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Abstract. The linear optimization degree gives an algebraic measure of complexity
of optimizing a linear objective function over an algebraic model. Geometrically, it
can be interpreted as the degree of a projection map on the affine conormal variety.
Fixing an affine variety, our first result shows that the geometry of this conormal variety,
expressed in terms of bidegrees, completely determines the Chern-Mather classes of the
given variety. We also show that these bidegrees coincide with the linear optimization
degrees of generic affine sections.

1. Introduction

For a complex projective variety X ⊂ Pn, the maximum likelihood (ML) degree of
X, denoted by MLdeg(X), is defined to be the number of critical points of a general
likelihood function pu0

0 · · · pun
n /(p0 + · · ·+ pn)

u0+···+un , with ui ∈ Z, on the smooth locus
of X \H, where H is the union of all coordinate hyperplanes and the hyperplane given by
p0+ · · ·+ pn = 0. When X \H is smooth, MLdeg(X) is equal, up to a sign, to the Euler
characteristic of X \ H (see [16]). When X \ H is singular, MLdeg(X) is equal to the
Euler characteristic of MacPherson’s local Euler obstruction function EuX\H (see [25]
and [20]). Noting that the Euler characteristic is the degree of the total Chern class, the
above results can be extended to relations between the ML bidegrees and MacPherson’s
Chern and Chern-Mather classes. Moreover, using a Chern class/Euler characteristic
involution formula of Aluffi, relations between ML bidegrees and sectional ML degrees
are established in [17] and [20]. In particular, in their recent paper [20], the authors
proved the Huh-Sturmfels involution conjecture of [17].
In this paper, we aim to find a linear analogue of the above-mentioned results. Given

an affine variety X ⊂ Cn, we define its linear optimization (LO) degree, denoted by
LOdeg(X), to be the number of critical points of a general linear function restricted
to the smooth locus Xreg of X. This gives an algebraic measure to the complexity of
optimizing a linear function over algebraic models Xreg ∩ Rn, which are prevalent in
algebraic statistics and applied algebraic geometry. Similar to the ML degrees, we can
also define LO bidegrees bi(X) and sectional LO degrees si(X), as we will discuss below.
Our first result (Theorem 1.1) is to relate the LO bidegrees bi(X) with the Chern-Mather
class of X. Furthermore, it is the case that si(X) ≤ bi(X), see Section 7, and our second
result (Theorem 1.4) states that the equality always holds.
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An equivalent definition of the linear optimization degree LOdeg(X) of an affine vari-
ety X ⊂ Cn can be given as follows. Let T ∗

XCn be the affine conormal variety of X, i.e.,
the closure of the conormal bundle T ∗

Xreg
Cn of Xreg in T ∗Cn. Consider the trivialization

T ∗Cn ∼= Cn × Cn of the cotangent bundle, where the first factor is the base and the
second is the fiber. Then the projection of T ∗

XCn to the second factor Cn is a generically
finite map, and its degree is equal to LOdeg(X).

We define the LO bidegrees of X to be the bidegrees of T ∗
XCn. More precisely, consider

the standard compactification Cn×Cn ⊂ Pn×Pn, and let T ∗
XCn be the closure of T ∗

XCn

in Pn × Pn. We define the LO bidegrees of X, denoted by bi(X) or simply bi, to be the
coefficients of the Chow class of T ∗

XCn, that is,

(1) [T ∗
XCn] = b0[P0 × Pn] + b1[P1 × Pn−1] + · · ·+ bd[Pd × Pn−d] ∈ A∗(Pn × Pn)

where d = dimX. In particular, b0(X) = LOdeg(X). As we shall see later on (Proposi-
tion 6.2), these numbers bi equal the classical polar degrees if (and only if) the projective
closure of X is transversal to the hyperplane at infinity.

Fixing the standard compactification Cn ⊂ Pn, we consider the local Euler obstruction
function EuX of the affine variety X ⊂ Cn as a constructible function on Pn, with value
0 outside of X. Applying to it the Chern-MacPherson transformation c∗ : F (Pn) →
A∗(Pn), with F (Pn) the group of constructible functions on Pn, we get a class

(2) cMa(X) := c∗(EuX) = a0[P0] + a1[P1] + · · ·+ ad[Pd] ∈ A∗(Pn),

which we refer to as the total Chern-Mather class of X. To emphasize the space X we
work with, we will occasionally use the notation ai(X) for the coefficients ai of (2).

For notational convenience, in (1) and (2) we set aj = bj = 0 if j /∈ {0, 1, . . . , d}.
Our first result describes the relation between the LO bidegrees and the total Chern-

Mather class of X as follows.

Theorem 1.1. For any d-dimensional irreducible affine variety X ⊂ Cn, the sequences
{ai} and {bi} defined as in (1) and (2) satisfy the identity

(3)
∑
0≤i≤d

bit
n−i =

∑
0≤i≤d

ai(−1)d−itn−i(1 + t)i.

Let us state two immediate consequences of Theorem 1.1, which were also considered
by other authors by different methods.

First, the equality of top degree coefficients in (3) reproves the following result of
Seade-Tibăr-Verjovsky [29, Equation (2)] (see also [28, Theorem 1.2] and [21, Theorem
3.10]).

