme of Spec(R) defined by (the
order ideal) E0(A). Since √

E0(A) =
√

Ann(A),
this is the usual notion of support in algebraic geometry based on the annihilator
ideal Ann(A) of the module A. In particular, for a prime ideal P ⊂ R, P ∈ Supp(A)
if and only if the localized module AP is nonzero.

The support Supp(A) is also called the first characteristic variety of A, and we
define the i-th characteristic variety Vi(A) of A to be the reduced subscheme of
Spec(R) defined by the (i-th Fitting ideal) ideal Ei−1(A).



ALEXANDER INVARIANTS OF HYPERSURFACE COMPLEMENTS 3

Note that codimVi(A) > 1 implies ∆i−1(A) = 1; i.e., the corresponding Alexan-
der polynomial carries no information.

All definitions above are independent (up to multiplication by a unit of R) of
the choices involved; thus the characteristic varieties and polynomials of A are
invariants of the R-isomorphism type of A.

We state for future reference the following “divisibility” properties of the poly-
nomials and characteristic varieties (for proofs, see [50] and [35]):

Lemma 2.1. • If A, B are finitely generated R-modules, then
∆0(A ⊕ B) = ∆0(A) × ∆0(B).

• If A and B are finitely generated R-modules, then
Supp(A ⊗R B) = Supp(A) ∩ Supp(B).

• If A is a submodule of B, then for all i, ∆i(A) divides ∆i(B).
• If 0 → A → B → C → 0 is a short exact sequence of finitely generated

R-modules, then the following hold:
(1) ∆0(B) = ∆0(A) × ∆0(C);
(2) for all i, ∆i(B) divides ∆i(A) × ∆0(C);
(3) if ∆0(C) = 1, then ∆i(A) = ∆i(B) for all i;
(4) Supp(B) = Supp(A) ∪ Supp(C);
(5) for i ≥ 2: Vi(C) ⊂ Vi(B) ⊂ Vi(C) ∪ (Vi−1(C) ∩ Supp(A)).

2.2. Alexander invariants of hypersurface complements. Let V be a reduced
hypersurface in CP

n+1, defined by a homogeneous equation: f = f1 · · · fs = 0,
where the fi are the irreducible factors of f , and Vi = {fi = 0} the irreducible
components of V . We fix a hyperplane H in CPn+1, which we call “the hyperplane
at infinity”. Let U be the (affine) hypersurface complement U = CPn+1 \ (V ∪H).
(Alternatively, U may be regarded as the complement of a hypersurface in the
affine space Cn+1.) Then H1(U) ∼= Zs ([16], (4.1.3), (4.1.4)), generated by the
meridian loops γi about the nonsingular part of each irreducible component Vi, for
i = 1, · · · , s. If γ∞ denotes the meridian about the hyperplane at infinity, then in
H1(U) there is a relation: γ∞ +

∑
diγi = 0, where di = deg(Vi).

Note that U is affine, therefore has the homotopy type of a finite CW complex.
Let Uab be the universal abelian cover of U , i.e. the covering associated to the com-
mutator subgroup of π1(U), or equivalently, the covering associated to the kernel
of the linking number homomorphism lk : π1(U) → Zs, which maps a loop α to
(lk(α, V1 ∪ −d1H), · · · , lk(α, Vs ∪ −dsH)). The group of covering transformations
of Uab is isomorphic to Zs and acts on the covering space. By choosing fixed lifts
of the cells of U to Uab, we obtain a free basis for C∗, the cellular cell complex
of Uab, as a Z[Zs]-module. The isomorphism determined by the meridians {γi}
enables us to identify Z[Zs] with Z[t1, t−1

1 , · · · , ts, t
−1
s ], the ring of integral Laurent

polynomials in s variables. When s = 1 we set t1 = t.
For reasons that will become transparent later, our base ring will always be the

ring of complex Laurent polynomials in s variables, C[t1, t−1
1 , · · · , ts, t

−1
s ], which we

denote by Rs. Note that Rs is a regular Noetherian domain, and in particular it
is factorial. As a group ring, Rs has a natural involution denoted by an overbar,
sending each ti to t̄i := t−1

i . To an Rs-module A, we associate the conjugate Rs-
module, still denoted by A, with the same underlying abelian group but with the
Rs-action given by (r, a) �→ r̄ · a, for a ∈ A and r ∈ Rs.
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Remark 2.2. Though the ring Rs is commutative, it should be regarded as a quotient
ring of C[π1(U)], which is non-commutative in general. Because of that, one should
be careful to distinguish the right from the left Rs-modules. If, for instance, A is
a left Rs-module, then the associated right Rs-module is the module conjugate to
A, whose module structure is given by

a · r := r̄ · a
for all a ∈ A and r ∈ Rs. This corresponds to regarding any left C[π1(U)]-module A
as a right C[π1(U)]-module by setting a·γ = γ−1 ·a, for all a ∈ A and γ ∈ π1(U), and
extending by linearity. Following [11], p. 97, we regard in this paper C0

∗ = C∗ ⊗ C

as a complex of right Rs-modules.

Define a local coefficient system L on U , with stalk Rs and action of a loop α ∈
π1(U) determined by (left) multiplication by

∏s
j=1 (tj)lk(α,Vj∪−djH). In particular,

the action of the meridian γi is given by multiplication by ti. Let L∨ be the
dual local system, whose stalk at a point y ∈ U is L∨

y := Hom(Ly, Rs), and let
α ∈ π1(U , y) act on ϕ ∈ L∨

y by

(α · ϕ)(m) := ϕ(α−1 · m) , m ∈ Ly.

We denote by L̄ the local system obtained from L by composing all module struc-
tures with the involution of Rs (i.e., by changing the stalks of L from left into right
Rs-modules). The perfect pairing

L̄ ⊗Rs
L → Rs,

given by
(f, g) �→ f̄ · g

on the stalk over a basepoint, tells us that there is an isomorphism of local systems
on U :

L∨ � L̄.

The universal homology k-th Alexander invariant Ak(U) of U is by definition
the Rs-module Hk(C0

∗), or equivalently Hk(U ;L). This is the group Hk(Uab; C)
considered as an Rs-module via the covering transformations (see [29], Example
3H.2). Similarly, the universal cohomology k-th Alexander invariant Ak(U) of U
is by definition the k-th cohomology module of the dual complex HomRs

(C0
∗ , Rs).

Here Rs is considered with the induced right Rs-module structure as explained
in Remark 2.2. Based on our previous considerations on local systems, Ak(U) is
just Hk(U ;L∨). This may also be regarded as the k-th cohomology with compact
support and complex coefficients of Uab

b , where Ub is the compact manifold with
boundary obtained from CP

n+1 by removing a small open regular neighborhood of
the divisor V ∪ H (compare [29], Prop. 3H.5).

Note that, since U is an (n + 1)-dimensional affine variety, the modules Ak(U)
and resp. Ak(U) are trivial for k > n + 1. Moreover, since the stalks of L are
torsion-free, An+1(U) is also a torsion-free Rs-module (see [48], Example 6.0.6).

As in classical knot theory, by using a deformation retract argument, one could
define the universal abelian invariants above after replacing U by the manifold with
boundary Ub, obtained from CPn+1 by removing a small open regular neighborhood
of the divisor V ∪ H. Now, since the chain complex C∗(Uab

b ) is of finite type, and
since Rs is Noetherian, this implies that all these universal Alexander modules are
finitely generated. Hence their characteristic varieties and polynomials are well
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defined. The associated characteristic varieties, in particular the supports, become
subvarieties of the s-dimensional torus Ts = (C∗)s, which is regarded as the set of
closed points in Spec(Rs). More precisely, for λ = (λ1, · · · , λs) ∈ Ts, we denote by
mλ the corresponding maximal ideal in Rs and by Cλ the quotient Rs/mλRs. This
quotient is isomorphic to C, and the canonical projection

(2.1) ρλ : Rs → Rs/mλRs = Cλ

corresponds to replacing tj by λj for j = 1, ..., s. Here we regard Cλ as a (left)
Rs-module, with an involution given by complex conjugation (which is compatible
with the one induced from Rs since λj ∈ T1).

