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Optimization–Synopsis

Given a data point u ∈ Rn and an objective function fu : Rn → R
depending on u, a constrained optimization problem has the form

min /max fu(x)

subject to polynomial constraints

g1(x) = · · · = gk(x) = 0.

Hence, one aims to optimize fu over the real algebraic variety

X := V (g1, . . . , gk),

which oftentimes is a statistical model.
To find the optimal solution, consider the critical points of fu over
the smooth locus Xreg (or find stratified critical points of fu on X ).
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Optimization: Algebro-geometric approach

In practice, consider fu and g1, . . . , gk , as complex functions, i.e.,
regard fu as a complex function defined on the complex variety
(also denoted X ) defined by the Zariski closure of X in Cn.
Can (and will!) assume X irreducible, and require fu to be
holomorphic and have certain good properties.
For general u, the number of complex critical points of fu on Xreg

is independent of u, and is called the algebraic degree of the given
optimization problem. (It can be realized as the degree of a map.)
This measures the algebraic complexity of the optimal solution of
the optimization problem, and it is a good indicator of the running
time needed to solve the problem exactly.

Laurenţiu Maxim



Optimization: examples

The main optimization problems considered in these lectures are:

(a) nearest point problem (NPP) / ED optimization: X ⊂ Rn is
an algebraic model (i.e., defined by polynomial equations), and

fu(x) = du(x) =
n∑

i=1

(xi − ui )
2

is the squared Euclidean distance from a general data point
u ∈ Rn to X .

(b) maximum likelihood estimation (MLE) / ML optimization: X
is a statistical model (family of probability distributions) and

fu(x) = ℓu(x) =
n∏

i=1

pi (x)
ui

is the likelihood function associated to the data point
u = (u1, . . . , un).
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Optimization: examples

(c) linear optimization: X ⊂ Rn is an algebraic model and

ℓu(x) =
n∑

i=1

uixi

is (the restriction to Xreg of) a general linear function.
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0. Preliminaries
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Whitney stratification

Let X be a complex algebraic variety. Then X admits a Whitney
stratification (i.e., a partition S into locally closed nonsingular
subvarieties (strata), along which X is topologically equisingular).

Example

A smooth (irreducible) complex algebraic variety X is Whitney
stratified with only one stratum: X .

Example

If X is an irreducible complex algebraic variety whose singular locus
is a finite set of points s1, . . . , sr , then a Whitney stratification of
X can be given with strata

{Xreg, {s1}, . . . , {sr}}.
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Example (Whitney umbrella)

Let X = {x2 = zy2} ⊂ C3. The singular locus of X is the z-axis,
but the origin is “more singular” than any other point on the
z-axis.

A Whitney stratification of X has strata

V1 = X \ {z − axis}, V2 = {(0, 0, z) | z ̸= 0}, V3 = {(0, 0, 0)}.
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Constructible functions

Let X be a complex algebraic variety with Whitney stratification S.
A function φ : X → Z is S-constructible if φ is constant along
each stratum S ∈ S.
The Euler characteristic of an S-constructible function φ is:

χ(φ) :=
∑
S∈S

χ(S) · φ(S),

with φ(S) the (constant) value of φ on the stratum S .
For example,

χ(1X ) =
∑
S∈S

χ(S) = χ(X ).
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MacPherson’s local Euler obstruction

The local Euler obstruction EuX : X → Z is an essential ingredient
in MacPherson’s definition of Chern classes for singular varieties.

(1) EuX is S-constructible for any fixed Whitney stratification S
of X .

(2) If x ∈ X is a smooth point, then EuX (x) = 1.

(3) If X is a curve, then EuX (x) is the multiplicity of X at x .

(4) If (X , x) is an isolated hypersurface singularity germ, then
EuX (x) = χ(LX ,x), where LX ,x is the complex link of x in X .

(5) EuX is an analytic invariant.

Laurenţiu Maxim



Example (Nodal curve)

Let X = {xy = 0} ∈ C2. Then Sing(X ) = {(0, 0)} with
multiplicity 2. A Whitney stratification of X has strata
V1 = X \ {(0, 0)} and V2 = {(0, 0)}. So EuX |V1 = 1 and
EuX |V2 = 2.