Corollary 1.2. For any d-dimensional irreducible affine variety X ⊂ Cn, and H ⊂ Cn

a general affine hyperplane, we have

(4) LOdeg(X) = b0(X) = (−1)d · χ(EuX |Cn\H).

Secondly, by plugging t = −1 in (3), we derive the following relation between the
value of the local Euler obstruction function of an affine cone at the cone point, and
the LO bidegrees of the affine cone. More precisely, in the notation of (1), we get the
following result.
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Corollary 1.3. Assume that the d-dimensional irreducible affine variety X ⊂ Cn is an
affine cone of a projective variety, and denote its cone point by O. Then

(5) EuX(O) = bd(X)− bd−1(X) + · · ·+ (−1)db0(X).

Let us note that when X is the affine cone on a projective variety, like in the above
Corollary, Theorem 1.1 can already be derived from a combination of results contained
in [27] and [2]; see Section 1.1 below for a comparison of our results with prior works.
Moreover, in view of our Proposition 6.2, Corollary 1.3 reproves [33, Corollaire 5.1.2],
but it also recovers [2, Proposition 3.17] in view of our Theorem 1.1.

By analogy with the sectional maximum likelihood degrees, we now introduce sectional
LO degrees of affine varieties as follows. For any 0 ≤ i ≤ d, we define the i-th sectional
LO degree of X, denoted by si(X) or simply si, to be

(6) si(X) := LOdeg(X ∩H1 ∩ · · · ∩Hi),

where H1, . . . , Hi are generic affine hyperplanes. Then s0(X) = LOdeg(X), and sd(X)
is the degree of X. Here, for notational convenience, we also set si = 0 for i > d.
Our next result shows that the LO bidegrees and sectional LO degrees coincide.

Theorem 1.4. Let X ⊂ Cn be any irreducible affine variety, and let bi and si be its LO
bidegrees and LO sectional degrees, respectively. Then si = bi for all i.

Our formula in Theorem 1.1 shows that the Chern-Mather class of the affine variety
X is determined by the LO bidegrees. The relationship is more involved than the
corresponding result for ML bidegrees ([20, Theorem 1.3]) because, while the logarithmic
cotangent bundle of the pair (Pn,Pn \ (C∗)n) is trivial, the one of (Pn,Pn \ Cn) is not.
(See Proposition 4.1 for a remedy of this issue.) By contrast, Theorem 1.4 shows that
there is a simple relation between the LO bidegrees and the sectional LO bidegrees,
unlike the ML degree situation where the relationship is given by an involution formula
(see [20, Theorem 1.5]). In particular our result gives, via (4) and (6), a topological
interpretation of all LO bidegrees as Euler characteristics, that is,

bi(X) = (−1)d−iχ(EuX∩H1∩···∩Hi
|Cn\Hi+1

),

with d = dimX. The equality between LO bidegrees and the sectional LO degrees also
shows that, when computing the LO bidegrees, orthogonal subspaces are sufficiently
general (see Corollary 7.2).

In Section 6, we discuss the relation between the LO bidegrees of an affine variety and
the polar degrees of its projective closure (see Proposition 6.2). As a consequence, we
generalize Theorem 13 of [6] to singular varieties (see Corollary 6.3). As already hinted
on above, in view of formula (5) this relation also allows us to express the value of local
Euler obstruction of an affine cone at the cone point in terms of the projective polar
degrees of the projective variety we are coning off (compare with [2, Proposition 3.17]).

In Section 7, we provide a bijection between critical points of a linear objective function
on X restricted to a linear space with a set of points in the affine conormal variety; see
Proposition 7.1 and Corollary 7.2.
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Remark 1.5. We believe our results here motivate further analogous investigations for
other objective functions like Euclidean distance [9], p-norms [18] and bottlenecks [8].
Moreover, Proposition 7.1 encourages a revisitation into the maximum likelihood esti-
mation case [16, 5, 15] to find an involution at the level of critical points.

1.1. Comparison with other works. Let us clarify here the difference between our
approach and some of the more classical works.

As above, let X ⊂ Cn be an irreducible affine variety with conormal space T ∗
XCn ⊂

T ∗Cn. Instead of taking the fiberwise projectivization C(X,Cn) := P(T ∗
XCn) ⊂ P(T ∗Cn)

as in, e.g., Sabbah [27], we first compactify the fibers of T ∗Cn by taking their projective
closures, i.e., T ∗Cn = Cn × Cn ⊂ Cn × Pn, so that we keep track of conic subvarieties
contained in the zero section of T ∗Cn, and then we compactify Cn×Pn using the trivial
projective bundle Cn×Pn ⊂ Pn×Pn. Other authors, like Aluffi [2] or Parusinski-Pragacz
[24], consider the projective closure X ⊂ Pn of X, together with its corresponding
projective conormal variety C(X,Pn) := P(T ∗

X
Pn) ⊂ P(T ∗Pn).