If A is an Rs-module, we denote be Aλ the localization of A at the maximal
ideal mλ. For A = Rs, we use the simpler notation Rλ when there is no danger of
confusion. If A is of finite type, then A = 0 if and only if Aλ = 0 for all λ ∈ Ts.
More precisely

Supp(A) = {λ ∈ Ts; Aλ 
= 0}.
In particular A0(U) = C1, where 1 = (1, · · · , 1) and hence

(2.2) Supp(A0(U)) = {1}.

We denote by Vi,k(U) the i-th characteristic variety associated with the homological
Alexander module Ak(U), and similarly denote by ∆i,k(U) the associated charac-
teristic polynomials. The notation V i,k(U) and ∆i,k(U) denote the similar objects
associated with the cohomological Alexander invariants Ak(U).

2.3. Homology versus cohomology Alexander modules. It is natural to ask
what are the relations between the homology and the cohomology universal Alexan-
der modules, or to find the relations between Vi,k(U) and V i,k(U); and between
∆i,k(U) and ∆i,k(U).

Some answers to this question can be given as follows. The cohomology modules
may be related to the homology modules by the Universal Coefficient spectral
sequence (see [30], p.20 or [31], Thm. 2.3):

(2.3) Extq
Rs

(Ap(U), Rs) ⇒ Ap+q(U).

Using the exactness of the localization (see [51], p. 76), we get the following spectral
sequence for any λ ∈ Ts:

(2.4) Extq
Rλ

(Ap(U)λ, Rλ) ⇒ Ap+q(U)λ.

For a fixed λ ∈ Ts, we define

(2.5) k(λ) = min{m ∈ N; Am(U)λ 
= 0}.

Then the spectral sequence (2.4) implies the following.

Proposition 2.3. For any λ ∈ Ts, Ak(U)λ = 0 for k < k(λ) and

(2.6) Ak(λ)(U)λ = Hom(Ak(λ)(U)λ, Rλ).

This equality shows in particular that one may have Ak(λ)(U)λ = 0, even when
Ak(λ)(U)λ 
= 0, e.g. when the last module is torsion, which is often the case, e.g.
see (2.2).



6 ALEXANDRU DIMCA AND LAURENTIU MAXIM

2.4. Multivariable versus one variable Alexander modules. Consider a fam-
ily of integral weights e = (e1, · · · , es) ∈ Zs, and let

q := g.c.d.(e1, · · · , es).

Consider the morphism p(e) : Rs → R1 defined by ti �→ tei , inducing a (left) Rs-
module structure on R1. Let L(e) be the local system on U with stalk R1 and mon-
odromy action for a loop α ∈ π1(U) given by multiplication by t

∑
ej lk(α,Vj∪−djH).

The corresponding homology groups Hk(U ,L(e)) = Hk(C0
∗ ⊗Rs

R1) are finite
type R1-modules, and hence they have associated characteristic varieties Vi,k(U , e)
and Alexander polynomials ∆i,k(U , e).

It is natural to ask under which conditions the equalities

∆i,k(U , e)(t) = (tq − 1)∆i,k(U)(te1 , · · · , tes)

do hold? Something like this works in classical knot theory, more precisely for
oriented multilinks in S3 with at least 2 components, where the case i = 0, k = 1
is considered (see [24], Prop. 5.1, and also [43], Lemma 10.1 for the case of weight
(1, · · · , 1)).

For the weight 1 = (1, 1, ..., 1), we call the corresponding Alexander polynomials
the usual (or, univariable) Alexander polynomials and we denote them by ∆T

i,k(U)
(see below for some explanation).

If the equality in Question 2 holds for all but finitely many multi-indices e, then
the 1-variable polynomials ∆i,k(U , e) determine (up to a unit in Rs) the multi-
variable polynomial ∆i,k(U) (see [3], Lemma 2.2).

Some insight into this question can be obtained as follows. We consider only the
simplest case, namely e = 1, and leave the other cases to the interested reader.

Note that the universal abelian covering Uab → U corresponds to the kernel Kab

of the abelianization morphism

π1(U) → H1(U).

The total linking number covering UT → U corresponds to the kernel KT of the
morphism

π1(U) → H1(U) = Zs → Z,

where the second morphism is
∑

cjγj �→
∑

cj . It follows that Uab → UT is a
covering with deck transformation group G = KT /Kab identified to the subgroup

{c ∈ Zs;
∑

cj = 0}.

The complex C0
∗ is a complex of free Rs-modules of finite rank, and the derivatives

are Rs-linear. It follows that we can regard this complex as being a complex C0
∗ of

free OTs -modules on the affine variety Ts.
Since UT = Uab/G, it follows that the complex of singular chains of UT is

(2.7) C∗(UT ) = C∗(Uab)G = (C0
∗)G

(see [51], p.204). Here

(2.8) (C0
p)G = C0

p/〈gm − m; g ∈ G, m ∈ C0
p〉.

Using the fact that the group G is generated by the elements having a 1 as the i-th
coordinate, a −1 as the j-th coordinate (for i < j) and all the other coordinates
zero, we see that (C0

p)G is the quotient of C0
p by the submodule

〈(ti − tj)m; m ∈ C0
p〉.
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It follows that the associated sheaf (C0
p)G is just the restriction (as a coherent sheaf)

of C0
p to the 1-dimensional subtorus S = {(t, t, ..., t) ∈ Ts}, i.e. (C0

p)G = C0
p ⊗OTs OS .

Unfortunately, the inclusion S → Ts is not a flat morphism (see [28], p. 254), and
hence the restriction to S does not commute with taking homology.

However, by our discussion above,

(C0
p)G = C0

p ⊗Rs
R1,

with the (left) Rs-module structure on R1 induced by p(1). Use now the Künneth
spectral sequence (see [51], p.143), and get

(2.9) E2
p,q = TorRs

p (Aq(U), R1) ⇒ Hp+q((C0
∗)G) = AT

p+q(U).

For a ∈ T1 = S = {(t, t, ..., t) ∈ Ts}, we get by localization a new Künneth spectral
sequence, namely,

(2.10) E2
p,q = TorRa

p (Aq(U)a, R1,a) ⇒ Hp+q((C0
∗)G)a.

In particular we get the following.

Proposition 2.4. For any a ∈ T1, AT
k (U)a = 0 for k < k(a) and

(2.11) Ak(a)(U)a ⊗Ra
R1,a = AT

k(a)(U)a.

In particular, for any a ∈ T1 = S, the multiplicity of the root t = a in the polyno-
mials ∆T

i,k(a)(U)(t) and ∆i,k(a)(U)(t, · · · , t) is the same.

Proof. To get the second claim, note that any presentation

Rm
a → Rn

a → Ak(a)(U)a → 0

yields by tensor product a presentation

Rm
1,a → Rn

1,a → AT
k(a)(U)a → 0.

�

2.5. Characteristic varieties as jumping loci of rank-1 local systems. Let
λ = (λ1, · · · , λs) ∈ Ts and denote by Lλ the local coefficient system on U with
stalk C = Cλ and action of a loop α ∈ π1(U) determined by multiplication by∏s

j=1 (λj)lk(α,Vj∪−djH). We let L∨
λ � Lλ−1 be the dual local system, where λ−1 :=

(λ−1
1 , · · · , λ−1

s ) ∈ Ts.
One can define new topological characteristic varieties by setting

V t
i,k(U) = {λ ∈ Ts; dimHk(U ,Lλ) > i}

and
V i,k

t (U) = {λ ∈ Ts; dimHk(U ,Lλ) > i}.
It is natural to investigate the relations between the two types of characteristic

varieties. Some cases are considered in [35], [36].
Here is a general approach to this question. It is known that

Hk(U ,Lλ) = Hk(C0
∗ ⊗Rs

Cλ).

Using the Künneth spectral sequence, we get

(2.12) E2
p,q = TorRs

p (Aq(U), Cλ) ⇒ Hp+q(U ,Lλ).
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Now since the localization is exact, the base change for Tor under Rs → Rλ (see
[51], p. 144), yields a new spectral sequence

(2.13) E2
p,q = TorRλ

p (Aq(U)λ, Cλ) ⇒ Hp+q(U ,Lλ).