Example (Whitney umbrella)

Let X = {x2 = zy2} ⊂ C3, with Sing(X )={z-axis}, and Whitney
stratification with strata

V1 = X \ {z − axis}, V2 = {(0, 0, z) | z ̸= 0}, V3 = {(0, 0, 0)}.

The local Euler obstruction function EuX has values 1, 2 and 1
along the strata V1, V2 and V3, respectively (Gonzalez-Sprinberg).
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Constructible functions form a group

Let X be a complex algebraic variety with Whitney stratification S.
Denote by CF (X ) the free abelian group of constructible functions
on X .
A basis of CF (X ) is given by {1V̄ | V ∈ S}.
Another basis consists of {EuV̄ | V ∈ S}.
MacPherson Chern class transformation is a homomorphism

c∗ : CF (X ) → A∗(X ),

so that if X is smooth c∗(1X ) = c∗(TX ) ∩ [X ].
c∗(1X ) ∈ A∗(X ) is called the Chern class of X .
c∗(EuX ) =: cMa(X ) ∈ A∗(X ) is called the Chern-Mather class of X .
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I. Applications to NPP / ED optimization
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Nearest Point Problem: given an algebraic model X ⊂ Rn and a
generic data point u ∈ Rn, find a nearest point u∗ ∈ X to u.
Equivalently: minimize over Xreg the squared distance function

du(x) =
n∑

i=1

(xi − ui )
2.

Algebraic degree for NPP is called the Euclidean distance (ED)
degree of X , denoted EDdeg(X ). It was formally introduced by
Draisma-Horobeţ-Ottaviani-Sturmfels-Thomas (2014), as an
algebraic measure of complexity of the nearest point problem.
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A general upper bound on the ED degree can be given in terms of
the defining polynomials.

Proposition (DHOST)

Let X ⊂ Cn be a variety of codim. c, cut out by polynomials
g1, g2, . . . , gc , . . . , gk of degrees d1 ≥ d2 ≥ · · · ≥ dc ≥ · · · ≥ dk .
Then

EDdeg(X ) ≤

≤ d1d2 · · · dc ·
∑

i1+i2+···+ic≤n−c

(d1 − 1)i1(d2 − 1)i2 · · · (dc − 1)ic

Equality holds when X is a general complete intersection of
codimension c (hence c = k).
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Why “degree”?

For an irreducible closed variety X ⊂ Cn of codimension c ,
consider the ED correspondence EX , i.e., the topological closure in
Cn × Cn of

{(x , u) ∈ Xreg × Cn | x is a critical point of du|Xreg}

The first projection π1 : EX → X is an affine vector bundle of rank
c over Xreg, whereas for general data points u ∈ Cn the second
projection π2 : EX → Cn has finite fibers π−1

2 (u) of cardinality
equal to EDdeg(X ).
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Example: Low-rank approximation

Fix positive integers r ≤ s ≤ t and set n = st.
Model:

Xr :=
{
A = [aij ] ∈ Rs×t | rank(A) ≤ r

}
⊂ Rn.

Data point: general U = [uij ]s×t ∈ Rs×t = Rn.
Singular Value Decomposition:

U = T1 · diag(σ1, . . . , σs) · T2,

where σ1 > · · · > σs > 0 are the singular values of a general
matrix U, and T1,T2 are orthogonal matrices.
Eckart-Young Theorem: the matrix of rank ≤ r closest to U is:

U∗ = T1 · diag(σ1, . . . , σr , 0, . . . , 0) · T2 ∈ Xr .

EDdeg(Xr ) =
(s
r

)
.
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Triangulation problem in computer vision

The ED degree was motivated by the triangulation problem in
computer vision.

Triangulation problem: Given an object (world point) in 3D space,
determine its position from its 2D projections in n ≥ 2 cameras in
general position.

Many practical applications: tourism, robotics, GPS, autonomous
driving, cloud modeling, filmmaking, etc.