Note that Sabbah’s formula [27, Lemme 1.2.1] applied to X ⊂ Cn computes the
Chern-Mater class of X in the Borel-Moore homology of X. The same formula applied
to X ⊂ Pn computes the Chern-Mather class of X in the Borel-Moore homology (or
Chow group) of X, and resp., of Pn, upon using the proper pushforward. By contrast,
we relate our compactification of T ∗Cn in Pn × Pn to a twisted logarithmic cotangent
bundle of Pn, and compute the Chern-Mather class of X in A∗(Pn) via Ginsburg’s
microlocal interpretation of Chern-MacPherson classes (cf. [11]). In fact, we derive
Theorem 1.1 as a consequence of our main result from [20, Theorem 1.1], recalled below
in Theorem 2.2, which computes the Chern classes of the extension by zero to Pn of the
local Euler obstruction function EuX of the affine variety X ⊂ Cn.

This kind of relation between conormal varieties, Chern classes, and polar varieties,
has been already considered by [27], [33], [2], etc. For example, when X is the affine cone
on a projective variety, or more generally, if the projective closure X of X is transversal
to the hyperplane at infinity H∞ of Pn, Theorem 1.1 can be derived from a combination
of results contained in [27] and [2]. This is the case when H∞ is not contained in the
dual variety of X, see Section 6 for more results in this direction.
The novel contribution of Theorem 1.1 (and of its consequence in Theorem 1.4) is

that it applies to all affine varieties without any additional assumption of infinity. For
example, in [21] we prove a conjecture from [9] by applying formula (4) to the compu-
tation of the Euclidean distance degree of the multiview variety, which does not have
good behavior along infinity.
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ported by the Office of the Vice Chancellor for Research and Graduate Education at
UW-Madison with funding from the Wisconsin Alumni Research Foundation and a Sloan
Fellowship. Wang is partially supported by a Sloan Fellowship. Wu is supported by an
FWO postdoctoral fellowship.
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2. Characteristic cycles. Chern classes. Microlocal interpretation

In this paper, we work in the complex algebraic context, with A∗ denoting the Chow
group. By convention, we use subscripts for characteristic classes valued in Chow groups,
and we use superscripts whenever a characteristic class is of cohomological nature (e.g.,
Chern classes of a vector bundle).

Let X be a smooth complex algebraic variety, and denote by F (X) the group of
algebraically constructible functions on X, i.e., the free abelian group generated by
indicator functions 1Z of closed irreducible subvarieties Z of X. An important example
of a constructible function on X is the MacPherson local Euler obstruction function EuZ

of an irreducible subvariety Z of X, see [19].
Let L(X) be the free abelian group spanned by the irreducible conic Lagrangian

cycles in the cotangent bundle T ∗X. Recall that irreducible conic Lagrangian cycles in
T ∗X correspond to the conormal spaces T ∗

ZX, for Z a closed irreducible subvariety of
X. Here, for such a closed irreducible subvariety Z of X with smooth locus Zreg, its
conormal variety T ∗

ZX is defined as the closure in T ∗X of

T ∗
Zreg

X := {(z, ξ) ∈ T ∗X | z ∈ Zreg, ξ ∈ T ∗
zX, ξ|TzZreg = 0}.

The characteristic cycle functor CC establishes a group isomorphism

CC : F (X) −→ L(X),

which, for a closed irreducible subvariety Z of X, satisfies:

(7) CC(EuZ) = (−1)dimZ · T ∗
ZX.

In [19], MacPherson extended the notion of Chern classes to singular complex algebraic
varieties by defining a natural transformation

c∗ : F (−) −→ A∗(−)

from the functor F (−) of constructible functions (with proper morphisms) to Chow (or
Borel-Moore) homology, such that if X is a smooth variety then c∗(1X) = c∗(TX)∩ [X].
Here, c∗(TX) denotes the total cohomology Chern class of the tangent bundle TX, and
[X] is the fundamental class of X. For any locally closed irreducible subvariety Z of a
complex algebraic variety X, the function 1Z is constructible on X, and the class

cSM∗ (Z) := c∗(1Z) ∈ A∗(X)

is usually referred to as the Chern-Schwartz-MacPherson (CSM) class of Z in X. Simi-
larly, the class

cMa
∗ (Z) := c∗(EuZ) ∈ A∗(X)

is called the Chern-Mather class of Z, where we regard the local Euler obstruction
function EuZ as a constructible function on X by setting the value zero on X \ Z.

Results of Ginsburg [11] and Sabbah [27] provided a microlocal interpretation of Chern
classes, by showing that McPherson’s Chern class transformation c∗ factors through the
group of conic Lagrangian cycles in the cotangent bundle. We recall this construction
below, following, e.g., [4].

Let E be a rank r vector bundle on the smooth complex algebraic variety X. Let
E := P(E ⊕ 1) be the projective bundle, which is a fiberwise compactification of E
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(with 1 denoting the trivial line bundle on X). Then E may be identified with the open
complement of P(E) in E. Let π : E → X and π̄ : E → X be the projections, and let
ξ := c1(OE(1)) be the first Chern class of the hyperplane line bundle on E. Pullback via
π̄ realizes A∗(E) as a A∗(X)-module. An irreducible conic dC-dimensional subvariety
C ⊂ E determines a dC-dimensional cycle C in E and, by [10, Theorem 3.3], one can
express [C] ∈ AdC (E) uniquely as:

