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1. Introduction

In this mostly expository note, we survey few of the recent developments in
the study of the topology of hypersurface complements. Most of the results
outlined here are contained in [33] and [14].

The study of plane singular curves is a subject going back to the work
of Zariski, who observed that the position of singularities has an influence
on the topology of the curve, and this phenomena can be detected by the
fundamental group of the complement. However, the fundamental group of a
plane curve complement is in general highly non-commutative, thus difficult
to handle. On the other hand, Alexander invariants of the complement
are more manageable, and turn out to be also sensitive to the position of
singularities.

Alexander invariants appeared first in the classical knot theory, where
it was noted that in order to study a knot, it is useful to consider the
topology of its complement. By analogy with knot theory, Libgober [20-
23] introduced and studied Alexander-type invariants for the total linking
number infinite cyclic cover of complements to affine complex hypersurfaces.
For hypersurfaces with only isolated singularities, he showed that there is
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essentially only one interesting global Alexander invariant, which depends
on the local type and the position of singularities. In [5], twisted Alexander
invariants of plane algebraic curves are shown to have a similar property,
and examples of curves with trivial Alexander polynomial, but non-trivial
twisted Alexander polynomials are given.

It is a natural question to ask how such invariants behave if the hyper-
surface is allowed to have more general singularities. If the hypersurface is
reducible, one has to distinguish between Alexander-type invariants associ-
ated to an infinite cyclic cover of the complement on one hand, and to the
universal abelian cover on the other hand. The relation between invariants
of the total linking number infinite cyclic cover and the topology of the
polynomial function defining the (affine) hypersurface, mainly reflected by
the monodromy and the vanishing cycles, was also considered in [11].

In [33], we extend Libgober’s results on the infinite cyclic Alexander
invariants to the case of hypersurfaces with non-isolated singularities and
in general position at infinity. It turns out that the infinite cyclic Alexander
modules of the complement can be realized as intersection homology mod-
ules of the ambient projective space (obtained by adding the hyperplane at
infinity), with a certain local coefficient system defined on the complement.
This new approach allows the use of techniques from homological algebra
(e.g., derived categories and perverse sheaves) in showing that most of these
Alexander modules are torsion over the ring of complex Laurent polyno-
mials. Moreover, the associated global Alexander polynomials are entirely
determined by the local topological information encoded by the link pairs of
singular strata of the hypersurface. Similar methods can be used to obtain
obstructions on the eigenvalues of the monodromy operators associated to
the Milnor fiber of a projective hypersurface arrangement. The Alexander
invariants of the total linking number infinite cyclic cover are further stud-
ied in [12], where it is shown that there is a natural mixed Hodge structure
on the Alexander modules of the complement.

The analogy with link complements in S3 is reflected in [28], where
invariants of the universal abelian cover of a plane curve complement are
considered. In was observed in [25] that such invariants depend on the lo-
cal type of singularities, and they are calculated in terms of position of
singularities of the curve in the plane. More general situations are stud-
ied in [13,26,27]. In [14], we show that the universal abelian invariants of
complements to hypersurfaces with any kind of singularities, are also deter-
mined by the corresponding local invariants associated with singular strata
of the hypersurface.
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2. Infinite cyclic Alexander invariants of the complement

In this section we study Alexander invariants associated to the total linking
number infinite cyclic cover of a hypersurface complement. We first recall
Libgober’s results for the case of hypersurfaces with only isolated singular-
ities, and then show how to extend his results to hypersurfaces with arbi-
trary singularities and in general position at infinity (for complete details,
see [33]).

2.1. Preliminaries

To fix notations for the rest of the paper, let V' be a reduced hypersurface
in CP"!, defined by a degree d homogeneous equation: f = 0. Let f;, i =
1,--+, s be the irreducible factors of f and V; = {f; = 0} the corresponding
irreducible components of V. Throughout this paper, we will assume that
V' is in general position at infinity, that is, we choose a generic hyperplane
H, (transversal to all singular strata in a stratification of V') which we call
"the hyperplane at infinity’. Let & be the (affine) hypersurface complement:
U=CP""" — (VUH,).

Then Hy(U) =2 Z° (cf. [9], (4.1.3), (4.1.4)), generated by meridian
loops 7; about the non-singular part of each irreducible component V;,

i = 1,---,s. Moreover, if 75 denotes a meridian about the hyperplane
at infinity, then there is a relation in Hy(U): Yoo + D.diyvi = 0, where
di = deg(V;).

We consider the infinite cyclic cover U¢ of U defined by the kernel of
the total linking number homomorphism Lk : m1(U) — Z, which maps
all meridian generators to 1, and thus any loop a to the linking number
lk(cr, VU —dHy) of a with the divisor V U —dH,, in CP"*'. By definition,
the infinite cyclic Alexander modules of the hypersurface complement are
the homology groups H;(U¢;C), regarded as I := CJ[t, ¢t~ !]-modules, where
t acts as the canonical covering transformation.