This proves the first claim of the next result.

Proposition 2.5. For any point λ ∈ Ts, one has the following:
(i) min{m ∈ N, Hm(U ,Lλ) 
= 0} = min{m ∈ N, λ ∈ Supp(Am(U))} = k(λ);
(ii) dim Hk(λ)(U ,Lλ) = max{m ∈ N, λ ∈ Vm,k(λ)(U)}.

Proof. To prove the second claim, note that the spectral sequence (2.13) yields

Hk(λ)(U ,Lλ) = Ak(λ)(U)λ/mλAk(λ)(U)λ.

Let n be the dimension of these two vector spaces. Then by Nakayama’s Lemma,
the module Ak(λ)(U)λ is generated by n elements over the local ring Rλ. In other
words, there is the presentation

Rm
λ → Rn

λ → Ak(λ)(U)λ → 0.

Moreover, the first morphism is given by a matrix M whose entries mij are all
in the maximal ideal mλ. The second claim now follows by the definition of the
characteristic varieties. �
Remark 2.6. Note that there is also a spectral sequence

(2.14) Ep,q
2 = Extq

Rλ
(Ap(U)λ, Cλ) ⇒ Hp+q(U ,Lλ−1).

Here Cλ is considered with the right Rs-module structure as indicated in Remark
2.2. This is why in the abutment of the spectral sequence (2.14), we obtain a
cohomology with coefficients in the dual local system L∨

λ � Lλ−1 . The above
spectral sequence yields that Hm(U ,Lλ−1) = 0 for m < k(λ) and Hk(λ)(U ,Lλ−1) =
HomRλ

(Ak(λ)(U)λ, Cλ). However

HomRλ
(Ak(λ)(U)λ, Cλ) = HomC(Ak(λ)(U)λ/mλAk(λ)(U)λ, Cλ)

and hence

(2.15) Hk(λ)(U ,Lλ)∗ = Hk(λ)(U ,Lλ−1)

(compare [18], p.50 and p. 69). The case k = 1 of this useful formula was established
in [41], Remark 5.2. Note that this formula holds over arbitrary fields, with the
same proof as above.

Remark 2.7. All the results in this section so far hold for the local setting as well,
i.e., when U is the complement of a hypersurface germ in a small ball. The first
part of the example below corresponds to the germ of a normal crossing divisor.
The second part of the example below corresponds to isolated non-normal crossing
divisors (for short INNC); see [22], [36], [37].

Similarly, instead of localizing at a point, one may localize along the hyperplane
H at infinity, i.e. replace U by U∞ = U ∩ S∞, where S∞ is a large enough sphere
in Cn+1; see Theorem 3.1 below.

Example 2.8. (i) Let U = (C∗)s×Cn+1−s for some integer 0 ≤ s ≤ n+1. Then the
universal abelian covering Uab is contractible, and then A0(U) = C1 and Ak(U) = 0
for k > 0. Therefore, by the spectral sequence (2.3) we get Ak(U) ∼= Extk

Rs
(C1, Rs)

for all k ≥ 0. Using the free resolution of C1 given by the Koszul complex of the
regular sequence {xj = tj−1}j=1,...,s in the ring Rs ([51], Cor. 4.5.5), we obtain that
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Ak(U) = 0 for k 
= s and As(U) = C1 ([51], Ex. 4.5.2 and Cor 4.5.4). Therefore, for
any λ 
= 1, Proposition 2.3 shows that the corresponding cohomology Alexander
modules satisfy Ak(U)λ = 0 for any k. Moreover Hk(U ,Lλ) = Hk(U ,Lλ−1) = 0 for
any k.

(ii) Let (Y, 0) be an INNC singularity at the origin of Cn+1. Set U(Y, 0) =
B \ Y , where B is a small open ball centered at the origin in Cn+1. Assume
that n ≥ 2. Then the universal abelian cover U(Y, 0)ab of U(Y, 0) is (n − 1)-
connected; see Libgober [36]. More precisely, it is a bouquet of n-spheres, see [22],
and hence A0(U(Y, 0)) = C1 and Ak(U(Y, 0)) = 0 for k 
= n. As in (i) above, we get
Ak(U(Y, 0)) ∼= Extk

Rs
(C1, Rs) for all k < n. For λ 
= 1 this yields Ak(U(Y, 0))λ = 0

for k < n, and therefore Hk(U(Y, 0),Lλ) = 0 for any k < n.

3. Divisibility results and characteristic varieties

In this section we give an algebraic-geometrical interpretation for the multi-
variable Alexander invariants of the hypersurface complement, similar in flavor to
the one-variable case described in [42], but see also the reformulation of these results
in [21]. We will use an approach based on the general theory of perverse sheaves,
close to the one presented in [21] (see also [9] and [18]). Note that the supports
and characteristic polynomials ∆0 of the multi-variable Alexander modules are the
analogue of the set of roots of the Alexander polynomials and respectively Alexander
polynomials in the one-variable case (cf. [42], [21]).

The first result is an extension of [34], Theorem 3.2, to arbitrary hypersurface
singularities . Let S∞ be a sphere of sufficiently large radius in Cn+1 = CP

n+1 \H
(or equivalently, the boundary of a sufficiently small tubular neighborhood of H in
CPn+1). Let V∞ = S∞ ∩ V be the link of V at infinity, and U∞ = S∞ \ V∞ its
complement.

Theorem 3.1. For all i, and all k ≤ n: Vi,k(U) ⊂ Vi,k(U∞), and ∆i,k(U)|∆i,k(U∞).
Moreover, for k < n, these inclusions and divisibility conditions are replaced by
equalities.

Proof. The case n = 1 is considered in [34]. In fact in this situation one sets, for
i ≤ 1 and k ≤ 1, Vi,k(U∞) to be the k-th characteristic variety of the i-th homology
module of the covering space of U∞ corresponding to the kernel of the composition

π1(U∞) → π1(U) → H1(U).

For n ≥ 2, the theorem is an easy consequence of the Lefschetz hyperplane theorem.
Indeed, as in the proof of Theorem 4.5 of [32], it follows that π1(U) ∼= π1(U∞), and
more generally πk(U ,U∞) ∼= 0 for all k ≤ n. Therefore, the same is true for any
covering, in particular for the universal abelian coverings: πk(Uab,Uab

∞ ) ∼= 0 for all
k ≤ n. Hence, by the Hurewicz Theorem, the vanishing also holds for the relative
homology groups, i.e., the maps of groups Hk(Uab

∞ ) → Hk(Uab) are isomorphisms
for k < n and onto for k = n. Since these maps are induced by an embedding (recall
n ≥ 2), the above are morphisms of modules over the ring of Laurent polynomials
in s variables. The statement of the theorem follows now from Lemma 2.1. �

From now on to the end of this section, we will make the assumption that the
hyperplane H at infinity is transversal (in the stratified sense) to the hypersurface
V . With this assumption, we show that the global cohomological Alexander invari-
ants of the hypersurface complement are entirely determined by the degrees of the
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irreducible components on the one hand, and by the local topological information
encoded by the singularities of V on the other hand. In particular, these invariants
depend on the local type of singularities of the hypersurface.

First, we need some notation. Recall from §2.2 that Aq(U) ∼= Hq(U ,L∨). For
x ∈ V , we let Ux = U ∩Bx, for Bx a small open ball at x in CPn+1. Denote by Lx

the restriction of the local coefficient system L to Ux. Then the groups H∗(Ux,L∨
x )

inherit an Rs-module structure.

Theorem 3.2. Let λ = (λ1, · · · , λs) ∈ Ts and ε ∈ Z≥0. Fix an irreducible compo-
nent V1 of V , and assume that λ /∈ Supp(Hq(Ux,L∨

x )) for all q < n + 1 − ε and all
points x ∈ V1. Then λ /∈ Supp(Aq(U)) for all q < n + 1 − ε.