(8) [C] =

dC∑
j=dC−r

ξj−dC+r ∩ π̄∗cEj (C),

for some cEj (C) ∈ Aj(X). The classes

cEdC−r(C), . . . , cEdC (C)

defined by (8) are called the Chern classes of C. The sum

cE∗ (C) =

dC∑
j=dC−r

cEj (C)

is called the shadow of [C]. For our applications, we will mainly work with conic La-
grangian cycles in cotangent bundles, in which case we have dC = r. In fact, the termi-
nology “Chern classes of C” is justified by the following result, applied to the cotangent
bundle T ∗X and elements of the group L(X) of conic Lagrangian cycles:

Proposition 2.1. [4, Proposition 3.3] For any constructible function φ ∈ F (X), the
Chern classes of the characteristic cycle CC(φ) equal the signed MacPherson Chern
classes of φ, namely:

(9) cT
∗X

j (CC(φ)) = (−1)j · cj(φ) ∈ Aj(X), j = 0, . . . , dim(X),

where cj(φ) denotes the j-th component of MacPherson’s Chern class c∗(φ).

If Z ⊂ X is a closed irreducible subvariety, one gets from (7) and (9) the following
identity:

(10) cT
∗X

∗ (T ∗
ZX) = (−1)dimZ

∑
j≥0

(−1)jcMa
j (Z),

with cMa
j (Z) denoting the j-th component of the Chern-Mather class of Z.

We end this section by recalling our main result from [20], which was used there for
proving the Huh-Sturmfels involution conjecture in maximum likelihood estimation.

Let X be a smooth complex algebraic variety, and let D ⊂ X be a normal crossing
divisor. Let U := X \D be the complement, and let j : U ↪→ X be the open inclusion.
Let Ω1

X(logD) be the sheaf of algebraic one-forms with logarithmic poles along D, and
denote the total space of the corresponding vector bundle by T ∗(X,D). Note that
T ∗(X,D) contains T ∗U as an open subset. Given a conic Lagrangian cycle Λ in T ∗U , we
denote its closure in T ∗(X,D) by Λlog. With this notation, the following result holds.
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Theorem 2.2. [20, Theorem 1.1] Let φ ∈ F (U) be any constructible function on U .
Then

(11) cT
∗(X,D)

∗

(
CC(φ)log

)
= cT

∗X
∗
(
CC(φ)

)
∈ A∗(X),

where, if CC(φ) =
∑

k nkΛk, then CC(φ)log :=
∑

k nk(Λk)log. Here, on the right-hand

side of (11), φ is regarded as a constructible function on X by extension by zero.

In particular, if φ = EuZ for Z ⊂ U an irreducible subvariety, then for Λ = T ∗
ZU we

get from (10) and (11) that:

(12) cT
∗(X,D)

∗ (Λlog) = (−1)dimZ
∑
j≥0

(−1)jcMa
j (Z) ∈ A∗(X).

Formula (12) will play a fundamental role in the proof of Theorem 1.1 in Section 5.

3. Segre classes and Shadow of twisted cycles

Let C be a cone over a variety Y , typically a subcone of a vector bundle. Let P(C)
be the projectivization of C, with projection π : P(C) → Y . We also let P(C ⊕ 1) be
the projective completion of C, with projection map π. Denote the tautological line
bundle on P(C ⊕ 1) by OP(C⊕1)(−1), and denote its inverse by OP(C⊕1)(1). Following
[10, Chapter 4], we define the Segre class of C, denoted s∗(C), to be the class in A∗(Y )
defined by:

(13) s∗(C) := π∗

(∑
i≥0

c1(OP(C⊕1)(1))
i ∩ [P(C ⊕ 1)]

)
.

The i-th Segre class si(C) is the i-th graded piece of s∗(C). If the cone C is of pure
dimension dC over Y , then:

si(C) = π∗
(
c1(OP(C⊕1)(1))

dC−i ∩ [P(C ⊕ 1)]
)
∈ Ai(Y ).

Example 3.1. If E is a vector bundle on Y , then s∗(E) = c∗(E)−1 ∩ [Y ]; see [10,
Proposition 4.1(a)].

Remark 3.2. The addition of the trivial factor 1 is needed to account for the possibility
that P(C) may be empty, e.g., when C is contained in the zero section of a vector bundle.
However, if C is an irreducible conic variety such that P(C) is nonempty, then cf. [10,
Example 4.1.2], we have:

(14) s∗(C) := π∗

(∑
i≥0

c1(OP(C)(1))
i ∩ [P(C)]

)
.

In particular, in this case, we have si(C) = 0 for i ≥ dimC.

Let Y be a smooth projective variety and let D be a reduced divisor with complement
U := Y \ D. Let E be a vector bundle on Y , and let C ⊂ E be an irreducible conic
subvariety whose support in Y is not contained in D. We consider E|U as the common
open subset of E and E(D) := E⊗OY (D). Denote the closure of C ∩ (E|U) in E(D) by
C ′. The following proposition is a straightforward generalization of [10, Example 3.1.1].
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Proposition 3.3. Under the above notation, we denote the dimension of C by dC. If C
is not contained in the zero section of E, then the Segre classes of C and C ′ are related
by the identity

(15) sdC−i−1(C
′) =

∑
0≤j≤i

(
i

j

)
(−[D])i−j ∩ sdC−j−1(C) for all i ≥ 0.