Note that I is a principal ideal domain, hence any torsion I'-module M
of finite type has a well-defined associated order (see [35]). This is called
the Alexander polynomial of M, and is denoted by A, (t). We regard the
trivial module as a torsion module whose associated polynomial is 1. It is
easy to see that if f: M — N is an epimorphism of I'-modules and M is
torsion of finite type, then N is also torsion of finite type and Ay (¢) divides
A (t).

In studying the Alexander modules of the complement we first note
that, since U has the homotopy type of a finite CW complex of dimension
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<n+1 (e.g., see [9] (1.6.7), (1.6.8)), all the associated Alexander modules
are of finite type over I', but in general not over C. It also follows that
H;(U%C) = 0 for i« > n+ 1, and H,11(U%C) is free over I'. Thus, of
particular interest are the Alexander modules H;(U¢;C) for i < n + 1.

In [21], Libgober showed that if V' is a hypersurface with only isolated
singularities, then H;(U¢;Z) = 0 for i < n, and H, (U¢;C) is a torsion
I-module. Moreover, if A, (t) is the polynomial associated to the torsion
module H, (U C), then A, (t) divides (up to a power of (¢ — 1)) the prod-
uct [, csing(v) Da(t) of the Alexander polynomials of link pairs around the
isolated singular points x € V. This shows the dependence of the Alexander
polynomial on the local type of singularities of V. If V' is a rational homol-
ogy manifold, then A, (1) # 0. As in the case of a homogeneous isolated
hypersurface singularity germ, the zeros of A,,(¢) are roots of unity of order
d =deg(V) and H,(U;C) is a semi-simple I'-module (cf. [21]).

As shown by Zariski, the fundamental group of curve complements in
CIP? is sensitive also to the position of singularities. (Note that by a Zariski-
Lefchetz type theorem, cf. [9] p. 25, the class of fundamental groups to
curve complements coincides with the class of fundamental groups of the
complements to hypersurfaces in a projective space.) In [21-24], Libgober
observed that the Alexander invariant of an irreducible curve in CP? (or
more generally, the ’first non-trivial’ Alexander invariant of a hypersurface
complement) exhibits a similar property.

As an example, let C' C CP? be a sextic with only cusps singularities. Then
by the above divisibility result, the global Alexander polynomial A(t) of
the curve C is either 1 or a power of t> —t+ 1. The influence of the position
of singularities can be seen as follows: if C' has only 6 cusps then ( [21,22]):

(1) if C is in ’special position’, i.e., the 6 cusps are on a conic, then A4 (t) =
2 —t+1.

(2) if C is in ’general position’, i.e., the cusps are not on a conic, then
Aq(t) =1.

Note. Libgober’s divisibility theorem ( [21], Theorem 4.3) holds for hy-
persurfaces with isolated singularities, including at infinity. However, for
non-generic H., and for hypersurfaces with more general singularities, the
Alexander modules H; (U C) (i < n) are not torsion in general. Their I'-
rank is calculated in [11]. One of the main results in [33] asserts that if V'
is a reduced hypersurface in general position at infinity, then the modules
H;(U¢;C) are torsion I'-modules for all i < n. We will discuss this aspect
and related results in the next section.
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2.2. Intersection homology approach

Our approach to the study of the infinite cyclic Alexander invariants of the
complement makes use of intersection homology theory ( [3,15,16]) and the
foundational work of Cappell-Shaneson [4] on the study of pseudomanifolds,
pl-embedded in codimension two into a manifold. We will use freely the
background material from these references (but see also [32], §2, for a quick
overview).

Following [4], it is possible to think of a n-dimensional projective hy-
persurface V as the singular locus of CP"™!, which is now regarded as
a filtered space stratified by V and the strata of its singularities. This
yields a regular stratification of the pair (CP"**, V). Due to the transver-
sality assumption we may also consider the induced stratification for the
pair (CP" ™,V U H,). Let £ be a locally constant sheaf on U, with stalk
I' := C[t,t™!] and action by an element a € m(U) determined by mul-
tiplication by ¢k(®VU=dHs) Then, for any perversity p, the intersection
homology complex ZC3 := IC;((C]P’"H, L) is defined by Deligne’s axiomatic
construction as in [3,16]. (Through this section, we make use of the indexing
convention of [16].) The intersection Alexander modules of the hypersurface
V' are then defined as hypercohomology groups of the middle-perversity
intersection homology complex:

THM(CP"M L) .= H(CP"TY ZCe,), i< Z.

Note that, in our setting, the following superduality isomorphism holds
(cf. [4], Theorem 3.3):

ICy, 2 DIC;"[2n + 2] (1)

(here D(A*) is the Verdier-dual to the complex A®, and A°P is the I-module
obtained from the I'-module A by composing all module structures with the
involution ¢ — ¢~1.) Recall that the middle and logarithmic perversities are
defined by: m(s) = [(s — 1)/2] and I(s) = [(s + 1)/2].

The assumption on the position with respect to the hyperplane at in-
finity is crucial in proving the following technical but important fact:

Lemma 2.1. ([33]) If i : V U Hy, < CP""! is the inclusion, then i*IC%,
18 quasi-isomorphic to the zero complex, i.e. the cohomology stalks of the
complex ICY., vanish at points in V U Hy,.