Building Rome in one day: https://grail.cs.washington.edu/rome/
“[...] we consider the problem of reconstructing entire cities from
images harvested from the web. Our aim is to build a [...] system
that [...] matches these images to find common points and uses
this information to compute the three dimensional structure of the
city and the pose of the cameras that captured these images.
All this to be done in a day.”
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Triangulation problem and nearest point problem

The triangulation problem is in theory trivial to solve: if the image
points are given with “infinite precision”, then two cameras suffice
to determine the 3D point (by triangulation).
In practice, “noise” (pixelation, lens distortion, etc.) leads to
inaccuracies in the measured image coordinates.
NPP: find the “closest” world point to the image data from
multiple camera projections.
Model: The space of all possible n-tuples of such 2D projections is
called the affine (real) multiview variety Xn ⊂ R2n.
Data point:
u = (u1, . . . , u2n) ∈ R2n,
corresponding to n noisy
2D images of a 3D point.
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Euclidean distance degree of affine multiview variety

Conjecture (DHOST, 2014)

EDdeg(Xn) =
9

2
n3 − 21

2
n2 + 8n − 4,

where Xn is the affine multiview variety of n cameras.

The conjecture was based on the numerical evidence for n ≤ 7
(Stewénius-Schaffalitzky-Nistér, 2005), and it was proved by
M.-Rodriguez-Wang (2020).

The ED degree of the affine multiview variety Xn was studied by
Harris-Lowengrub (2017) via characteristic classes. They obtained
an upper bound of EDdeg(Xn):

Theorem (Harris-Lowengrub, 2017)

EDdeg(Xn) ≤ 6n3 − 15n2 + 11n − 4.
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Euclidean distance degree of an affine variety

Theorem (M.-Rodriguez-Wang, 2020)

Let X ⊂ Cn be an irreducible closed subvariety. If X is smooth,
then for general u = (u0, u1, . . . , un) ∈ Cn+1,

EDdeg(X ) = (−1)dimC Xχ(X \ Qu),

where Qu = {
∑n

i=1(xi − ui )
2 = u0} ⊂ Cn.

For arbitrary X ,

EDdeg(X ) = (−1)dimC Xχ(EuX |Cn\Qu
).

Example (X = C)
EDdeg(X ) = −χ(X \ Qu) = − (χ(X )− χ(X ∩ Qu)) = −(1− 2) = 1.
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Example (Cardioid)

Consider the cardioid curve X ⊂ C2

defined by

(x2 + y2 + x)2 = x2 + y2.

X has a unique
singular point of multiplicity
2 at the origin in C2, and
Xreg

∼= CP1 \ {3 points}. For
generic u, X ∩ Qu consists of
4 smooth points. Then

EDdeg(X ) = −χ(EuX\Qu
) = −(2− 5) = 3.
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What’s behind the ED degree formula?

The proof of the formula for EDdeg amounts to “lineariazing” the
problem and using an affine Lefschetz-type theorem.
Consider the closed embedding

i : Cn ↪→ Cn+1 , (z1, . . . , zn) 7→ (z21 + · · ·+ z2n , z1, . . . , zn).

If w0, . . . ,wn are the coordinates of Cn+1, then the function∑
1≤i≤n(zi − ui )

2 + u0 on Cn is the pullback of the function

w0 +
∑

1≤i≤n

−2uiwi +
∑

1≤i≤n

u2i + u0

on Cn+1. The computation of EDdeg(X ) follows by applying the
following affine Lefschetz-type Theorem to i(X ) ⊂ Cn+1.

Theorem (Seade-Tibar-Verjovsky, 2005)

Let X ⊂ CN be an affine variety. Let ℓ : CN → C be a general
linear function, with Hc = {ℓ = c} ∈ CN for a general c ∈ C. Then
the number of critical points of ℓ|Xreg equals (−1)dimC Xχ(EuX\Hc

).
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The DHOST multiview conjecture

This topological formula can be used to confirm the DHOST
conjecture:

Theorem (M.-Rodriguez-Wang, 2020)

The ED degree of the affine multiview variety Xn ⊂ C2n satisfies:

EDdeg(Xn) = −χ(Xn \ Qu) =
9

2
n3 − 21

2
n2 + 8n − 4.