Proof. Let U1 = CPn+1 \ V1, and let i : U ↪→ U1 and j : U1 ↪→ CPn+1 be
the two inclusions. Then L∨[n + 1] ∈ Perv(U), since U is smooth. Moreover
F := Ri∗(L∨[n + 1]) ∈ Perv(U1), since i is a quasi-finite affine morphism (see [48],
Theorem 6.0.4). But U1 is affine (n + 1)-dimensional, and F ∈ Perv(U1); therefore
by Artin’s vanishing theorem for perverse sheaves (see [48], Corollary 6.0.4), the
following hold:

Hk(U1,F) = 0, for all k > 0,

Hk
c (U1,F) = 0, for all k < 0.

Let a : CPn+1 → point be the constant map. Then

Hk(U1,F) ∼= Hk+n+1(U ,L∨) ∼= Hk(Ra∗Rj∗F)

and
Hk

c (U1,F) ∼= Hk(Ra!Rj!F).
Note that since a is a proper map, we have Ra! = Ra∗.

Now consider the canonical morphism Rj!F → Rj∗F and extend it to the dis-
tinguished triangle

Rj!F → Rj∗F → G [1]→
in Db

c(CPn+1). Since j∗j! ∼= id ∼= j∗j∗, the complex G is supported on V1. Apply
Ra! = Ra∗ to the above distinguished triangle and obtain

Ra!Rj!F → Ra∗Rj∗F → Ra∗G
[1]→ .

Upon applying the cohomology functor to this triangle, and using the above van-
ishing, we obtain that

Hk+n+1(U ,L∨) ∼= Hk(CPn+1,G) ∼= Hk(V1,G) for k < −1,

and Hn(U ,L∨) is a submodule of H−1(V1,G).
Therefore, by Lemma 2.1, in order to prove the theorem it suffices to show that,

under our assumptions, λ /∈ Supp(Hk(V1,G)) for all k < −ε. This follows from the
local calculation and the hypercohomology spectral sequence. Indeed, for x ∈ V1,
we have

Hq(G)x
∼= Hq(Rj∗F)x

∼= Hq+n+1(Rj∗Ri∗L∨)x
∼= Hq+n+1(Bx, R(j ◦ i)∗L∨)

∼= Hq+n+1(Ux,L∨
x ),

where Ux = U∩Bx, for Bx a small open ball at x in CP
n+1, and Lx is the restriction

of the local coefficient system L to Ux. Therefore, for a fixed x ∈ V1 the assumption
that λ /∈ Supp(Hq(Ux,L∨

x )) for all q < n + 1 − ε is equivalent to the assumption
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λ /∈ Supp(Hq(G)x) for all q < −ε. Next note that Hk(V1,G) is the abutment of a
spectral sequence with the E2-term defined by Ep,q

2 = Hp(V1,Hq(G)). Moreover, if
λ /∈ Supp(Hq(G)x) for all q < −ε and for all x ∈ V1, then λ /∈ Supp(Hp(V1,Hq(G)))
for p + q = k < −ε (since Ep,q

2 is nontrivial only if p ≥ 0). Thus, from the spectral
sequence, it follows that λ /∈ Supp(Hk(V1,G)) for all k < −ε. This finishes the
proof of the theorem. �

Remark 3.3. Theorem 3.2 leads to vanishing-type results for the global Alexander
invariants of the hypersurface, as a consequence of the vanishing of (supports of)
local Alexander invariants at singular points (e.g., see Corollary 3.5 below). In
order to derive such a result, we need to clarify the relationship between the local
modules H∗(Ux,L∨

x ) that appear in the statement of Theorem 3.2 on the one hand,
and the local universal Alexander modules at a singular point x on the other hand.
The latter are defined as in §2.2. More precisely, let U0 denote the hypersurface
complement CPn+1 \ V , and for x ∈ V1 set U ′

x = U0 ∩Bx, for Bx a small open ball
at x in CP

n+1. Let Uab
x and (U ′

x)ab be the universal abelian covers of Ux and U ′
x,

respectively, and denote by A∗(Ux) and respectively A∗(U ′
x) the associated universal

homological Alexander modules. The modules A∗(U ′
x) are called the local universal

homological Alexander modules at x, as they depend only on the singularity germ
(V, x).

We first relate H∗(Ux,L∨
x ) to the modules A∗(Ux), then express the latter in

terms of the local universal Alexander modules at x.
If ix : Ux ↪→ U denotes the inclusion map, then the local system Lx on Ux is

induced via the composition of maps

φ : π1(Ux)
(ix)#→ π1(U) lk→ H1(U) → Aut(Rs).

On the other hand, by the naturality of the Hurewicz morphism, φ factors through
lkx : π1(Ux) → H1(Ux), Rs becoming in this way a (left) C[H1(Ux)]-module. Then,
by [18], p. 50, it follows that H∗(Ux,L∨

x ) is the homology of the equivariant Hom:

C∗(Ux,L∨
x ) = HomC[H1(Ux)](C0

∗(Uab
x ), Rs),

where Rs is regarded now as a right C[H1(Ux)]-module using the involution on the
group ring as in Remark 2.2, and as a left Rs-module. By [31], p.6, there is a
spectral sequence converging to H∗(Ux,L∨

x ) with the E2-term given by

(3.1) Ep,q
2 = Extq

C[H1(Ux)](Ap(Ux), Rs).

Thus each module H∗(Ux,L∨
x ) is built up entirely from information carried by the

modules A∗(Ux). The latter are related to the local Alexander modules A∗(U ′
x) by

the following observations. For points x ∈ V1 \ (V1 ∩ H) we have U ′
x = Ux; thus

A∗(Ux) = A∗(U ′
x). For x ∈ V1 ∩ H, the transversality assumption implies that

Ux is homotopy equivalent to U ′
x × S1. It follows that Uab

x � (U ′
x)ab × R; thus by

the homological Künneth formula we obtain that the group Ap(Ux) is isomorphic
to Hp((U ′

x)ab, C) ⊗ H0(R, C) ∼= Ap(U ′
x). When considering the C[H1(Ux)]-module

structure, the isomorphism can be written as (see [6], Prop. 1.8):

Ap(Ux) ∼= (Ap(U ′
x) ⊗C[H1(U ′

x)] C[H1(Ux)]) ⊗C[Z] C.

Together with the spectral sequence (3.1), this yields the desired relationship.

Remark 3.4. If S is an s-dimensional stratum in a Whitney stratification of V
such that x ∈ S, then Ap(U ′

x) = 0 if p > n − s. Indeed, U ′
x has the homotopy
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type of the link complement S2n−2s+1
x \ Lx, where S2n−2s+1

x is a small sphere
at x in a submanifold of CP

n+1 which meets S transversally at x (and no other
point), and (S2n−2s+1

x , Lx) is the link pair of the stratum S in the pair (CPn+1, V ).
Since S2n−2s+1

x \ Lx admits a cyclic cover which has the homotopy type of a CW
complex of dimension n− s (i.e., the fiber of the Milnor fibration associated to the
algebraic link (S2n−2s+1

x , Lx)), it follows that the universal abelian cover (U ′
x)ab has

the homotopy type of an (n− s)-dimensional CW complex, thus proving the claim.

The following consequence of Theorem 3.2, Remark 3.3, and of Example 2.8 is
similar to some results in [22], [36], [37].

Corollary 3.5. (i) (Case ε = 0) With the notation in the above theorem, assume
in addition that V is a normal crossing divisor at any point of the component V1.
Then Supp(Ak(U)) ⊂ {1} for any k < n + 1.

(ii) (Case ε = 1) With the notation in the above theorem, assume in addition that
V is an INNC divisor at any point of the component V1. Then Supp(Ak(U)) ⊂ {1}
for any k < n.

Using a similar argument (see also [21]) we obtain the following result.

Theorem 3.6. Assume that the hypersurface V is transversal (in the stratified
sense) to the hyperplane H at infinity. Then for k ≤ n, Supp(Ak(U)) is contained
in the zero set of the polynomial td1

1 · · · tds
s −1, thus has positive codimension in Ts.

The positive codimension property of supports in the universal abelian case
should be regarded as the analogue of the torsion property in the infinite cyclic
case (cf. [42], [21]). Example 5.6 below shows that transversality except at finitely
many points is not enough to get Theorem 3.6.