As a corollary, we obtain the intersection homology realization of the
infinite cyclic Alexander modules of hypersurface complements:
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Theorem 2.1. ([33]) There is an isomorphism of I'-modules:
TH™(CP" ' £) = H,(U; L) = H,(U; C).

So the intersection Alexander modules of the hypersurface are isomorphic
to the infinite cyclic Alexander modules of the hypersurface complement.

At this point, we can use freely the language of derived categories, de-
rived functors etc., in order to describe the infinite cyclic Alexander invari-
ants. Our first main application is the following (recall that V' is assumed
to be transversal to the hyperplane at infinity):

Theorem 2.2. ( [33]) For any i < n, the group H;(U";C) is a finitely
generated torsion I'-module.

Proof. First, by the superduality isomorphism (1) and Lemma 2.1 we ob-

q.i.
tain the quasi-isomorphism: i'ZC? =2 0. Therefore:

TH{(CP" L) = HEMU; L) =0 if i<n+1, (2)
where HPM stands for the Borel-Moore homology. The vanishing in (2)
follows by Artin’s theorem ( [36], Example 6.0.6) applied to the (n + 1)-
dimensional affine variety U.

Now, recall that the peripheral complez, R®, associated to the finite local
type embedding VUH,, € CP" ™ is a torsion complex (i.e. the cohomology
stalks H9(R*), are finite dimensional C-vector spaces, for all z € CP"*)
and its hypercohomology fits into a long exact sequence (for more details,
see [4], p. 339-340):

- — HY(CP*th 7Cy,) — HY(CP™H; Z7C3) — HY(CP* Y R®) —
— HH (CPTh I — -

By the hypercohomology spectral sequence, the groups H* (CP"': R*®) are
finite dimensional complex vector spaces, hence torsion I'modules. Thus,
our claim follows from the above long exact sequence and the vanishing for
the logarithmic complex ZC7 in (2). |

Note that if i < n, the I'-module H;(U4¢;C) is actually a finite dimen-
sional complex vector space, thus its order coincides with the characteristic
polynomial of the C-linear map induced by a generator of the group of
covering transformations (see [35]). It is shown in [12,33] that this map is
C-diagonalizable, thus the I'-module H;(U¢; C) is semi-simple.



July 8, 2006 22:18 WSPC - Proceedings Trim Size: 9in x 6in " Maxim'proceeding’ Luminy”

Definition 2.1. For i < n, we denote by A,(¢) the polynomial associated
to the torsion I'-module H;(U¢; C), and call it the i-th global Alexander
polynomial of the hypersurface V.

These polynomials are well-defined up to multiplication by ct* (¢ € C,
kelZ).

As a consequence of Theorem 2.2, for hypersurfaces in general position
at infinity we may now calculate the rank of the free I'-module H,, 1 (U¢;C)
in terms of the Euler characteristic of the complement:

Corollary 2.1.
rankr H,, 11 (U C) = (=1)" "y (U).

Another interesting property of the infinite cyclic Alexander invariants
is that they depend on the degree d of the hypersurface. More precisely:

Theorem 2.3. ( [33], Theorem 4.1)
For i < n, all zeros of the global Alexander polynomial A;(t) are roots of
unity of order d.

This is a generalization of a similar result obtained by Libgober in the case
of hypersurfaces with only isolated singularities (cf. [21], Corollary 4.8).

The last two theorems, 2.2 and 2.3, show a striking similarity between
the case of hypersurfaces in general position at infinity and that of a homo-
geneous singularity germ (in which case the total linking number infinite
cyclic cover may be replaced by the Milnor fiber). We will discuss this
relation in some detail in the next section.

But perhaps the most important consequence of Theorem 2.1 is the
dependence of the infinite cyclic cover Alexander invariants on the local
type of singularities of the hypersurface. This is in the spirit of early re-
sults of Zariski for the fundamental group of the complement, and those of
Libgober for the Alexander invariants of hypersurfaces with only isolated
singularities (see [20-24]).

We first need some notation. Let S be a Whitney stratification of V,
and consider the induced Whitney stratification of the pair (CP"*! V),
with § the set of singular strata. If S € S is an s-dimensional stratum
of (CP"**, V), then a point p € S has a distinguished neighborhood W
in (CP"**, V), which is homeomorphic in a stratum-preserving way to
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C* x c°(S§?n=2511(p), L(p)), for S?"=25+1(p) a small sphere at p in a normal
slice for S and L(p) = S§?"=25t1(p) N V. The link pair (S?"=25T1(p), L(p))
has constant topological type along the stratum S, which we denote by
(5271—25-‘,-17 L)

Now fix an arbitrary irreducible component of V', say V4. For S € S, an
s-dimensional stratum contained in Vi, let (S2"~25%1 L) be its link pair in
(CP™*! V). This is a (possibly singular) algebraic link, and has an associ-
ated local Milnor fibration ( [34]):

