Lefschetz properties in the constructible context and applications

LAURENTIU MAXIM University of Wisconsin-Madison

Workshop on Lefschetz Properties in Algebra, Geometry, Topology and Combinatorics May 15 -19, 2023, Fields Institute I. Kähler package for complex projective manifolds

Theorem (Kähler package)

Let $X \subset \mathbb{C}P^N$ be an n-dimensional complex projective manifold. Then $H^*(X) := H^*(X; \mathbb{C})$ satisfies the following properties: (a) Poincaré duality:

$$H^k(X)\cong H^{2n-k}(X)^{\vee}$$

for all $k \in \mathbb{Z}$. In particular, the Betti numbers of X in complementary degrees coincide: $b_k(X) = b_{2n-k}(X)$.

(b) Hodge structure: H^k(X) has a pure Hodge structure of weight k. In fact,

$$H^k(X) \cong H^k_{DR}(X) \cong \bigoplus_{p+q=k} H^{p,q}(X),$$

with $H^{q,p}(X) = \overline{H^{p,q}(X)}$. In particular, the odd Betti numbers of X are even.

Theorem (Kähler package, cont'd)

(c) Weak Lefschetz (Lefschetz hyperplane section theorem): If H is a generic hyperplane in CP^N, the homomorphism

 $H^k(X) \longrightarrow H^k(X \cap H)$

induced by restriction is an isomorphism for k < n - 1, and it is injective if k = n - 1. In particular, generic hyperplane sections of X are connected if $n \ge 2$.

(d) Hard Lefschetz: If H is a generic hyperplane in $\mathbb{C}P^N$, there is an isomorphism

$$H^{n-k}(X) \stackrel{\cup [H]^k}{\longrightarrow} H^{n+k}(X)$$

for all $k \ge 0$, where $[H] \in H^2(X)$ is the Poincaré dual of $[X \cap H] \in H_{2n-2}(X)$. In particular, the Betti numbers of X are unimodal: $b_{k-2}(X) \le b_k(X)$ for all $k \le n/2$.

Example

Let $X = \mathbf{G}_d(\mathbb{C}^n)$ be the Grassmann variety of *d*-planes in \mathbb{C}^n , a complex projective manifold of complex dimension d(n-d). X has an algebraic cell decomposition by complex affine spaces, so the odd Betti numbers of X vanish.

The even Betti numbers are computed as

$$b_{2k}(X) = p(k, d, n-d),$$

where p(k, d, n - d) is the number of partitions of the integer k whose Young diagrams fit inside a $d \times (n - d)$ box (i.e., partitions of k into $\leq d$ parts, with largest part $\leq n - d$). The Kähler package implies that the sequence

$$p(0, d, n - d), p(1, d, n - d), \cdots, p(d(n - d), d, n - d)$$

is symmetric and unimodal.

Remark

- "Non-abelian" Hard Lefschetz due to Simpson (1992), replaces constant coefficients by a semi-simple local system.
- *l*-adic version for smooth projective varieties defined over finite fields, due to Deligne (1980).

II. Kähler package for singular varieties

Example

Let $X = \mathbb{C}P^2 \cup \mathbb{C}P^2 \subset \mathbb{C}P^4 = \{[x_0 : x_1 : \cdots : x_4]\}$, where the two copies of $\mathbb{C}P^2$ in X meet at a point P. So

$$X = \{x_i x_j = 0 \mid i \in \{0, 1\}, j \in \{3, 4\}\},\$$

with $Sing(X) = \{ P = [0:0:1:0:0] \}.$

Example (cont'd)

The Mayer-Vietoris sequence yields:

The 0-cycles $[a], [b] \in C_0(X)$ cobound a 1-chain δ passing through the singular point P. In particular, $[a] = [b] \in H_0(X) \cong H^0(X)^{\vee}$. If H is a generic hyperplane in $\mathbb{C}P^4$, then $X \cap H = \mathbb{C}P^1 \sqcup \mathbb{C}P^1$, which is not connected, so Weak Lefschetz *fails*. Moreover,

$$H^0(X) = \mathbb{C} \ncong \mathbb{C} \oplus \mathbb{C} = H^4(X),$$

so Poincaré duality and Hard Lefschetz also fail for X.