Proof. As in the proof of the previous theorem, after replacing U1 by the affine
space Cn+1 = CPn+1 \ H, it follows that for k ≤ −1, Hk+n+1(U ,L∨) is a sub-
module of Hk(CPn+1,G), where G is now a complex of sheaves supported on H.
Therefore, by Lemma 2.1, it suffices to prove the theorem for the supports of the
modules Hk(H,G) with k ≤ −1.

As in the previous theorem, for x ∈ H, the local calculation on stalks yields
Hq(G)x

∼= Hq+n+1(Ux,L∨
x ), where Ux = U ∩ Bx, for Bx a small open ball at

x in CP
n+1. If x ∈ H \ H ∩ V , then Ux is homotopy equivalent to C∗, and the

corresponding local system L∨
x is defined by the action of γ∞, i.e., by multiplication

by
∏s

j=1 (tj)dj . On the other hand, if x ∈ V ∩ H, then due to the transversality
assumption, Ux is homotopy equivalent to a product (B′

x \ V ∩ B′
x) × C∗, with B′

x

a small open ball centered at x in H, and the local system L∨
x is an external tensor

product, the second factor being defined by multiplication by
∏s

j=1 (tj)dj . Thus,
by the Kunneth spectral sequence, the stalk cohomology groups of G along H, i.e.
Hq(G)x∈H , have supports contained in the zero set of the polynomial td1

1 · · · tds
s −1.

Then by the hypercohomology spectral sequence, the same is true for the supports
of the hypercohomology groups Hk(H,G). �

4. Explicit computations via logarithmic connections

We review a general method used to determine the characteristic varieties in the
case of hyperplane arrangements, see [25] and [47], and show that essentially the
same method applies to more general situations as well.
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Let π : (Z, D) → (CPn+1, V ∪ H) be an embedded resolution of singularities for
the reduced divisor V ∪ H. In particular,

(i) D is a normal crossing divisor with smooth irreducible components;
(ii) π : Z \ D → U is an isomorphism.
In this setting there is a Hodge–Deligne spectral sequence

(4.1) Ep,q
1 = Hq(Z, Ωp

Z(log D)) ⇒ Hp+q(U , C)

degenerating at E1 and inducing the Hodge filtration F of the Deligne mixed Hodge
structure on Hp+q(U , C); see [13].

Corollary 4.1. If the Deligne mixed Hodge structure on some cohomology space
Hm(U) is pure of type (m, m), then

(i) H0(Z, Ωm
Z (log D)) = Hm(U) and

(ii) Hq(Z, Ωp
Z(log D)) = 0 for p + q = m and q > 0.

We list below several cases when this property holds.

Example 4.2. (a) When V is a hyperplane arrangement, the cohomology space
Hm(U) is pure of type (m, m) for all m ≥ 0; see [19].

(b) When V is a smooth rational curve arrangement in the projective plane (i.e.,
any irreducible component of V is either a line or a smooth conic), the cohomology
space Hm(U) is pure of type (m, m) for all m ≥ 0 (easy exercise for the reader).

(c) Hm(U) is always pure of type (m, m) for all m ≤ 1. This follows from the
fact that g = (g1, ..., gs) : U → Ts induces an isomorphism at the Hm-level for
all m ≤ 1. Here we look at U as a subset of Cn+1 and we set gj(x1, ..., xn+1) =
fj(1, x1, ..., xn+1).

For λ = (λ1, ..., λs) ∈ Ts, let Lλ be the corresponding local system on U = Z \D.
Let αj ∈ C be such that exp(−2πiαj) = λj for j = 1, ..., s. Then Lλ is the local
system of horizontal sections of the connection

∇α : OU → Ω1
U

given by ∇α(u) = du + u · ωα, where

ωα =
∑

j=1,s

αj
dgj

gj
.

Alternatively, if we look at U as a subset of CP
n+1, then we can use the formula

(4.2) ωα =
∑

j=0,s

αj
dfj

fj

where we set α0 = −
∑

j=1,s dj · αj . Recall that f0 = x0.
Using the fact that U is affine and our connection is regular, it follows that

(4.3) Hm(U ,Lλ) = Hm(H0(U , Ω∗
U ),∇α)

just as in [18, Thm. 3.4.18] or, for complete proofs, [12]. However, this result is
not so useful to perform explicit computations since the groups H0(U , Ω∗

U ) are too
large.

There is a second approach to computing Hm(U ,Lλ), this time using logarithmic
connections. It has the advantage of reducing the size of the spaces H0(U , Ω∗

U ), but
one has to be more careful about the residues αj . More precisely, the pull-back of
the connection ∇α under the embedded resolution π is a logarithmic connection
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∇̃α on Z with poles along D. Let ρi be the residue of the connection ∇̃α along
the irreducible component Di of D. When Di is the proper transform of some
component Vj of V one has ρi = αj .

Definition 4.3. A choice of residues α = (α0, α1, ..., αs) for Lλ as above is an
admissible choice of residues for Lλ if ρi /∈ N>0 for all irreducible components Di

of D. A rank one local system Lλ is admissible if there is some admissible choice
of residues for it.

Remark 4.4. It is easy to see, using Hironaka’s embedded resolution of singularities
and by blowing-up smooth subvarieties, that for any i there is a relation

ρi =
∑

j=1,s

nijαj

with nij ∈ Z (see [25] for similar formulas and note that negative coefficients occur
due to the presence of the hyperplane at infinity). The condition ρi /∈ N>0 is clearly
satisfied if all αj are sufficiently small. In other words, there is a neighborhood U(1)
of the trivial local system 1 ∈ Ts formed entirely by admissible local systems.

If we move away from the trivial local system, it is not clear whether all the local
systems are admissible. The answer to this question is negative for some hyperplane
arrangements; see [7, Example 4.4], [5, Example 3.4], [38] and [49]. On the other
hand, for not very complicated arrangements, see Examples 4.8 and 4.10 below, the
answer is positive.

For an admissible choice of residues one has an E1-spectral sequence

(4.4) Ep,q
1 = Hq(Z, Ωp

Z(log D)) ⇒ Hp+q(U ,Lλ)

whose differential d1 is induced by ∇̃α; see [18, Thm. 3.4.11 (i)]. The above
discussion proves the following.

Proposition 4.5. Assume that α = (α0, α1, ..., αs) is an admissible choice of
residues for Lλ and that the cohomology groups Hm(U) are pure of type (m, m)
for all m ≤ k. Then

Hm(U ,Lλ) = Hm(H∗(U), ωα∧)
for all m ≤ k and Hk+1(H∗(U), ωα∧) is a subspace in Hk+1(U ,Lλ).

When U is a hyperplane arrangement complement, this is exactly the argument
used in [25] and [47]. Proposition 4.5, Remark 4.4 and Example 4.2 yield the
following.

Corollary 4.6. If U is an affine hypersurface arrangement complement, then there
is a neighborhood U(1) of the trivial local system 1 ∈ Ts such that

H1(U ,Lλ) = H1(H∗(U), ωα∧)

for any local system Lλ ∈ U(1), α being an arbitrary choice of admissible residues
for Lλ.

Corollary 4.7. If U = M(A) is a hyperplane arrangement complement, then there
is a neighborhood U(1) of the trivial local system 1 ∈ Ts such that

(4.5) Hm(U ,Lλ) = Hm(H∗(U), ωα∧)

for any m ∈ N, and any local system Lλ ∈ U(1), α being an arbitrary choice of
admissible residues for Lλ.
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In relation to the isomorphism (4.5), we note that in the case of hyperplane
arrangement complements the following inequality holds for any m ∈ N and any
character λ ∈ Ts ([38], Proposition 4.2):

dimHm(U ,Lλ) ≥ dimHm(H∗(U), ωα∧).

However, the opposite inequality is false in general (see [49], Example 4.1).

Example 4.8. In the projective plane CP
2 consider the hypersurface V having as

irreducible components V1 : x = 0, V2 : y = 0, V3 : x2 − yz = 0. Let H = V0 be the
line at infinity given by z = 0 and note that H is not transverse in a stratified sense
to V . Consider the connection ∇λ whose residues are α = (α0, α1, ..., α3) with

α0 = −α1 − α2 − 2α3.