Fs < S2n—2s+1 — L — Sl

with fibre F°* and monodromy homeomorphism h® : F* — F?. Let
As(t) = det(tI — (h®)s : H.(F?®) — H,.(F?®)) be the r-th (local) Alexander
polynomial associated to S. Then we have the following divisibility result:

Theorem 2.4. ( [33], Theorem 4.2)

Fiz i < n, and let V1 be a fized irreducible component of V. Then the
prime divisors of A;(t) are among the divisors of the local polynomials
As(t) associated to strata S C Vi, such that n —i < s = dimS < n, and
with r satisfying 2n — 2s — i < r < n — s. Moreover, if V is a rational
homology manifold and has no codimension one singularities (e.g., V is
normal), then A;(1) # 0.

Note. It follows that the zero-dimensional strata of V' may only contribute
to A, (t), the one-dimensional singular strata may only contribute to A,,(t)
and A,_1(¢), and so on. This observation is crucial in obtaining obstruc-
tions on the eigenvalues of the monodromy operators of a hypersurface
arrangement (see Theorem 2.6 of the next section). It is not clear at this
point what is the role played by the position of singularities in the study of
Alexander invariants for hypersurfaces with non-isolated singularities. The
position itself is yet to be understood.

The proof of Theorem 2.4 uses the intersection homology realization of
the infinite cyclic Alexander modules, together with the superduality iso-
morphism of Cappell-Shaneson and the properties of the associated periph-
eral complex. In the case of hypersurfaces with only isolated singularities
and in general position at infinity, the theorem can be refined as follows
(compare [21], Theorem 3.1):

Theorem 2.5. IfV has only isolated singularities, then A, (t) divides (up
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to a power of (t — 1)) the product
I 20
peViNSing(V)
of the local Alexander polynomials of links of the singular points p of V

which are contained in V7.

We will sketch a proof of the isolated singularities case, the general case
being treated in a similar manner.

Proof. (sketch)
Assume V has only isolated singularities. If j : CP"™ — V; — CP"*! and
i: Vi — CP"™! denote the inclusion maps, then the hypercohomology long
exact sequence associated to the distinguished triangle:
1,41y, — TCh — juj*ICy, U

yields:

— Hy"(CP"™,2Cy,) — TH(CP™ T L) — H-"(CP™ — Vi; j*IC,) —
But CP"*' — V; is a (n + 1)-dimensional affine variety, thus by Artin’s
vanishing theorem we obtain

H™"(CP"* — V43 j*ICy,) & TH) (CP"H — V3 £) 2 0.

So TH™(CP"": L) is a quotient of

Sd
Hy™(CP"* ZCy,) = H" (Vi d* I ™), (3)

the isomorphism (3) being a consequence of the Cappell-Shaneson superd-
uality isomorphism (1).
Now let ¥p := V4 N Sing(V) and consider the long exact sequence:

- H "' (Vi = 80;ZC2P) — H " YV, IC2P) — H " 10, IC2P) —
(4)

By local calculation and superduality for link pairs ( [4], Corollary 3.4), we
have that:

H " (S0, ZC; ) = @pex, Ho(S2"H = S2M T N Vi) (5)

where (S2+1, 5201 N V) is the link pair of the singular point p € ¥, and
I" denotes the induced local coefficient system on the link complement. By
the hypercohomology spectral sequence, the modules H*(V; — EO;IC;OP )
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are annihilated by powers of ¢ — 1. The theorem follows by observing that
for p € ¥y we have an isomorphism of I'-modules:

Ho(S2mH — 2N Vi) = H,, (Sp ! — S NV C) = H,(F,, C),

where S2" ! — §2"F1 NV is the total linking number infinite cyclic cover
of the algebraic link complement, and Fj, is the local Milnor fiber at p. The
module structure on the group H,(F),,C) is induced by the action of the

local monodromy homeomorphism at p. O

Example 2.1. Let V be a degree d reduced projective hypersurface, in
general position at infinity, such that V is a rational homology manifold
with no codimension one singularities. Assume that the local monodromies
of link pairs of strata contained in some irreducible component V; of V' have
orders which are relatively prime to d (e.g., the transversal singularities
along strata of V7 are Brieskorn-type singularities, having all exponents
relatively prime to d). Then, by Theorem 2.3 and Theorem 2.4, it follows
that A;(t) =1forall 1 <i<n.

2.3. The Milnor fiber of a projective hypersurface
arrangement

As an application of the previous results, by a conning construction we ob-
tain obstructions on the eigenvalues of the monodromy operators acting on
the homology of the Milnor fiber of a projective hypersurface arrangement.

Let Y = {f = 0} be a reduced degree d hypersurface in CP", defining
a projective hypersurface arrangement A = (Y;);=15, where Y; are the
irreducible components of Y. Associated to the homogeneous polynomial f
there is the global Milnor fibration f : & = C*** — f~1(0) — C*, whose
fiber I = f~!(1) is called the Milnor fiber of the arrangement A. The
monodromy homeomorphism h : F — F of the Milnor fibre is explicitely
described by the mapping h(z) = 7 - x, where 7 = exp(27i/d). Denote
by P,(t) the characteristic polynomial of the monodromy operator h, :
H,(F) — Hy(F). Since h® = id, the zeros of P,(t) are roots of unity of
order d.