To restore the Kähler package in the singular setting, one has to replace cohomology $H^*(X)$ by (middle-perversity) intersection cohomology $IH^*(X)$. Homologically, this is a theory of "allowable chains", controlling the defect of transversality of intersections of chains with the singular strata. In the above example, 1-chains are not allowed to pass through singularities. So the 1-chain δ connecting the 0-cycles [a] and [b] is not allowed, hence $[a] \neq [b]$ in $IH_0(X)$. More generally,

Proposition

Let X be a complex algebraic variety of pure complex dimension n, with only isolated singularities. Let $U = X_{reg} = X \setminus Sing(X)$ be the nonsingular locus of X. Then (with \mathbb{C} -coefficients):

$$IH^{k}(X) = \begin{cases} H^{k}(U), & k < n, \\ \text{Image}\left(H^{n}(X) \rightarrow H^{n}(U)\right), & k = n, \\ H^{k}(X), & k > n. \end{cases}$$

 $IH^*(X)$ is computed by Deligne's IC-complex IC_X , which is uniquely characterized (up to quasi-isomorphism) by a set of axioms. If X is pure *n*-dimensional, then

$$IH^k(X) = \mathbb{H}^{k-n}(X; IC_X).$$

Checking the *IC*-axioms for the Verdier dual $\mathcal{D}(IC_X)$, one gets:

Theorem (Poincaré Duality for *IH**)

If X is a pure n-dimensional complex projective variety, there is a non-degenerate intersection pairing

$$IH^k(X)\otimes IH^{2n-k}(X)\longrightarrow \mathbb{C}$$

induced from the quasi-isomorphism

 $\mathcal{D}(IC_X)\simeq IC_X.$

All other statements of the Kähler package hold for the intersection cohomology groups of a complex projective variety.

Weak Lefschetz holds, more generally, for any perverse sheaf \mathcal{F} on a projective variety X (e.g., IC_X):

Theorem (Weak Lefschetz Theorem for Perverse Sheaves)

If X is a complex projective variety and $i : D \hookrightarrow X$ is the inclusion of a hyperplane section, then for every $\mathcal{F} \in Perv(X)$ the restriction map $\mathbb{H}^k(X; \mathcal{F}) \to \mathbb{H}^k(D; i^*\mathcal{F})$ is an isomorphism for k < -1 and is injective for k = -1.

The proof follows from Artin's vanishing theorem for the affine inclusion $j: U = X \setminus D \hookrightarrow X$, with $j^* \mathcal{F} \in Perv(U)$, i.e.,

$$\mathbb{H}^k_c(U;j^*\mathcal{F})=0 \ \text{ for } k<0.$$

Note that, if $D \stackrel{\prime}{\hookrightarrow} X$ is a *generic* hyperplane section of X and $\mathcal{F} \in Perv(X)$, then $i^*\mathcal{F}^{\bullet}[-1] \in Perv(D)$. E.g., $i^*IC_X \simeq IC_D[1]$. This gives (WL) for IH^* .

Theorem (Lefschetz hyperplane section theorem for IH^*)

Let $X \subset \mathbb{C}P^N$ be a pure n-dimensional closed algebraic subvariety with a Whitney stratification X. Let $H \subset \mathbb{C}P^N$ be a generic hyperplane (i.e., transversal to all strata of X). Then the natural homomorphism

$$IH^k(X;\mathbb{C})\longrightarrow IH^k(X\cap H;\mathbb{C})$$

is an isomorphism for $0 \le k \le n-2$ and a monomorphism for k = n-1.