The computation of χ(Xn \ Qu) is quite involved and it relies on
topological and algebraic techniques from Singularity theory (e.g.,
Milnor fibration, vanishing cycles, etc).
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Projective Euclidean distance degree

Many models in data science, engineering and other applied fields
are realized as affine cones (defined by homogeneous polynomials),
so it is natural to consider such models as projective varieties.
Examples of such models occur in (structured) low rank matrix
approximation, low rank tensor approximation, formation shape
control, and all across algebraic statistics.

Example

The variety Xr of s × t matrices of rank ≤ r is an affine cone.
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Projective Euclidean distance degree

Definition

If Y ⊂ Pn is an irreducible complex projective variety, define the
projective Euclidean distance degree of Y by

pEDdeg(Y ) := EDdeg(C (Y )),

where C (Y ) is the affine cone of Y in Cn+1.

Problem

Compute pEDdeg(Y ) in terms of the topology of Y .

The ED degree pEDdeg(Y ) of a smooth projective variety was
related to the Chern classes of the projective variety by
Catanese-Trifogli (2000), D-H-O-S-T (2014), Aluffi-Harris (2017).
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Theorem (Aluffi-Harris, 2017)

Let Y ⊂ Pn be a smooth complex projective variety. Then

pEDdeg(Y ) = (−1)dimC Yχ(Y \ (Q ∪ H))

where H is a general hyperplane in Pn, and Q is the isotropic
quadric {z20 + · · ·+ z2n = 0}.

This is a generalization of a result from D-H-O-S-T (2014), in
which Y was assumed to intersect Q transversally. Moreover,
Aluffi-Harris conjectured that in the above notations one has:

Theorem (M.-Rodriguez-Wang, 2019)

Let Y ⊂ Pn be an irreducible complex projective variety. Then

pEDdeg(Y ) = (−1)dimC Yχ(EuY \(Q∪H)).

Laurenţiu Maxim



Recall: for Y ⊂ Pn, with Q = {z20 + · · ·+ z2n = 0} the isotropic
quadric and H a general hyperplane,

pEDdeg(Y ) = (−1)dimC Yχ(EuY \(Q∪H))

Example (Nodal curve)

Let Y = {x20x2 − x21 (x1 + x2) = 0} ⊂ CP2. It has only one singular
point p = [0 : 0 : 1]. Then EuY equals 1 on the smooth locus Yreg

of Y , and EuY (p) = 2. Y intersects Q transversally at 6 points,
and it intersects a generic hyperplane H at 3 points. Moreover,
Yreg

∼= C∗. By inclusion-exclusion, get χ(Yreg \ (Q ∪ H)) = −9.
So pEDdeg(Y ) = (−1) · [(−9) + 2] = 7.
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Recall: for Y ⊂ Pn, with Q = {z20 + · · ·+ z2n = 0} the isotropic
quadric and H a general hyperplane,

pEDdeg(Y ) = (−1)dimC Yχ(EuY \(Q∪H))

Example (Whitney umbrella)

Consider the (projective) Whitney umbrella
Y = {x20x1 − x2x

2
3 = 0} ⊂ CP3. Then Sing(Y ) = {x0 = x3 = 0},

and Y has a Whitney stratification with strata:
S3 := {[0 : 1 : 0 : 0], [0 : 0 : 1 : 0]}, S2 = {x0 = x3 = 0} \ S3, and
S1 = Y \ {x0 = x3 = 0}. One knows that EuY takes the values 1,
2 and 1 along S1, S2 and S3, respectively. Therefore, if
U := P3 \ (Q ∪ H), then

χ(EuY \(Q∪H)) = χ(Y ∩ U) + χ(S2 ∩ U).

By inclusion-exclusion, χ(Y ∩ U) = 13 and χ(S2 ∩ U) = −3. So
pEDdeg(Y ) = 10.
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Recall: for Y ⊂ Pn, with Q = {z20 + · · ·+ z2n = 0} the isotropic
quadric and H a general hyperplane,

pEDdeg(Y ) = (−1)dimC Yχ(EuY \(Q∪H))

Example (Toric quartic surface)

Let Y = {x30x1 − x2x
3
3 = 0} ⊂ CP3. Then Y has a Whitney

stratification with three strata: S3 := {[0 : 1 : 0 : 0], [0 : 0 : 1 : 0]},
S2 := {x0 = x3 = 0} \ S3 and S1 = Y \ {x0 = x3 = 0}. EuY takes
values 1, 3 and 1 along S1, S2 and S3, respectively. Therefore, if
U := P3 \ (Q ∪ H), then

χ(EuY \(Q∪H)) = χ(Y ∩ U) + 2χ(S2 ∩ U).