Note that U is the complement of a central arrangement A = {f~1(0)}
in C"*!, namely the cone on A. Moreover, it’s easy to see that the projec-
tive completion of A in CP""! is in general position at infinity. The key
observation for what follows is that the Milnor fiber F' is homotopy equiv-
alent to the infinite cyclic cover U° of U, corresponding to the kernel of
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the total linking number homomorphism and, with this identification, the
monodromy homeomorphism A corresponds to a generator of the group of
covering transformations (see [9], p. 106-107).

Theorem 2.4, when applied to the projective cone on Y (i.e., the hyper-
surface V = {f = 0} ¢ CP"*!), translates into divisibility results for the
characteristic polynomials of the monodromy operators of F', thus showing
the dependence of the monodromy of the arrangement 4 on the local mon-
odromy operators associated with singular strata in a stratification of Y.
With the notations from Theorem 2.4, we can now state the following:

Theorem 2.6. ( [33])

Fixz an arbitrary component of the arrangement, say Yy, and let Y be the
set of (open) singular strata of a stratification of the pair (CP™,Y"). Then
for fited ¢ < n —1, a d root of unity X\ is a zero of Py(t) only if A is a
zero of one of the local polynomials AS(t) associated with strata V € Y of
complex dimension s, forn —q—1 < s < n—1, such that V C Y7 and
2n—1)—2s—q¢g<r<n-s-—1.

This theorem provides obstructions on the eigenvalues of the mon-
odromy operators, similar to those obtained by Libgober in the case of hy-
perplane arrangements [30], or Dimca in the case of curve arrangements [10].
For the special case of an arrangement with only normal crossing singulari-
ties along one of its components, we deduce from Theorem 2.6 the following
result (compare [8], Corollary 16):

Corollary 2.2. Let A = (Y;)i=1,s be a hypersurface arrangement in CP",
and fiz one irreducible component, say Y1. Assume that Ui:LS Y; is a nor-
mal crossing divisor at any point x € Y1. Then the monodromy action on
H,(F;C) is trivial for ¢ <n — 1.

3. Universal abelian Alexander invariants of the
complement

In [28] (and later in [25]), Libgober introduced new topological invariants
of the complement to plane algebraic curves: the sequence of characteristic
varieties. These invariants were also considered in E. Hironaka’s doctoral
thesis, but see also [18]. Characteristic varieties were originally used to
obtain information about all abelian covers of the complex projective plane,
branched along a curve (see [25], §1.3). In the context of complex hyperplane
arrangements, characteristic varieties of the first homology group of the
universal abelian cover of the complement are considered in [6,7,29], and
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studied in relation with the cohomology support loci of rank one local

systems defined on the complement (see also [1] for the study of the latter).
Here we consider (co)homological universal abelian invariants of com-

plements to arbitrary hypersurfaces, as they are described in [14].

3.1. Definition of Characteristic varieties.

In this section, characteristic varieties are defined, first for general
noetherian modules, then in the context of complex hypersurface comple-
ments.

Let R be a commutative ring with unit, which is Noetherian and a
unique factorization domain. Let A be a finitely generated R-module, and
M a (m x n) presentation matrix of A associated to an exact sequence:
R™ - R"— A — 0.

Definition 3.1. The i-th elementary ideal &;(A4) of A is the ideal in R
generated by the (n — i) X (n — 4) minor determinants of M, with the
convention that & (A) = Rif i > n, and £(A) =0ifn—i > m.

Definition 3.2. The support Supp(A) of A is the reduced sub-scheme of
Spec(R) defined by the order ideal £y(A). Equivalently, if P is a prime ideal
of R then P € Supp(A) if and only if the localized module Ap is non-zero.

The support Supp(A) is also called the first characteristic variety of A,
and we define the i-th characteristic variety V;(A) of A to be the reduced
sub-scheme of Spec(R) defined by the (i-th Fitting ideal) ideal &_1(A).

All definitions above are independent (up to multiplication by a unit of
R) of the choices involved, thus the characteristic varieties are invariants of
the R-isomorphism type of A.

Now let V be a reduced hypersurface in CP" ™', and H,, be the hyper-
plane at infinity. As in § 2, we let ¢ be the complement CP"*' — (VU H,,).
We denote by U the universal abelian cover of U, or equivalently, the
covering associated to the kernel of the homomorphism:

LE® m(U) — Z°, aw (Ik(a,ViU—diHy), -, lk(a, Vs U —dsHyo)).