Theorem

Let X be a projective variety of pure complex dimension n, and let D be a hyperplane section of X chosen so that $U = X \setminus D$ is smooth. Then the inclusion $D \hookrightarrow X$ induces isomorphisms

$$H^k(X;\mathbb{C})\longrightarrow H^k(D;\mathbb{C})$$

for all k < n - 1 and a monomorphism for k = n - 1.

This uses Artin vanishing for the smooth affine variety U, with $\underline{\mathbb{C}}_{U}[n] \in Perv(U)$.

Theorem (M.-Păunescu-Tibăr)

If $X \subset \mathbb{C}P^{n+1}$ is a hypersurface, then $\mathcal{F} = \underline{\mathbb{C}}_X[n] \in Perv(X)$, so the inclusion $i: D \hookrightarrow X$ of any hyperplane section induces isomorphisms

$$H^k(X;\mathbb{C})\longrightarrow H^k(D;\mathbb{C})$$

for all k < n - 1 and a monomorphism for k = n - 1. Moreover, if X is reduced with $s = \dim_{\mathbb{C}} \operatorname{Sing}(X)$, and D is generic, then $H^{k}(X, D; \mathbb{C}) = 0$ for $n + s + 2 \le k < 2n$, and $H^{2n}(X, D; \mathbb{C}) = \mathbb{C}^{r}$, where r is the number of irreducible components of X.

This can be used inductively (M.-Păunescu-Tibăr) to prove:

Corollary (Kato)

If $X \subset \mathbb{C}P^{n+1}$ is a reduced hypersurface with $s = \dim_{\mathbb{C}} \operatorname{Sing}(X)$, then $H^{k}(X;\mathbb{C}) \cong H^{k}(\mathbb{C}P^{n};\mathbb{C})$ for k < n and $n + s + 2 \le k \le 2n$.

Hard Lefschetz for IH*

Hodge structures and Hard Lefschetz for IH^* follow from work of Beinlinson-Bernstein-Deligne, Saito and/or de Cataldo-Migliorini. (HL) for IH^* is a consequence of the *Relative Hard Lefschetz* for projective morphisms, applied to the constant map $X \rightarrow point$. (IH^* is not a ring, but a module over H^* .)

Theorem (Hard Lefschetz theorem for intersection cohomology)

Let X be a complex projective variety of pure complex dimension n, with $[H] \in H^2(X; \mathbb{Q})$ the first Chern class of an ample line bundle on X. Then there are isomorphisms (of pure HS)

$$\cup [H]^{i}: IH^{n-i}(X; \mathbb{Q}) \stackrel{\cong}{\longrightarrow} IH^{n+i}(X; \mathbb{Q})$$

for every integer i > 0, induced by the cup product by $[H]^i$. In particular, the intersection cohomology Betti numbers of X are unimodal, i.e., dim $IH^{i-2}(X; \mathbb{Q}) \leq \dim IH^i(X; \mathbb{Q})$ for all $i \leq n/2$.

Extending the classical Hodge index theorem for Kähler manifolds, one has:

Theorem (M.-Saito-Schürmann)

Let X be a complex projective variety of pure complex dimension n, and let $Ih^{p,q}(X)$ be the Hodge numbers of the pure HS on $IH^*(X)$. Then the Goresky-MacPherson signature $\sigma(X)$, which is defined by Poincare duality on $IH^n(X)$, is computed by:

$$\sigma(X) = \sum_{p,q} (-1)^q \cdot Ih^{p,q}(X).$$

(HL) for IH^* is a special case (for $\mathcal{F} = IC_X$) of the (HL) for semisimple perverse sheaves:

Theorem (Mochizuki)

Under the previous assumptions, if $\mathcal{F} \in Perv(X)$ is semisimple, then

$$\cup [H]^{i}: \mathbb{H}^{-i}(X; \mathcal{F}) \stackrel{\cong}{\longrightarrow} \mathbb{H}^{i}(X; \mathcal{F})$$

is an isomorphism for every integer i > 0.