Proof. Under the natural isomorphism P(E) = P(E(D)), the projectivization P(C) of
C is the same as that of C ′. Notice that OP(E(D))(−1) = OP(E)(−1) ⊗ π∗(OY (D)).
Moreover, the pullback of c1(OP(E)(1)) to P(C) is equal to c1(OP(C)(1)). Thus, the Segre
classes of C and C ′ can also be expressed as

s∗(C) = π∗

(∑
i≥0

c1
(
OP(E)(1)

)i ∩ [P(C)]

)

and

s∗(C
′) = π∗

(∑
i≥0

(
c1(OP(E)(1))− π∗[D]

)i ∩ [P(C)]

)

where π : P(E) = P(E(D)) → Y is the projective bundle map.
Combining the above equations and using the projection formula, we have

sdC−i−1(C
′) = π∗

((
c1(OP(E)(1))− π∗[D]

)i ∩ [P(C)]
)

=
∑
0≤j≤i

(
i

j

)
(−[D])i−j ∩ π∗

(
c1(OP(E)(1))

j ∩ [P(C)]
)

=
∑
0≤j≤i

(
i

j

)
(−[D])i−j ∩ sdC−j−1(C)

for any i ≥ 0. □

We can use the following elementary formula to simplify formula (15).

Lemma 3.4. As power series, we have the following identity:

∑
k≥0

(
k + n

n

)
(−t)k =

(
1− t+ t2 − · · ·

)n+1
= (1 + t)−n−1.

Corollary 3.5. Under the notation and assumptions of Proposition 3.3, we have

(16) s∗(C
′) =

∑
j≥0

(1 + [D])−j−1 ∩ sdC−j−1(C).
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Proof. By Proposition 3.3 and Lemma 3.4, we have

s∗(C
′) =

∑
j,k≥0

(
k + j

j

)
(−[D])k ∩ sdC−1−j(C)

=
∑
j≥0

(∑
k≥0

(
k + j

j

)
(−[D])k

)
∩ sdC−1−j(C)

=
∑
j≥0

(1 + [D])−j−1 ∩ sdC−1−j(C). □

Remark 3.6. When the irreducible subvariety C ⊂ E is contained in the zero section,
by definition, we can identify C and C ′ as the same subvariety of Y . Thus, in this case,
we have s∗(C) = s∗(C

′). Moreover, by definition, all Segre classes of C and C ′ vanish
except in degree dC . In other words, s∗(C) = s∗(C

′) = sdC (C) = sdC (C
′).

We recall here the following useful fact.

Proposition 3.7. [3, Lemma 2.12] For any conic subvariety C in a vector bundle E
over Y , one has

(17) cE∗ (C) = c∗(E) ∩ s∗(C),

with c∗(E) denoting the total cohomology Chern class of E, and cE∗ (C) the shadow of C
(as defined in the previous section).

Combining Corollary 3.5 with Proposition 3.7, we have the following.

Corollary 3.8. For any irreducible conic subvariety C in a vector bundle E over Y ,
and C ′ defined as above, we have

(18) cE(D)
∗ (C ′) =

∑
k≥0

(1 + [D])r−k ∩ cEdC−k(C),

where r is the rank of E.

Remark 3.9. When k > r, cEdC−k(C) = 0 by (8). So the summation in (18) stops at
k = r.

Remark 3.10. If C is the zero section of E, then the Segre class of C is the fundamental
class of Y . In this case, by (17) we get c∗(E) := c∗(E) ∩ [Y ] = cE∗ (C) and, similarly,

c∗(E(D)) = c
E(D)
∗ (C ′). Corollary 3.8 reduces to the well-known (cohomological) Chern

class formula

(19) c∗(E(D)) =
∑
0≤i≤r

ci(E) · (1 + [D])r−i.
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Proof of Corollary 3.8. First, we assume that C is not contained in the zero section of E.
By equations (16) and (17), we have

cE(D)
∗ (C ′) = c∗(E(D)) ∩ s∗(C

′)

=

(∑
i≥0

ci(E) · (1 + [D])r−i

)
∩

(∑
j≥0

(1 + [D])−j−1 ∩ sdC−j−1(C).

)
=
∑
i,j≥0

(
ci(E) · (1 + [D])r−i−j−1

)
∩ sdC−j−1(C)

=
∑
k≥0

(1 + [D])r−k−1 ∩

(∑
0≤i≤k

ci(E) ∩ sdC−k+i−1(C)

)
=
∑
k≥0

(1 + [D])r−k−1 ∩ cEdC−k−1(C).

This is equivalent to (18) since, by (17) and Remark 3.2,

cEdC (C) =
∑
k≥0

ck(E) ∩ sdC+k(C) = 0.

When C is contained in the zero section of E, by (17), (19) and Remark 3.6, we have

cE(D)
∗ (C ′) = c∗(E(D)) ∩ sdC (C)

=
∑
0≤i≤r

ci(E) · (1 + [D])r−i ∩ sdC (C)

=
∑
0≤i≤r

(1 + [D])r−i ∩
(
ci(E) ∩ sdC (C)

)
=
∑
0≤i≤r

(1 + [D])r−i ∩ cEdC−i(C)

which is the same as (18) by Remark 3.9. □

4. Twisted logarithmic cotangent bundle

Fix the standard compactification Cn ⊂ Pn, and denote the complement divisor by
H∞. Denote the coordinate functions of Cn by zi, 1 ≤ i ≤ n. The following proposition
will allow us to relate the results in the previous section and the study of LO bidegrees.