The group of covering transformations of ¢/ is isomorphic to Z* and
acts on the covering space. Let I'y be the group ring C[Z?], which is
identified with the ring of complex Laurent polynomials in s variables,
Clt1,t7", -+ ,ts,t51]. Note that Ty is a regular Noetherian domain, and
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in particular it is factorial. As a group ring, I's has a natural involution,
denoted by an overbar, sending each ¢; to t; :=t; L

Define a local coefficient system £ on U, with stalk I'y and action of
aloop o € 71 (U) determined by multiplication by [[5_; (;)!(*Vs9=diH),
In particular, the action of the meridian y; is given by multiplication by ¢;.
We let £ be the local system obtained from £% by composing all module

structures with the natural involution of I'y.

Definition 3.3. The universal homology k-th Alexander module of U is by
definition Ay (U) := Hy(U,L%®), that is, the group Hy(U;C) considered
as a ['y-module via the action of covering transformations. Similarly, the
universal cohomology k-th Alexander module of U is defined as A*(U) :=
H*(U; Lab).

Remark 3.1. If C, is the cellular complex of U, as Z[Z*]-modules, and
if C¥ := C, ® C denotes the complexified complex, then: A (U) = Hy(C?)
and A*(U) = Hy(Homr, (CO,T)).

As in §2, the modules A*(U) and resp. Ay (U) are trivial for k > n + 1.
Moreover, A, +1(U) is a torsion-free I's-module.

It is easy to see that the universal abelian Alexander modules are of
finite type over I';. Hence their characteristic varieties are well-defined. The
associated characteristic varieties, in particular the supports, become sub-
varieties of the s-dimensional torus T® = (C*)®, which is regarded as the
set of closed points in Spec(I's). More precisely, for A = (A1, , Ag) € T,
we denote by m) the corresponding maximal ideal in I'y, and by C, the
quotient I's/m,I's. This quotient is isomorphic to C and the canonical
projection py : I's — I's/maI's = C, corresponds to replacing ¢; by A; for
j=1,--- s. If Ais aI's-module, we denote be Ay the localization of A at
the maximal ideal my. For A = I';, we use the simpler notation Iy when
there is no danger of confusion. Note that if A is of finite type, then A =0
if and only if Ay = 0 for all A € T?. It follows that

Supp(A) = {A € T% A\ # 0}

In particular Ag(U) = Cq, where1 = (1,--- ,1). Hence Supp(4o(U)) = {1}.

We denote by V; (i) the i-th characteristic variety associated to the
homological Alexander module A (U), and by V¥*(i) that associated to
the cohomological Alexander module A*(Uf). Note that for each universal
Alexander module, its characteristic varieties form a decreasing filtration of
the character torus T*. This follows from the fact that for a noetherian R-



July 8, 2006 22:18 WSPC - Proceedings Trim Size: 9in x 6in " Maxim'proceeding’ Luminy”

14

module A of finite type, the elementary ideals form an increasing filtration
of R.

All definitions in this section work also in the local setting, i.e., when U/
is a complement of a hypersurface germ in a small ball.

Remark 3.2. The invariants defined above originate in the classical knot
theory (see [17]), where it follows directly from definition that the support
of the universal homological Alexander module of a link complement in S3
is the set of zeros of the multivariable Alexander polynomial. In the case
of irreducible hypersurfaces, where the infinite cyclic and universal abelian
cover coincide, the support of an Alexander module is simply the zero set
of the associated one-variable polynomial.

3.2. Further study of Supports.

The results mentioned here are taken from [14].

First note that the cohomology modules may be related to the homology
modules by the Universal Coefficient spectral sequence (see [17], p. 20,
or [19], Theorem 2.3).

Extd (A, (U),Ts) = APH9(L). (6)

Relations between the corresponding characteristic varieties are conse-
quences of the spectral sequence obtained by localizing at any A € T*:

Ext{ (A,(U)rTx) = APTIU),. (7)
If for a fixed A € T*, we define
kE(A) = min{m € N; A,,,(U)» # 0}, (8)

then the spectral sequence (7) yields the following:
Proposition 3.1.
For any A € T, A¥(U)\ =0 for k < k(\) and
ANy = Hom(Agx)U)r,Tr). (9)
As a simple application of these facts, we obtain the following:

Example 3.1.

(i) Let U be the complement of a normal crossing divisor germ in a small
ball. Then the universal abelian covering 2/’ is contractible, so Ag(U) = Cy
and Ag(U) = 0 for k& > 0. Moreover, for any A # 1, the cohomology
Alexander modules satisfy A*(U), = 0, for any k.
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(ii) Let (Y, 0) be an isolated non-normal crossing singularity at the origin of
Cn*+! (shortly, INNC), that is, each component of Y is nonsingular outside
the origin and, moreover, the union of components in a neighborhood of a
point outside the origin is a normal crossing divisor. Let I/ be its comple-
ment in a small open ball centered at the origin in C"*! and assume that
n > 2. Then the universal abelian cover U is (n — 1)-connected (see [26]).
More precisely, it is a bouquet of n-spheres (see [13]), hence Ay(U) = C4
and Ay (U) = 0 for k # n. Moreover, for A # 1, we obtain A*¥/), = 0 for
k <n.