Let A = V1∩V2∩V3 = (0 : 0 : 1) and B = V1∩V0∩V3 = (0 : 1 : 0). To construct the
embedded resolution of V ∪H we first blow up the points A and B, creating thus two
exceptional divisors, DA and respectively DB . The corresponding residues along
DA and DB are easily computable and we get αA = α1 + α2 + α3 and respectively
αB = α1 + α0 + α3 = −α2 − α3. Let P = DA ∩ V ′

2 ∩ V ′
3 and Q = DB ∩ V ′

0 ∩ V ′
3 ,

where ′ denotes the proper transform of a divisor. To get the embedded resolution
of V ∪ H we just have to blow up the points P and Q, creating thus two new
exceptional divisors, DP and respectively DQ. The corresponding residues are
αP = −αQ = α1 + 2α2 + 2α3. Therefore the choice of residues α = (α0, α1, ..., α3)
is admissible if and only if none of the residues

α1, α2, α3,−α1−α2−2α3, α1+α2+α3,−α2−α3, α1+2α2+2α3,−(α1+2α2 +2α3)

is a strictly positive integer.

Lemma 4.9. In the situation of Example 4.8, any rank one local system is admis-
sible.

Proof. It is clearly enough to consider the case of real residues αj . Otherwise, we
just look at the corresponding real parts.

We divide the possibilities into the following two cases.
Case 1. (α1 + 2α2 + 2α3 /∈ Z).
Suppose first that, in addition, α1+α2+α3 /∈ Z. Then the choice with αj ∈ [0, 1)

for j = 1, 2, 3 is admissible.
Now suppose that α1 +α2+α3 ∈ Z. It follows that α2 +α3 /∈ Z. Then the choice

with αj ∈ [0, 1) for j = 2, 3 and α1 < 0 such that α1 + α2 + α3 = 0 is admissible.
Case 2. (α1 + 2α2 + 2α3 ∈ Z).
Then we have to choose α1 = −2α2 − 2α3. The residues in this case are just

−2(α2 + α3), −(α2 + α3), α2, α3.

Hence it is enough to take αj ∈ [0, 1) for j = 2, 3. �

Now we continue Example 4.8 by applying Example 4.2 and Proposition 4.5 to
get Hm(U ,Lλ) = Hm(H∗(U), ωα∧) for all m. In order to perform this computation,
we need a precise description of the cohomology algebra H∗(U) (with C coefficients),
and this can be obtained in this example from the local considerations in [16, pp.
47-49]. The result can be described as follows:

(i) H0(U) = C and the generator is 1;
(ii) H1(U) = C3 and a basis is given by η1 = dx

x , η2 = dy
y and η3 = d(x2−y)

x2−y ;
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(iii) H2(U) = C2 and a basis is given by η12 = η1 ∧ η2 and η23 = η2 ∧ η3. The
multiplication is given by the relation

2η1 ∧ η3 = 2η12 + η23.

(iv) Since U is affine, Hm(U) = 0 for m > 2.
The computation of Hm(H∗(U), ωλ∧) falls into 3 cases.
Case 1. α1 = α2 = α3 = 0 and Lλ = C is the constant local system. Then of

course Hm(U ,Lλ) = Hm(U) for all m.
Case 2. α1+2α2+2α3 = 0. Then a direct computation shows that H0(U ,Lλ) = 0

and dimH1(U ,Lλ) = dimH2(U ,Lλ) = 1.
Case 3. α1+2α2+2α3 
= 0. Again a direct computation shows that H0(U ,Lλ) =

H1(U ,Lλ) = H2(U ,Lλ) = 0.
The above computations yield the following equalities.

V 0,1
t (U) = V 0,2

t (U) = {λ ∈ T3; λ1λ
2
2λ

2
3 = 1},

V 1,1
t (U) = V 2,1

t (U) = V 1,2
t (U) = {1},

V m,1
t (U) = ∅ for m > 2 and V m,2

t (U) = ∅ for m > 1.
These results are consistent with the general results by Arapura [1]. See also

Suciu [49] for a related discussion.
Note that the above 2-dimensional subtorus T = {λ ∈ T3; λ1λ

2
2λ

2
3 = 1} is

different from the 2-dimensional subtorus predicted by Theorem 3.6 in the case of
a divisor V transverse to the line at infinity.

A special class of local systems is formed by the equimonodromical local systems
Lλ such that λ0 = λ1 = ... = λ3. Then, for λ5

0 = 1, the dimension of the cohomology
space Hm(U ,Lλ) is exactly the multiplicity of the root t = λ0 in the characteristic
polynomial

∆m(t) = det(t · Id − hm),

where F : xyz(x2−yz) = 1 is the associated Milnor fiber of xyz(x2−yz) in C3 and
h : F → F is the monodromy operator; see for instance [18, 6.4.6]. To compute the
cohomology of such an equimonodromical local system Lλ, one should start by an
admissible choice for the residues α = (α0, α1, α2, α3). For instance, the obvious
choice α = (−4

5 , 1
5 , 1

5 , 1
5 ) is not admissible. A good choice here is α = ( 1

5 , −4
5 , 1

5 , 1
5 ).

Using this choice, we get the following characteristic polynomials in this situation:

∆0(t) = t − 1, ∆1(t) = (t − 1)2(t5 − 1), ∆2(t) = (t − 1)(t5 − 1).

The following example is similar to the previous one, but it exhibits a curve
V which is transversal to the line H at infinity and it needs a different approach
for the computation of the cohomology algebra H∗(U). Moreover, in this case the
cohomology algebra H∗(U) is not spanned by the degree one part H1(U).

Example 4.10. In the projective plane CP
2 consider the hypersurface V having

as irreducible components V1 : x = 0, V2 : y = 0, V3 : x2 − y2 + yz = 0. Let H = V0

be the line at infinity given by z = 0 and note that H is transverse in a stratified
sense to V (i.e., each irreducible component of V is smooth, H is transverse to each
of them and avoids the intersection points). Consider the connection ∇λ whose
residues are α = (α0, α1, ..., α3) with

α0 = −α1 − α2 − 2α3.
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Let A = V1∩V2∩V3 = (0 : 0 : 1). To construct the embedded resolution of V ∪H we
first blow up the point A, creating an exceptional divisor DA. The corresponding
residue along DA is αA = α1 + α2 + α3. Let P = DA ∩ V ′

2 ∩ V ′
3 , where ′ denotes

the proper transform of a divisor. To get the embedded resolution of V ∪ H we
just have to blow up the point P , creating a new exceptional divisor DP . The
corresponding residue is αP = α1 + 2α2 + 2α3. Therefore the choice of residues
α = (α0, α1, ..., α3) is admissible in this case if and only if none of the residues

α1, α2, α3,−α1 − α2 − 2α3, α1 + α2 + α3, α1 + 2α2 + 2α3

is a strictly positive integer. It can be shown, exactly as in Lemma 4.9 above, that
in this situation any rank one local system is admissible.

It follows that we can apply Example 4.2 and Proposition 4.5 to get Hm(U ,Lλ) =
Hm(H∗(U), ωλ∧) for all m. To get a precise description of the cohomology algebra
H∗(U) we can proceed as follows.

(i) H0(U) = C and the generator is 1;
(ii) H1(U) = C3 and a basis is given by η1 = dx

x , η2 = dy
y and η3 = d(x2−y2+y)

x2−y2+y ;
(iii) To compute H2(U) is the first difficulty. This can be done by setting U0 =

CP2 \ (V0 ∪ V1 ∪ V2), V 0
3 = V3 \ (V0 ∪ V1 ∪ V2) and considering the Gysin sequence

H1(U) → H0(V 0
3 ) → H2(U0) → H2(U) → H1(V 0

3 ) → 0.

The first morphism, given by the Poincaré–Leray residue R, is clearly surjective,
i.e. R(η3) = 1. Then dim H2(U0) = 1 and a generator is η12 = η1 ∧ η2. The affine
curve V 0

3 is isomorphic to C \ {−1, 0, 1} under the parametrization

x =
t

t2 − 1
, y =

t2

t2 − 1
.