Proposition 4.1. The twisted logarithmic cotangent bundle Ω1
Pn(logH∞)(H∞) is a triv-

ial bundle. Moreover, the 1-forms dzi extend to global sections of Ω1
Pn(logH∞)(H∞), and

they form a trivialization of Ω1
Pn(logH∞)(H∞).

Proof. Let p0, . . . , pn be the homogeneous coordinates of Pn such that zi = pi
p0
. Let

Uk ⊂ Pn be the affine chart defined by pk ̸= 0. In U0, the vector bundle Ω
1
Pn(logH∞)(H∞)

is equal to Ω1
Cn , and the sections dzi, 1 ≤ i ≤ n, generate the locally free sheaf Ω1

Cn .
Without loss of generality, we need to show that the sections dzi, 1 ≤ i ≤ n,

extend to sections of Ω1
Pn(logH∞)(H∞)|U1 and they generate the locally free sheaf
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Ω1
Pn(logH∞)(H∞)|U1 . In fact, in U1,

dzi = d

(
pi
p0

)
= d

(
pi/p1
p0/p1

)
=

d(pi/p1)

p0/p1
− pi

p1
· d(p0/p1)

p0/p1
· 1

p0/p1
.

Clearly, they are sections of Ω1
Pn(logH∞)(H∞)|U1 . Notice that for i ≥ 2,

dzi =
d(pi/p1)

p0/p1
+

pi
p1

· dz1.

Thus, as subsheaves of Ω1
Pn(logH∞)(H∞)|U1 ,

OU1 · (dz1, . . . , dzn) = OU1 ·
(
d(p0/p1)

p0/p1
· 1

p0/p1
,
d(p2/p1)

p0/p1
, . . . ,

d(pn/p1)

p0/p1

)
.

Thus, the sections dz1, . . . , dzn generate Ω1
Pn(logH∞)(H∞)|U1 . □

5. The proofs

In this section we prove our main results stated in the introduction.

Proof of Theorem 1.1. Recall thatX ⊂ Cn is a d-dimensional irreducible subvariety. De-
note the conormal variety T ∗

XCn by Λ. Let Λlog be the closure of Λ in E := Ω1
Pn(logH∞).

Then, by formula (12),

cE∗ (Λlog) = (−1)d ·
∑
j≥0

(−1)jcMa
j (X).

Therefore, following the notation in Section 1, we have

cE∗ (Λlog) = (−1)d ·
(
a0[P0]− a1[P1] + · · ·+ (−1)dad[Pd]

)
∈ A∗(Pn).

On the other hand, by Proposition 4.1, E(H∞) = Ω1
Pn(logH∞)(H∞) is trivial. By

formulas (1) and (8), we have

cE(H∞)
∗ (Λ

′
log) = b0[P0] + b1[P1] + · · ·+ bd[Pd] ∈ A∗(Pn),

where Λ
′
log is the closure of Λ in E(H∞). Applying Corollary 3.8 with Y = Pn, D = H∞,

C = Λlog, we obtain the following relations between sequences ai and bi,

(20)
∑
0≤i≤d

bit
n−i =

∑
0≤i≤d

ai(−1)d−itn−i(1 + t)i,

as asserted by Theorem 1.1. □

Proof of Corollary 1.2. By [1, Proposition 2.6],

c∗(EuX |H) =
h

1 + h
c∗(EuX)

where h ∈ An−1(Pn) is the hyperplane class. Under the assumption that

c∗(EuX) = a0[P0] + a1[P1] + · · ·+ ad[Pd],
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we have

c∗(EuX)− c∗(EuX |H) =
(
1− h

1 + h

)(
a0[P0] + a1[P1] + · · ·+ ad[Pd]

)
=

1

1 + h

(
a0[P0] + a1[P1] + · · ·+ ad[Pd]

)
=
∑
0≤i≤d

(−1)iai[P0] +
∑
1≤i≤d

(−1)i−1ai[P1] + · · ·+ ad[Pd].

Therefore,

χ(EuX |Cn\H) = χ(EuX)− χ(EuX |H) =
∫
Pn

(c∗(EuX)− c∗(EuX |H)) =
∑
0≤i≤d

(−1)iai.

On the other hand, it follows immediately from (20) that b0 =
∑

0≤i≤d(−1)d−iai. There-
fore,

b0 = (−1)d · χ(EuX |Cn\H),

as desired. □

Proof of Corollary 1.3. The degree zero component of the Chern-Mather class cMa(X) :=
c∗(EuX) ∈ A∗(Pn) equals the Euler characteristic of the local Euler obstruction function.
In other words, in the notation of (2), we have

a0(X) = χ(EuX).

Suppose that X is an affine cone of a (possibly singular) projective variety, with cone
point at the origin O. Then O is the only fixed point of the C∗-action on X. Since EuX

is invariant under the C∗-action, the Euler characteristic χ(EuX) is equal to EuX(O),
the value of EuX at the origin O. Thus, we have

EuX(O) = a0(X).