Remark

Mochizuki's theorem extends both classical and non-abelian versions of the Hard Lefschetz from the smooth context.

III. Applications of the Kähler package

- Large number of applications to geometry & topology, algebra, combinatorics (e.g., McMullen's g-conjecture, Dowling-Wilson & Rota conjectures, etc.), representation theory (Kazhdan-Lusztig conjecture).
- Geometric results motivated the development of combinatorial intersection cohomology theories for convex polytopes and matroids.

Lemma

Let $X \subset \mathbb{C}P^N$ be a projective variety of pure dimension n, which has an algebraic cell decomposition (i.e., all cells are \mathbb{C}^i 's). Then

dim $H^{2k}(X; \mathbb{C}) \leq \dim H^{2n-2k}(X; \mathbb{C})$, for all $k \leq n/2$.

Proof.

Using Hodge theory, one can show that the map

$$\alpha: H^*(X; \mathbb{C}) \to IH^*(X; \mathbb{C})$$

is injective. The lemma follows from the following commutative diagram, together with (HL) for $IH^*(X; \mathbb{C})$:

$$\begin{array}{c} H^{2k}(X;\mathbb{C}) & \stackrel{\alpha}{\longrightarrow} IH^{2k}(X;\mathbb{C}) \\ \cup [H]^{n-2k} & \cong & \downarrow \cup [H]^{n-2k} \\ H^{2n-2k}(X;\mathbb{C}) & \stackrel{\alpha}{\longrightarrow} IH^{2n-2k}(X;\mathbb{C}) \end{array}$$

Let $E = \{v_1, \dots, v_d\}$ be a spanning subset of a *n*-dimensional complex vector space V, and let $w_k(E)$ be the number of k-dimensional subspaces spanned by subsets of E.

Conjecture (Dowling-Wilson top-heavy conjecture)

For all k < n/2 one has:

$$w_k(E) \leq w_{n-k}(E).$$

Conjecture (Rota's unimodal conjecture)

There is some j so that

$$w_0(E) \leq \cdots \leq w_{j-1}(E) \leq w_j(E) \geq w_{j+1}(E) \geq \cdots \geq w_n(E).$$

Huh-Wang used the previous lemma to prove the Dowling-Wilson top-heavy conjecture.

The proof uses the fact that there exists a complex *n*-dimensional projective variety X such that for every $0 \le k \le n$ one has:

$$H^{2k+1}(X;\mathbb{C})=0$$
 and $\dim_{\mathbb{C}} H^{2k}(X;\mathbb{C})=w_k(E).$

To define X, use $E = \{v_1, \cdots, v_d\}$ to construct a map $i_E : V^{\vee} \to \mathbb{C}^d$ by regarding each $v_k \in E$ as a linear map $V^{\vee} \to \mathbb{C}$. Precomposing i_E with the $\mathbb{C}^d \hookrightarrow (\mathbb{C}P^1)^d$ yields a map $f : V^{\vee} \to (\mathbb{C}P^1)^d$. Set

$$X:=\overline{\mathrm{Im}\ (f)}\subset (\mathbb{C}P^1)^d.$$

Ardilla-Boocher showed that the variety X has an algebraic cell decomposition, the number of \mathbb{C}^k 's appearing in the decomposition of X being exactly $w_k(E)$. This shows the top-heavy property of the sequence $\{w_k(E)\}$.

The unimodality of the "lower half" of the sequence $\{w_k(E)\}$ follows similarly, using the unimodality of intersection cohomology Betti numbers of X.

The Dowling-Wilson and Rota conjectures were initially formulated for *matroids*, with the previous discussion corresponding to the case of matroids realizable over \mathbb{C} . The general case was proved more recently by Braden-Huh-Matherne-Proudfoot-Wang by mimicking the above geometric picture in combinatorial terms.

THANK YOU !!!

LAURENTIU MAXIM University of Wisconsin-Madison Works Lefschetz properties