Using this parametrization, we can identify H1(V 0
3 ) with C3 by sending a rational

differential form to its residues at the points {−1, 0, 1}. Some explicit computations
involving the last nonzero morphism in the exact sequence above (which is again
given by the Poincaré–Leray residue R) show that R(η13) and R(η23) are linearly
independent in H1(V 0

3 ) = C3, where η13 = η1 ∧ η3 and η23 = η2 ∧ η3. It follows
that η12, η13 and η23 are linearly independent in H2(U), which is 4-dimensional.

It follows that the following cases are possible in this example.
Case 1. α1 = α2 = α3 = 0 and Lλ = C is the constant local system. Then of

course Hm(U ,Lλ) = Hm(U) for all m.
Case 2. (α1, α2, α3) 
= (0, 0, 0). Then a direct computation shows that H0(U ,Lλ)

= H1(U ,Lλ) = 0 and dimH2(U ,Lλ) = 2.
The above computations yield the following equalities:

V 0,2
t (U) = V 1,2

t (U) = T3

(hence here the support has 0 codimension),

V 1,1
t (U) = V 2,1

t (U) = V 2,2
t (U) = V 3,2

t (U) = {1},

V m,1
t (U) = ∅ for m > 2 and V m,2

t (U) = ∅ for m > 3. Note that the inclusion in
Theorem 3.6 is strict in this case.

Consider as in the above example the associated Milnor fiber F : xyz(x2 − y2 +
yz) = 1 and the monodromy operator h : F → F . A good choice of residue is again
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given by α = ( 1
5 , −4

5 , 1
5 , 1

5 ). Using this choice, we get the following characteristic
polynomials in this situation:

∆0(t) = t − 1, ∆1(t) = (t − 1)3, ∆2(t) = (t − 1)2(t5 − 1)2.

Remark 4.11. In order to apply Theorem 3.2, we have to check the vanishing of
some local cohomology groups. When the hypersurface germs occurring in these
local complements are quasi-homogeneous, then we can globalize the local situation
and compute the corresponding local cohomology groups using the ideas explained
in this section. For instance, Example 4.8 covers the case of a plane curve sin-
gularity consisting of 3 smooth branches (C1, 0), (C2, 0) and (C3, 0) such that the
intersection multiplicities are given by (C1, C2) = 1, (C1, C3) = 1 and (C2, C3) = 2.
This follows from the topological classification of the plane curve germs; see [16, p.
45].

5. A more general setting

In this section we define multi-variable Alexander invariants in a more general
setting (see below) and attempt to relate them to the invariants previously defined.

Assume that the hypersurface V in CPn+1 has s irreducible components Vi with
degrees deg(Vi) = di for i = 1, · · · , s. Denote by U0 the complement CPn+1 \ V ,
and let d = g.c.d.(d1, · · · , ds). Then

H1(U0) = Zs−1 ⊕ (Z/dZ)

is generated by the meridians γi about the nonsingular part of each component Vi,
for i = 1, · · · , s (cf. [16], (4.1.3)). These meridians satisfy a single relation, namely,

s∑

i=1

diγi = 0.

Now fix a hyperplane H and set, as before, U = CP
n+1 \ (V ∪ H). Recall that

H1(U) = Zs, freely generated by the meridians γi, i = 1, · · · , s. Let i : U ↪→ U0 be
the inclusion map, and denote by Uab

0 and Uab the universal abelian covers of U0

and U respectively, and by p0 and p the corresponding covering projections.
The invariants we are interested in are those associated with Uab

0 , and they are
regarded as modules over the quotient ring

C[H1(U0)] = C[t±1
1 , · · · , t±1

s ]/(td1
1 · · · tds

s − 1).

It is a natural question to find the relation between the universal abelian invari-
ants associated with the complement of V , and those associated with the comple-
ment of V ∪ H.

For a topological space X, let L(X) denote the set of rank one complex local sys-
tems on X. When X = U , then L(U) is naturally identified with the s-dimensional
complex torus Ts. For X = U0, the set L(U0) corresponds to the subset in Ts given
by

{λ = (λ1, ..., λs) ∈ Ts |λd1
1 · · ·λds

s = 1}.
With the notation above, let dj = d·d′j and consider the (s−1)-dimensional complex
subtorus

T = {λ = (λ1, ..., λs) ∈ Ts |λd′
1

1 · · ·λd′
s

s = 1}.
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For each d-root of unity β, let λ(β) be one point in the hypersurface in Ts given by
the equation

λ
d′
1

1 · · ·λd′
s

s = β.

Then L(U0) is precisely the disjoint union of translated tori given by

L(U0) =
⋃

β

λ(β)T.

The discussion in the previous section relating local systems to connections can be
extended to this setting in an obvious way. For instance, we should now use the
1-form

(5.1) ωα =
∑

j=1,s

αj
dfj

fj
,

where the residues α satisfy the condition
∑

j=1,s dj · αj = 0, which is a necessary
condition in order to have a 1-form on U0.

A different way of looking at a local system L in L(U0) is by considering it as a
local system in L(U) (given by the obvious restriction L|U) such that the action of
the elementary loop about the hyperplane H is trivial. This viewpoint yields the
following exact sequence:

· · · → Hk(U0,L) → Hk(U ,L) → Hk−1(U0 ∩ H,L) → Hk+1(U0,L) → · · · ;

for details on this see [18, pp. 221-222]. The following consequence should be
compared to [46], [39, Proposition 1.3]. The higher-dimensional case, but with a
generic hyperplane H at infinity, was considered in [32, Lemmas 1.5, 1.11 and 1.13].

Corollary 5.1. Assume that V is a plane curve arrangement, i.e. n = 1. Then,
for any rank one local system L = Lλ on U0 and any choice of the line H at infinity,
one has

dimH1(U ,L) = dim H1(U0,L) + ε.

Here ε ∈ {0, 1} and ε = 0 if there is a point p ∈ V ∩ H such that
∏

j=1,s

λ
kj

j 
= 1,

where kj = multp(Vj , H) is the intersection multiplicity of the component Vj and
the line H at the point p.

Proof. We use the above exact sequence and get

0 → H1(U0,L) → H1(U ,L) → H0(U0 ∩ H,L) → H2(U0,L) → ...

The existence of a point p as stated implies that H0(U0 ∩ H,L) = 0; hence clearly
ε = 0 as well. If there is no such point p, then the local system L|(U0 ∩ H) is the
trivial rank one local system C and hence H0(U0 ∩ H,L) = C. �
Remark 5.2. (added in proof) We point out that the converse statement in the
second part of the above corollary is not true. Here is a counter-example. In CP2,
let V be the union of the following four lines: x = 0, x − z = 0, y = 0 and
y−z = 0. Choose the line at infinity H to be z = 0. Let L be the local system with
monodromy −1 about any of the first four lines, and trivial monodromy 1 about
H. Then the product of the monodromies at each of the two intersection points
a = (0 : 1 : 0) and b = (1 : 0 : 0) is 1. On the other hand, both cohomology groups
are trivial. For H1(U0,L), we can use our Theorem 3.2 above, while for H1(U ,L) we
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can use the Künneth Formula (see Theorem 4.3.14 in [18]) with X = Y = C\{0, 1}
and F = G the rank one local system with monodromy −1 about the points 0 and
1.

One case which is already well explored is the following.

Example 5.3. Assume that n > 1, s = 1 and that V = V1 is a hypersurface
of degree d having only isolated singularities. Then π1(U0) = Z/dZ and hence a
local system L = Lβ corresponds to a choice of a d-root of unity β. For β = 1 we
get H0(U0; C) = C and Hj(U0; C) = 0 for 0 < j < n. When V is a Q-manifold,
one also has Hn(U0; C) = 0. The computation of Hn(U0; C) ≈ Hn+1

0 (V ) is quite
difficult in general, as it may depend on the position of the singularities; see [16],
[32]. Here H∗

0 (V ) denotes the primitive cohomology of V , i.e., the cokernel of the
natural monomorphism H∗(CPn+1) → H∗(V ) induced by the inclusion of V into
CPn+1.

For β 
= 1, one can use the isomorphism Hm(U0,L) = Hm(F, C)β, the β-
eigenspace of the monodromy acting on the Milnor fiber F associated to V . In
particular, Hm(U0,L) = 0 for m < n. It is possible to construct examples such
that for m ∈ {n, n + 1} one has

dimHm(U0,L) > dimHm(U0, C).