Plugging t = −1 in (3), we obtain the desired equality (5). □

Proof of Theorem 1.4. As in the Introduction, we write

c∗(EuX) = a0[P0] + a1[P1] + · · ·+ ad[Pd],

where we consider EuX as a constructible function on Pn which vanishes on Pn \X. By
Corollary 1.2, we know that

si = (−1)d−iχ(EuX∩H1∩···∩Hi
|Cn\Hi+1

)

= (−1)d−iχ(EuX∩H1∩···∩Hi
) + (−1)d−i−1χ(EuX∩H1∩···∩Hi+1

)

where H1, . . . , Hi+1 are general affine hyperplanes in Cn. By [1, Proposition 2.6],

χ(EuX∩H1∩···∩Hi
) =

∫
Pn

(
h

1 + h

)i

c∗(EuX),
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where h ∈ An−1(Pn) is the hyperplane class. Therefore,

si = (−1)d
∫
Pn

((
− h

1 + h

)i

+

(
− h

1 + h

)i+1
)
c∗(EuX)

= (−1)d
∫
Pn

1

1 + h

(
− h

1 + h

)i

c∗(EuX)

= (−1)d
∫
Pn

1

1 + h

(
− h

1 + h

)i
(∑

j≥0

ajh
n−j

)
.

Thus,

∑
0≤i≤d

si · tn−i =
∑
i≥0

(−1)d
∫
Pn

1

1 + h

(
− h

1 + h

)i
(∑

j≥0

ajh
n−j

)
· tn−i

= (−1)d
∫
Pn

∑
j≥0

ajh
n−j 1

1 + h

∑
i≥0

(
−h · t−1

1 + h

)i

· tn

= (−1)d
∫
Pn

∑
j≥0

ajh
n−j 1

1 + h

(
1 +

h · t−1

1 + h

)−1

· tn

= (−1)d
∫
Pn

∑
j≥0

ajh
n−j 1

1 + h(1 + t−1)
· tn

= (−1)d
∫
Pn

∑
i,j≥0

ajh
n−j(−h)i(1 + t−1)i · tn

= (−1)d
∑
j≥0

aj(−1)j(1 + t−1)j · tn

= (−1)d
∑
j≥0

aj(−1)j(1 + t)j · tn−j.

On the other hand, formula (3) of Theorem 1.1 shows that the last term in the above
sequence of equalities is exactly

∑
0≤i≤d bi · tn−i. Hence bi = si, for all 0 ≤ i ≤ d. □

6. LO bidegrees and projective polar degrees

Let X be an affine variety in Cn and let X be its closure in Pn. As before, we use
T ∗
XCn ⊂ T ∗Cn = Cn ×Cn to denote the affine conormal variety of X, and following the

notation of [31], we use NX ⊂ Pn × (Pn)∨ to denote the projective conormal variety of
X. In this section, we compare the two conormal varieties and their bidegrees.

First, let us review the definitions of the affine and projective conormal varieties. For
simplicity, we start with the case when X, and hence X, is smooth. In this case,

T ∗
XCn = {(x,u) ∈ T ∗Cn = Cn

x × Cn
u | x ∈ X and u|TxX = 0} .
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Here u = (u1, . . . , un) corresponds to the parallel 1-form
∑

1≤i≤n uidxi on Cn, and
u|TxX = 0 means that x is a critical point of the linear function

∑
1≤i≤n uixi. Equiva-

lently, u|TxX = 0 if and only if a level set of
∑

1≤i≤n uixi is tangent to X at x. On the
other hand, following [26], the projective conormal variety is the (n − 1)-dimensional
subvariety of Pn × (Pn)∨ defined by

NX =
{
(p, H) ∈ Pn × (Pn)∨ | p ∈ X and H is tangent to X at p

}
,

where the dual projective space (Pn)∨ parametrizes hyperplanes in Pn. In general, when
X or X is singular, we use the above formulas to define the conormal varieties along the
smooth locus, T ∗

Xreg
Cn and NXreg

. Then we let T ∗
XCn and NX be their closures in T ∗Cn

and Pn × (Pn)∨, respectively.
Let H∞ ∈ (Pn)∨ denote the hyperplane at infinity in Pn, and let π∞ : (Pn)∨ 99K Pn−1

be the rational map given by projecting from H∞. Since the C∗-action on Cn
u by scalar

multiplication preserves the subvariety T ∗
XCn ⊂ Cn

x × Cn
u, we can take the fiberwise

projectivization P(T ∗
XCn) ⊂ Cn

x×Pn−1, and denote its closure in Pn×Pn−1 by P(T ∗
XCn).

Then the affine and projective conormal varieties are related as follows.

Proposition 6.1. Assume that X is not contained in any proper affine subspace, that
is, X is not contained in a hyperplane. Under the above notation, the rational map
id×π∞ : Pn×(Pn)∨ 99K Pn×Pn−1 restricts to a birational map between NX and P(T ∗

XCn).
Hence, we have an equality of subvarieties of Pn × Pn−1,

(21) id×π∞(NX) = P(T ∗
XCn),

where we regard the left-hand side as the closure of id×π∞(NX \ Pn × {H∞}).