By inclusion-exclusion, one gets χ(Y ∩ U) = 16 and
χ(S2 ∩ U) = −3. Hence pEDdeg(Y ) = 10.
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Defect of ED degree

Remark

pEDdeg(Y ) is difficult to compute even if Y ⊂ Pn is smooth, since
Y and Q may intersect nontransversally in Pn.
Idea: perturb the objective (i.e., squared distance) function to
create a transversal intersection.
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Definition

The λ-Euclidean distance (ED) degree EDdegλ(X ) of an affine
variety X ⊂ Cn is the number of critical points of

dλ
u (x) =

n∑
i=1

λi (xi − ui )
2 , λ = (λ1, . . . , λn)

on the smooth locus Xreg of X (for general u ∈ Cn).
If Y ⊂ Pn is an irreducible complex projective variety, define the
projective λ-Euclidean distance degree of Y by

pEDdegλ(Y ) := EDdegλ(C (Y )),

where C (Y ) is the affine cone of Y in Cn+1.
If λ is generic, get the generic ED degree.
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Theorem (M.-Rodriguez-Wang, 2019)

Let Y ⊂ Pn be an irreducible complex projective variety. Then

pEDdegλ(Y ) = (−1)dimC Yχ(EuY \(Qλ∪H)),

where Qλ := {λ0x
2
0 + · · ·+ λnx

2
n = 0} and H is a general

hyperplane in Pn. In particular, if Y is smooth, then

pEDdegλ(Y ) = (−1)dimC Yχ(Y \ (Qλ ∪ H)).

Remark

For generic λ, the quadric Qλ intersects Y transversally in Pn, and
the computation of the generic projective ED degree pEDdegλ(Y )
is more manageable (DHOST, Helmer-Sturmfels, Aluffi-Harris,
etc).
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Definition (Defect of ED degree)

If Y ⊂ Pn is an irreducible projective variety and λ is generic, the
defect of Euclidean distance degree of Y is defined as:

EDdefect(Y ) := pEDdegλ(Y )− pEDdeg(Y ).

Problem

Compute EDdefect(Y ) in terms of the topology of Sing(Y ∩ Q),
the locus where Y intersects Q nontransversally.
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Example

The projective Whitney umbrella Y = {x20x1 − x2x
2
3 = 0} ⊂ CP3 is

transversal to the isotropic quadric Q, so its projective Euclidean
distance degree coincides with the generic Euclidean distance
degree. In particular, EDdefect(Y ) = 0.

Example

Recall that the projective ED degree of the quartic surface
Y = {x30x1 − x2x

3
3 = 0} ⊂ CP3 equals 10. Moreover, the generic

ED degree is equal to 14 (Aluffi-Harris, Helmer-Sturmfels).
Therefore, EDdefect(Y ) = 4.
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Theorem (M.-Rodriguez-Wang, 2019)

Let Y ⊂ Pn be a smooth irreducible variety, with Y ⊈ Q, and let
Z = Sing(Y ∩ Q). Let V be the collection of strata of a Whitney
stratification of Y ∩ Q which are contained in Z, and choose λ
generic. Then:

EDdefect(Y ) =
∑
V∈V

αV · pEDdegλ(V̄ ),

where, for any stratum V ∈ V,

αV = (−1)codimY∩QV ·

µV −
∑

{S|V<S}

χc(LV ,S) · µS

 ,

with µV = χ(H̃∗(FV ;Q)) the Euler characteristic of the reduced
cohomology of the Milnor fiber FV of the hypersurface Y ∩Q ⊂ Y
at some point in V , and LV ,S the complex link of a pair of distinct
strata (V , S) with V ⊂ S̄ .
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The proof relies on the theory of vanishing cycles, adapted to a
pencil of quadrics on Y .