Indeed, consider the polynomials in [16, p. 148], which have a monodromy op-
erator without the eigenvalue 1 on all the reduced cohomology groups H̃m(F, C)
(equivalently, V has the same rational cohomology as CPn). It is not possible that
H̃m(F, C) = 0 for all m ∈ N, by A’Campo’s result on the Lefschetz number of the
monodromy; see [18, p. 174]. Hence there is some integer m and some d-root of
unity β 
= 1 such that dim Hm(U0,Lβ) > 0 = dimHm(U0, C). Using the Euler
characteristic equality χ(U0, C) = χ(U0,Lβ), it follows that the inequality should
hold for the two possible values of m. By the minimality property of hyperplane
arrangement complements, it is known that the above inequality is impossible for
such complements, [23].

5.1. Some 2-component arrangements. We consider now in detail the case
of hypersurface arrangements V with s = 2 irreducible components. We assume
moreover that:

(i) n > 1 and each Vi has at most isolated singularities and is a Q-manifold;
(ii) V ′ = V1∩V2 has at most isolated singularities; this condition is automatically

fulfilled when d1 < d2 and V2 is smooth, see [10].
Let Ui = CPn+1 \ Vi. Then the Mayer–Vietoris sequence of the covering U ′ =

U1 ∪ U2 reads like

(5.2) ... → Hk−1(U0) → Hk(U ′) → Hk(U1) ⊕ Hk(U2) → Hk(U0) → ....

Here and in the sequel the constant coefficients C are used unless stated otherwise.
Using Example 5.3 to handle the cohomology groups H∗(Ui) for i = 1, 2 and the
Alexander duality isomorphism (which is compatible with the MHS after taking
the Tate twist (−n − 1), see for details [26])

(5.3) Hk(U ′) = H2n+2−k(CP
n+1, V ′)∨(−n − 1) = H2n+1−k

0 (V ′)∨(−n − 1),

we get the following result.
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Proposition 5.4. With the above notation and assumptions, the following hold.
(i) H0(U0) = C is pure of type (0, 0) and H1(U0) = C is pure of type (1, 1) and

it is spanned by the 1-form

ω1 = d2 ·
df1

f1
− d1 ·

df2

f2
.

(ii) Hk(U0) = 0 for 1 < k < n.
(iii) Hn(U0) is pure of weight n + 2 and bn(U0) ≤ dimHn

0 (V ′). Moreover
Hn(U0) = 0 if d1 < d2 and V2 is smooth.

(iv) Hn+1(U0) has weights ≥ n + 2 and one has an isomorphism of MHS

Hn+1(U0)/Wn+2H
n+1(U0) = Hn−1

0 (V ′)∨(−n − 1).

Proof. The vanishing of Hn(U0) in the third claim follows from an unexpected
source. Indeed, the Gysin sequence of the smooth divisor X2 = V2 ∩ U1 in U1 gives
a monomorphism Hn(U0) → Hn−1(X2). But this latter group Hn−1(X2) is trivial
by some general connectivity results recently obtained by the first author; see [15].

Indeed, Theorem 1.1 in [15] applied to V = V2 and H = V1 yields the (n − 1)-
connectivity of the relative Milnor fiber

Frel = {x ∈ Cn+2 | f2(x) = 0, f1(x) = 1}.
Since X2 is the quotient of Frel under the obvious action of the group of d1-roots
of unity, we get Hn−1(X2) = 0.

The examples given in [15] show that the case d1 = d2 is much more complicated;
in particular, the group Hn−1(X2) can be nonzero. Example 5.6 below shows that
the assumption V2 smooth cannot be relaxed to V2 with isolated singularities and
a Q-manifold. The key point here is that the singularities of V2 are situated on V1,
a situation not covered by the results in [15].

The only other claims that are not obvious are those on the MHS. They follow
from the fact that Hn

0 (V ′) has a pure HS of weight n (the singularities of V ′ being
isolated) and the following consequence of the Alexander duality (5.3)

(5.4) hp,q(Hk(U ′)) = hn+1−p,n+1−q(H2n+1−k
0 (V ′)).

�

For a rank one local system L ∈ L(U0), we can choose the corresponding form
ωα to be a multiple a(α)ω1 of the 1-form ω1 introduced above. Then Propositions
4.5 and 5.4 yield the following.

Corollary 5.5. For a nontrivial rank one local system L ∈ L(U0) for which an
admissible choice of residues α = (d2 · a(α),−d1 · a(α)) exists, the following hold:

(i) Hk(U0,L) = 0 for k < n;
(ii) if Hn

0 (V ′) = 0 or if d1 < d2 and V2 is smooth, then Hn(U0,L) = 0.

Note that the first claim above holds by Corollary 3.5, since V ′ has only INNC
singularities.

The vanishing of Hn
0 (V ′) holds when V ′ is a Q-homology manifold, but also

in many other cases; see for instance the discussion in [16, pp. 207-216]. There
one considers only the case when V1 is a hyperplane. Indeed, any hypersurface W
having only isolated singularities in CPn can be obtained as the intersection of a
smooth hypersurface V2 in CPn+1 with the hyperplane H = CPn; see [14, p. 206].



22 ALEXANDRU DIMCA AND LAURENTIU MAXIM

However, this situation is usually uninteresting according to the second claim of
the above corollary.

We conclude with an example where V1 is a hyperplane and V2 is singular, so
that it may have been considered already in the previous section (in such a case U0

from this section is exactly U from the previous section, but for the hypersurface
V = V2 !).

Example 5.6. In CP
3 (with homogeneous coordinates (x : y : z : t)) consider the

hyperplane H = V1 : t = 0 and the surface V2 : xyz − t3 = 0. Then V2 has exactly
3 singularities of type A2; hence it is a Q-manifold. Moreover, H is transverse to
V2, except at the 3 singular points of V2.

To compute the cohomology of the complement U0, we use the Gysin exact
sequence of the smooth divisor D = V2 \ V1 in the affine space CP

3 \ V1 (with
coordinates (x, y, z)) and get

Hk(U0) = Hk−1(D)(−1)

for k = 2, 3, where (−1) denotes the Tate twist. Now D is given by the equation
xyz = 1; hence it is a 2-dimensional torus. It follows that

(i) H2(U0) = C2 is pure of type (2,2);
(ii) H3(U0) = C is pure of type (3,3). Moreover, as explained in the fourth

section, the 1-form ω1 is a multiple of dg
g with g = xyz − 1.

Let g0 = g + 1 = xyz, and note that Fg0 = D is the Milnor fiber of the homo-
geneous polynomial g0. Since U0 = C3 \ Fg0 , we may use the description of the
cohomology groups of U0 using Remark (2.11) in [16], p.192. By taking

ηi = Aixdy ∧ dz − Bidx ∧ dz + Cidx ∧ dy

in the formula (2.12) loc. cit. with (A1, B1, C1) = (x,−y, 0) and (A2, B2, C2) =
(0,−y, z) we get a basis of H2(U0). A direct computation then shows that ω1∧ηi = 0
in H3(U0) = H2(D). To see this, note that dηi = dg ∧ ηi = 0 and hence the
Poincaré–Leray residue of the form

ω1 ∧ ηi =
dg

g
∧ ηi

is the form ηi. Since dηi = 0 on C3, it follows that ηi = dη′
i, for some 1-forms η′

i on
C3. Hence the cohomology class of ηi in H2(D) is trivial.

It follows that, for a nontrivial rank one local system L ∈ L(U0) for which
an admissible choice of residues α exists, one has H∗(U0,L) = H∗(H∗(U0), ωα).
Therefore we get the following equalities:

dim H0(U0,L) = dimH1(U0,L) = 0, dimH2(U0,L) = 2, and dimH3(U0,L) = 1.

In particular, SuppA2(U0) coincides with the character torus T1. This follows since
SuppA2(U0) is a Zariski closed subset, with a nonempty interior by Remark 4.4,
in the irreducible algebraic variety T1. The reader should compare this fact to
Theorem 3.6 above.
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