In relation with the infinite cyclic Alexander invariants, we note that
UW — U is a covering map, and there is a spectral sequence:

Eiq = Torgb'(Aq(u),I‘l) = Hp4UC), (10)

where the I's-module structure on I'y is defined by sending each ¢; to t. For
a € Tt ={(t,t,...,t) € T*}, we get by localization a new Kiinneth spectral
sequence, namely

B2, = Tory(AqU)a,T1.a) = Hys o U C), (11)
In particular we obtain:

Proposition 3.2.
For any a € T, Hp(U%;C), =0 for k < k(a) and

Ak:(a) (u)a Ar, Fl,a = Hk(a) (uc, C)a~ (12)

In connection with the (co)homology support loci of rank one local sys-
tems on U, we mention the following: Let A = (A1,--- , As) € T® and denote

by L the local coefficient system on U with stalk C = C, and action of a

loop o € 71 (U) determined by multiplication by szl (Aj) k(@ ViU=diHoo)

One can define new topological characteristic varieties by setting

V.’fk(Z/{) ={\ € T%;dimcH(U, L) > i}

and similarly for cohomology. It is known that
Hip(U, L) = Hi(C? @r, Cy).
Therefore, by the Kiinneth spectral sequence, we get

E} , =Tory (AqU),Cy) = HpyqU, Ly). (13)
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Since the localization is exact, the base change for Tor under I'y — T')
yields a new spectral sequence

Eziq = TOT? (AgU)x,Cx) = Hprg(U, Ly). (14)
This is used in proving the next result:

Proposition 3.3. ([14]) For any point X\ € T%, one has the following:
(i) min{m € N, H,,(U, Ly) # 0} = min{m € N, X € Supp(A,(UU))}.
(ii) dimHk(/\)(U,EA) =maz{m €N, X € Vm7k()\)(U)}.

3.3. Dependence on the local data

In [25], characteristic varieties of plane curve complements are described in
terms of local type of singularities and dimensions of linear systems which
are attached to the configuration of singularities of the curve. In [14] we
obtain a different type of dependence on the local data, leading to vanishing
results.

Again, we assume that the hyperplane at infinity H, is transversal in
the stratified sense to the hypersurface V. Under this assumption, the uni-
versal cohomological Alexander invariants of the complement are entirely
determined by the degrees of the irreducible components on one hand, and
by the local topological information encoded by the singularities of V' on
the other hand. In particular, these invariants depend on the local type of
singularities of the hypersurface.

First, we need some notations. For z € V, we let U, = U N B,, for B,
a small open ball at = in CP"™!. Denote by £ the restriction of the local
coefficient system £ to U,. Then:

Theorem 3.1. ( [14]) Let A = (M1, ,As) € T® and € € Z>o. Fiz an
irreducible component Vi of V', and assume that A ¢ Supp(H? (U, Eéb)) for
all ¢ < m+1—e€ and all points x € V1. Then A ¢ Supp(A1(U)) for all
g<n+1-—e

The assumption on the hyperplane at infinity, together with the uni-
versal coefficient spectral sequence imply that the modules H* (U, £3b) in
Theorem 3.1 can be expressed in terms of the local universal homological
Alexander modules A, (U.), where U’ := CP"*' —V and U’ := U' N B,.

The latter depend only on the hypersurface singularity germ (V, ), and are
defined as in § 3.1. For complete details, see [14].
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The following consequence of Theorem 3.1 and of Example 3.1 is similar
to some results in [13,26,27].

Corollary 3.1. (i) (Case € = 0) With the notation in the above theorem,
assume in addition that V is a normal crossing divisor at any point of the
component Vy. Then Supp(A*U)) C {1} for any k <n+1.

(ii) (Case e = 1) With the notation in the above theorem, assume in ad-
dition that V is an INNC divisor at any point of the component V. Then
Supp(A*U)) C {1} for any k < n.

The dependence on the degrees of components of V is reflected by the
following result, a generalization of a similar result from [28]:

Theorem 3.2. ( [14]) For k < n, Supp(A¥(U)) is contained in the zero
set of the polynomial tfl coepds —

¢s — 1, thus has positive codimension in T*°.

The positive codimension property of supports in the universal abelian
case should be regarded as the analogue of the torsion property in the
infinite cyclic case (cf. [12,33]).

Remark 3.3. In proving the results of this section, the general theory of
perverse sheaves is used (cf. [2,10,31,36]). The use of intersection homology
as in §2 is constrained by lacking the superduality isomorphism (1), which
only holds over a Dedekind domain.

Acknowledgements

We would like to thank the organizers of the Singularities conference,
C.ILR.M.-Luminy 2005, where part of this work was presented.

References

1. Arapura, D.: Geometry of cohomology support loci for local systems. I, J.
Algebraic Geom. 6 (1997), 563-597.

2. Beilinson, A. A., Bernstein, J., Deligne, P., Faisceaux pervers, Astérisque 100
(1982).

3. Borel, A. et. al., Intersection cohomology, Progress in Mathematics, vol. 50,
Birkhauser, Boston, 1984.

4. Cappell, S., Shaneson, J., Singular spaces, characteristic classes, and intersec-
tion homology, Annals of Mathematics, 134 (1991), 325-374.