Corollary (Aluffi-Harris)

If Z = Sing(Y ∩ Q) has only isolated singularities, then

EDdefect(Y ) =
∑
x∈Z

µx ,

where µx is the Milnor number of the IHS (Y ∩ Q, x) in Y .
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Example (2× 2 matrices of rank 1)

Y = {x0x3 − x1x2 = 0} ⊂ P3, Q = {
∑3

i=0 x
2
i = 0}.

Y ∩ Q consists of 4 lines with 4 isolated double point
singularities (each having µ = 1).

EDdefect(Y ) = 4.

(Here, pEDdeg(Y ) = 2 and pEDdegλ(Y ) = 6 for generic λ.)
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Corollary

Assume that Z = Sing(Y ∩ Q) is connected and Y ∩ Q is
equisingular along Z. Then:

EDdefect(Y ) = µ · pEDdegλ(Z ),

where µ is the Milnor number of the isolated transversal singularity
at some point x ∈ Z (i.e., the Milnor number of the isolated
hypersurface singularity in a normal slice to Z at x).
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Remark

Computing the ED degree defect of Y ⊂ Pn yields a formula
for pEDdeg(Y ) only in terms of generic ED degrees (which
are easier to compute).

Applications in structured low-rank approximation (duality
conjecture of Ottaviani-Spaenlehauser-Sturmfels).

Similar methods apply to other objective functions, leading to
the computation of other important invariants in algebraic
statistics (e.g., maximum likelihood (ML) degree).

Remark

NPP for non-generic data point u can be studied via a generic
linear morsification du(x)− tℓ(x) ≃ du+tϵ(x), with ϵ ∈ Cn generic.
One then studies “limits” of Morse points of du(x)− tℓ(x) as
t → 0 (M.-Rodriguez-Wang, M.-Tibăr).
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II. Applications to MLE / ML optimization
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MLE / ML optimization

Example (Biased coin)

Let θ be the probability of observing tail (T) on a biased coin.
Experiment: flip a biased coin twice and record the outcomes.
pi (θ) := probability of observing i heads (H), i = 0, 1, 2.
p0(θ) = θ2, p1(θ) = 2θ(1− θ), p2(θ) = (1− θ)2.
Repeat the experiment a number of times.
ui := the number of times i heads were observed, i = 0, 1, 2.
MLE problem: estimate θ by maximizing the likelihood function
ℓu = p0(θ)

u0p1(θ)
u1p2(θ)

u2 .

Solve d log ℓu = 0 for θ, unique solution θ̂ = 2u0+u1
2u0+2u1+2u2

.
The distribution p lives in a statistical model X = V (g) defined by
g(p0, p1, p2) = 4p0p2 − p21 . This is the Hardy-Weinberg curve
(important in population genetics).
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In general, suppose X ⊂ ∆n is a family of probability distributions,
where ∆n is the n-dimensional probability simplex:

∆n = {p = (p0, . . . , pn) ∈ Rn+1 | pi > 0,
∑

i pi = 1}.

Given N i.i.d. samples, summarize the outcome in the data vector
u = (u0, . . . , un), with N =

∑
i ui and ui := the number of times

state i was observed. Let pi be the probability of observing state i .
MLE / ML optimization: maximize the likelihood function

ℓu(p) :=
n∏

i=0

puii ,

subject to p ∈ X (a parametrization of X may not be available).
Algebraic degree of ML optimization, i.e., the number of critical
points of ℓu on Xreg (⊂ (C∗)n+1), is the ML degree MLdeg(X ).
One allows u ∈ Cn+1, so MLdeg(X ) counts the degeneration
points of d log ℓu on Xreg.
(Introduced by Catanese-Hosten-Khetan-Sturmfels in 2006.)

Laurenţiu Maxim



Likelihood geometry in Pn
C

Let p0, . . . , pn be coordinates (representing probabilities).
Observed data vector: u = (u0, . . . , un), ui := number of samples
in state i .
Likelihood function on Pn

C:

ℓu(p) =
p
u0
0 p

u1
1 ···punn

(p0+···+pn)u0+···+un .

ℓu is a rational function on Pn
C, regular on Pn

C \ H, where

H := {p0 · · · pn(p0 + · · ·+ pn) = 0}.

Consider the restriction of ℓu to a closed irreducible subvariety
X ⊂ Pn

C (e.g., defined over R), so that X ◦ := X \ H ≠ ∅.
When X is a statistical model, the ML problem is to maximize ℓu
over X ∩∆n.
Note: X ◦ is a very affine variety (a closed subvariety of (C∗)n+1).
MLdeg(X ) := # of critical points of ℓu on Xreg \ H = X ◦

reg.
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Geometric and topological interpretation of MLdeg

As before, let X ⊂ Pn with X ◦ := X \ H ≠ ∅, where
H := {p0 · · · pn(p0 + · · ·+ pn) = 0}.

Theorem (Huh, 2013)

If X ◦ is smooth, d = dimC X, then MLdeg(X ) = (−1)d · χ(X ◦).

More generally,

Theorem (Rodriguez-Wang, 2017)

If d = dimC X, then MLdeg(X ) = (−1)d · χ(EuX◦).
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ML bidegrees

Likelihood correspondence LX is the closure in Pn×Pn+1 of the set

{(p, u) ∈ X ◦
reg × Cn+1 | p is a critical point of ℓu|X◦

reg
}

Definition (ML bidegrees)

The i-th ML bidegree bi of X , i = 0, . . . , d = dimC X , is given by:

[LX ] =
d∑

i=0

bi [Pi × Pn+1−i ] ∈ A∗(Pn × Pn+1).

♣ bi is the degree of the preimage of LX → Pn+1 over a general
codim i linear subspace.
♣ b0 = MLdeg(X ).
♣ bd = deg(X ).

Laurenţiu Maxim



Theorem (M.-Rodriguez-Wang-Wu, 2022)

Let X ⊂ Pn be a d-dimensional closed irreducible subvariety with
X ◦ = X \ H ≠ ∅. Then the total Chern-Mather class of X ◦ is:

cMa(X
◦) =

d∑
i=0

(−1)d−ibi [Pi ] ∈ A∗(Pn).

Here, cMa(X
◦) := c∗(EuX◦), with c∗ : CF (Pn) → A∗(Pn) the

MacPherson-Chern class transformation.

At degree zero,

Corollary (Rodriguez-Wang, 2017)

MLdeg(X ) = (−1)dχ(EuX◦).

Remark

If X ◦ is smooth, EuX◦ = 1X◦ , so we recover Huh’s result.
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Sectional ML degrees & Involution Conjecture

Definition (Sectional ML degrees)

Let X ⊂ Pn be a d-dimensional closed irreducible subvariety with
X ◦ = X \ H ≠ ∅. The i-th sectional ML degree of X is:

si := MLdeg(X ∩ Ln−i ),

where Ln−i is a general linear subspace of Pn of codimension i .

♣ sd = deg(X ).
♣ s0 = MLdeg(X ).
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Huh-Sturmfels Involution Conjecture

Theorem (M.-Rodriguez-Wang-Wu, 2022)

Let X ⊂ Pn be a d-dimensional closed irreducible subvariety with
X ◦ = X \ H ≠ ∅, and set

BX (p, u) = (b0 · pd + b1 · pd−1u + · · ·+ bd · ud) · pn−d .

SX (p, u) = (s0 · pd + s1 · pd−1u + · · ·+ sd · ud) · pn−d .

Then

BX (p, u) =
u · SX (p, u− p)− p · SX (p, 0)

u− p
,

SX (p, u) =
u · BX (p, u + p) + p · BX (p, 0)

u + p
.

Conjectured by Huh-Sturmfels (2014). Proved by Huh when X ◦ is
smooth and Schön. Our proof follows from our geometric
interpretation of cMa(X

◦) together with Aluffi’s involution formula.
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For a constructible function φ on Pn, let φj := φ|Ln−j
be the

restriction of φ to a codimension j generic linear subspace.
E.g., if φ = EuZ for a locally closed subvariety Z of Pn, then
φj = EuZ∩Ln−j

.
The Euler polynomial of φ is defined as:

χφ(t) :=
∑
j≥0

χ(φj) · (−t)j .

For c∗ : CF (Pn) → A∗(Pn) the Chern class transformation, let

c∗(φ) =
∑
j≥0

cj [Pj ] ∈ A∗(Pn),

and define the Chern polynomial of φ as

cφ(t) :=
∑
j≥0

cj t
j .
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Deligne’s prediction: The polynomials χφ(t) and cφ(t) carry
precisely the same information!