5. Cogolludo, J. L., Florens, V., Twisted Alexander polynomials of plane algebraic
curves, arXiv: math:GT/0504356.

6. Cohen, D. C., Suciu, A. 1., Alexander invariants of complex hyperplane
arrangements, Trans. Amer. Math. Soc, Vol. 351 (10), 4043-4067, (1999).



July 8, 2006 22:18 WSPC - Proceedings Trim Size: 9in x 6in " Maxim'proceeding’ Luminy”

18

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

. Cohen, D. C., Suciu, A. 1., Characteristic varieties of arrangements, Math.

Proc. Cambridge Philos. Soc. 127 (1999), 33-54.

Cohen, D.C., Dimca, A., Orlik, P., Nonresonance conditions for arrangements,
Ann. Inst. Fourier, Grenoble, 53 (6), 2003, 1883-1896.

Dimca, A., Singularities and Topology of Hypersurfaces, Universitext,
Springer-Verlag, 1992.

Dimca, A., Sheaves in Topology, Universitext, Springer-Verlag, 2004.

Dimca, A., Nemethi, A., Hypersurface complements, Alexander modules and
Monodromy, in Real and Complex Singularities, 19-43, Contemp. Math. 354,
Amer. Math. Soc., Providence, RI (2004).

Dimca, A., Libgober, A. Regular functions transversal at infinity, arXiv:
math.AG /0504128, to appear in Tohoku Math. J.

Dimca, A., Libgober, A., Local topology of reducible divisors, arXiv:
math.AG /0303215

Dimca, A., Maxim, L., Multivariable Alexander invariants of hypersurface
complements, arXiv: math.AT /0506324, to appear in Trans. Amer. Math. Soc.

Goresky, M., MacPherson, R., Intersection homology theory, Topology 19
(1980), 135-162.

Goresky, M., MacPherson, R., Intersection homology II, Invent. Math. 72
(1983), 77-129.

Hillman, J. A., Alexander ideals of links, LNM 895, Springer 1981.

Hironaka, E., Alexander stratifications of character varieties, Annales de
linstitut Fourier, 47 (2), 1997, 555-583.

Levine, J., Knot Modules, I, Trans. Amer. Math. Soc., Vol 229, 1-50.

Libgober, A., Homotopy groups of the complements to singular hypersurfaces
Bulletin of the AMS, 13 (1), 1985.

Libgober, A., Homotopy groups of the complements to singular hypersurfaces,
II, Annals of Mathematics, 139 (1994), 117-144.

Libgober, A., Alezander polynomials of plane algebraic curves and cyclic mul-
tiple planes, Duke Math. J., 49 (1982), 833-851.

Libgober, A., Alexander invariants of plane algebraic curves, Singularities,
Proc. Symp. Pure Math., Vol. 40 (2), 1983, 135-143.

Libgober, A., Position of singularities of hypersurfaces and the topology of
their complements, Algebraic Geometry, 5. J. Math. Sci. 82 (1996), no. 1,
3194-3210.

Libgober, A., Characteristic varieties of algebraic curves, in: C. Ciliberto et
al.(eds), Applications of Algebraic Geometry to Coding Theory, Physics and
Computation, 215-254, Kluwer, 2001.

Libgober, A., Isolated non-normal crossing, in Real and Complex Singulari-
ties, 145-160, Contemporary Mathematics, 354, 2004.

Libgober, A., Homotopy groups of complements to ample divisors, arXiv:
math.AG /0404341

Libgober, A., On the homology of finite abelian covers, Topology and its
applications, 43 (1992) 157-166.

Libgober, A., Yuzvinsky, S., Cohomology of the Orlik-Solomon algebras and
local systems, Compositio Math. 121 (2000), no. 3, 337-361.



July 8, 2006 22:18 WSPC - Proceedings Trim Size: 9in x 6in " Maxim'proceeding’ Luminy”

19

30. Libgober, A., Figenvalues for the monodromy of the Milnor fibers of arrange-
ments, Trends in Singularities, 141-150, 2002, Birkhauser Verlag.

31. Massey, D. B., Introduction to perverse sheaves and vanishing cycles, in Sin-
gularity Theory, ICTP 1991, Ed. D.T. Le, K. Saito, B. Teissier, 487-509.

32. Maxim, L., Alexzander invariants of hypersurface complements, Thesis, Uni-
versity of Pennsylvania, 2005.

33. Maxim, L., Intersection homology and Alexander modules of hypersurface
complements, Comm. Math. Helvetici 81 (1), 2006, 123-155.

34. Milnor, J., Singular points of complex hypersurfaces, Annals of Mathematical
Studies 61, vol. 50, Princeton University Press, Princeton, 1968.

35. Milnor, J., Infinite cyclic coverings, Topology of Manifolds, Boston 1967.

36. Schurmann, J., Topology of Singular Spaces and Constructible Sheaves,
Birkhauser, Monografie Matematyczne. Vol. 63, 2003.