Theorem (Ohmoto, 2003; Aluffi, 2013)

The involution on polynomials (of the same degree)

p(t) 7−→ I(p) := t·p(−t−1)+p(0)
t+1 ,

interchanges cφ(t) and χφ(t), i.e., cφ = I(χφ) and χφ = I(cφ).
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Proof of the Involution Conjecture

Let φ := EuX◦ , regarded as a constructible function on Pn.

Step 1: Our geometric interpretation of cMa(X
◦) := c∗(EuX◦),

yields (with d = dimC X ):

BX (p, u) = (−1)dcφ

(
−u

p

)
pn,

SX (p, u) = (−1)dχφ

(
u

p

)
pn,

Step 2: Apply Aluffi’s involution formula.
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III. Applications to linear optimization
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Linear optimization

Definition (Linear optimization (LO) degree)

The linear optimization (LO) degree LOdeg(X ) of an affine variety
X ⊂ Cn is the number of critical points of a general linear function
ℓ restricted to the smooth locus Xreg of X . It equals the cardinality
of the general fiber of the projection of T ∗

XCn to the second factor
Cn, where T ∗

XCn is the conormal space of X , i.e., the closure in
T ∗Cn ∼= Cn × Cn of

T ∗
Xreg

Cn := {(x , u) ∈ T ∗Cn | x ∈ Xreg , u ∈ T ∗
xCn, u|TxXreg = 0}.
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LO bidegrees

Definition (LO bidegrees)

The LO bidegrees of an irreducible affine variety X ⊂ Cn, denoted
by bi (X ), are the bidegrees of T ∗

XCn, i.e.,

[T ∗
XCn] = b0[P0×Pn]+b1[P1×Pn−1]+· · ·+bd [Pd×Pn−d ] ∈ A∗(Pn×Pn)

where d = dimX , and T ∗
XCn is the closure of T ∗

XCn ⊂ Cn × Cn in
Pn × Pn.

♣ b0(X ) = LOdeg(X ).
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LO bidegrees determine the Chern-Mather class

Fixing the standard compactification Cn ⊂ Pn, regard EuX for
X ⊂ Cn as a constructible function on Pn, with value 0 on Pn \ X .
The value c∗(EuX ) of the Chern-MacPherson transformation
c∗ : CF (Pn) → A∗(Pn) is the Chern-Mather class of X :

cMa(X ) := c∗(EuX ) = a0[P0] + a1[P1] + · · ·+ ad [Pd ] ∈ A∗(Pn),

where d = dim(X ).

Theorem (M.-Rodriguez-Wang-Wu, 2023)∑
0≤i≤d

bi t
n−i =

∑
0≤i≤d

ai (−1)d−i tn−i (1 + t)i .

Identifying the top degree coefficients of t yields:

Corollary (Seade-Tibăr-Verjovsky)

If X ⊂ Cn is a d-dimensional irreducible affine variety and H ⊂ Cn

is a general affine hyperplane, one has b0 = (−1)d · χ(EuX |Cn\H).
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Sectional LO degrees

Definition (Sectional linear optimization (LO) degrees)

Let X ⊂ Cn be a d-dimensional irreducible affine variety. For any
0 ≤ i ≤ d , define the i-th sectional LO degree si (X ) of X by

si (X ) := LOdeg(X ∩ H1 ∩ · · · ∩ Hi ),

where H1, . . . ,Hi are generic affine hyperplanes.

♣ s0(X ) = LOdeg(X ).
♣ sd(X ) = deg(X ).
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Topological interpretation of LO bidegrees

Theorem (M.-Rodriguez-Wang-Wu, 2023)

Let X ⊂ Cn be any irreducible affine variety, and let bi and si be
its LO bidegrees and LO sectional degrees, respectively. Then
si = bi for all i .

Corollary

bi (X ) = (−1)d−iχ(EuX∩H1∩···∩Hi
|Cn\Hi+1

).

Remark

Further relations to the polar degrees of X̄ ⊂ Pn.
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That’s All Folks !!!
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