Proof. Since both NX and P(T ∗
XCn) are irreducible, it suffices to show that id×π∞

induces a bijection between general points in NX and P(T ∗
XCn). In fact, fix a general

point (x, H) ∈ NX , where x ∈ Xreg and H is tangent to X at x. Let the defining
equation of H be u0p0+ · · ·+unpn = 0, where pi are the homogeneous coordinates of Pn.
The restriction of H to the affine chart p0 ̸= 0 is the level set {u1x1+ · · ·+unxn = −u0}
of the linear function lu := u1x1+ · · ·+unxn, where xi = pi/p0 are the affine coordinates.
The projection id×π∞ forgets the value of u0 and only remembers the linear function
lu (up to scalar). Given the point x and the linear function lu, there is a unique level
set of lu containing x. Thus, the restriction of id×π∞ to NX is generically injective. In
other words, id×π∞ induces a birational equivalence between NX and its image.

Now, we only need to prove the equality (21). By the earlier discussions, putting
u = (u1, . . . , un), then (x,u) defines a point in P(T ∗

XCn). Conversely, a general point
(x,u) of P(T ∗

XCn) corresponds to a linear function lu = u1x1 + · · ·+ unxn (up to scalar)
and a critical point x of lu|X . Let H be the projective closure of the level set of lu
containing x. Then id×π∞(x, H) = (x,u). Thus, equality (21) follows. □

Using the above result, we will derive relations between the LO bidegrees of X and
the polar degrees of X. First, let us recall the definitions. As in the introduction, the
LO bidegrees bi(X) (or simply bi) are the bidegrees of the closure of the affine conormal
variety T ∗

XCn in Pn × Pn. More precisely, they are defined by the following formula

[T ∗
XCn] = b0[P0 × Pn] + b1[P1 × Pn−1] + · · ·+ bd[Pd × Pn−d] ∈ A∗(Pn × Pn),
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where d = dimX. Similarly, the polar degrees δi(X) (or simply δi) of X are the bidegrees
of the projective conormal variety NX ⊂ Pn × (Pn)∨. More precisely, they are defined
by (see e.g., [31, Section 2])

[NX ] = δ1[P0 × Pn−1] + · · ·+ δd+1[Pd × Pn−d−1].

Proposition 6.2. The bidegrees of T ∗
XCn ⊂ Cn

x × Cn
u and the bidegrees of NX ⊂ Pn ×

(Pn)∨ coincide in the sense that

(22) bi(X) = δi+1(X), for 0 ≤ i ≤ d

if and only if the hyperplane at infinity H∞ is not a point in the dual variety X
∨ ⊂ (Pn)∨.

Proof. Fixing i, let Ln−i ⊂ Pn be a general linear subspace of dimension n − i, and let
Li ⊂ Pn−1 be a general linear subspace of dimension i. By Bertini’s theorem, Ln−i × Li

intersects P(T ∗
XCn) in Pn × Pn−1 transversally, and the intersection consists of bi(X)

points. Now, we assume that H∞ is not in X
∨
, that is, NX ∩ (Pn × {H∞}) = ∅. Let

M i+1 ⊂ (Pn)∨ be a general linear space of dimension i + 1 passing through the point
H∞. Then Ln−i ×M i+1 is cut out by i general hyperplanes in Pn and n− i− 1 general
hyperplanes in (Pn)∨ passing through H∞. Since NX ∩ (Pn × {H∞}) = ∅, by Bertini’s
theorem, Ln−i×M i+1 intersects NX transversally at δi+1(X) points. By Proposition 6.1,
if M i+1 is the cone over Li with vertex H∞, then id×π∞ induces a bijection between
NX ∩ (Ln−i ×M i+1) and P(T ∗

XCn) ∩ (Ln−i × Li). Hence bi(X) = δi+1(X).

Next, we assume that H∞ is in X
∨
. Let e be the codimension of X

∨
in (Pn)∨. We

claim that be−1(X) < δe(X). Let Ln−e+1 ∈ Pn be a general linear space of dimension
n−e+1, let Le ⊂ (Pn)∨ be a general linear space of dimension e, and let M e ⊂ (Pn)∨ be
a general linear space of dimension e containing H∞. Denote by p2 : Pn× (Pn)∨ → (Pn)∨

the second projection and, by abusing notation, we also use p2 to denote any of its

restrictions. Since the dual variety X
∨
has codimension e, any fiber of the map

p2 : NX → X
∨

has dimension at least e− 1, and a general fiber has dimension exactly e− 1. Thus, the
restriction

p2 : NX ∩ (Ln−e+1 × (Pn)∨) → X
∨

is surjective and generically finite, whose degree we denote by h. Then X
∨
intersects

Le transversally at δe(X)/h points. By Bertini’s theorem and Proposition 6.1, away

from H∞, X
∨
intersects M e transversally at be−1(X)/h points. By assumption, H∞ is

contained in the intersection of X
∨
and M e. Moreover, the intersection multiplicity of

X
∨ ·M e at H∞ is positive (see [10, Proposition 7.1] or [30, Section V.3, Theorem 1]).

Since the global intersection numbers satisfy X
∨ · Le = X

∨ ·M e, the above arguments
imply that be−1(X)/h < δe(X)/h, that is, be−1(X) < δe(X). □

Combining Theorem 1.4 and Proposition 6.2, we obtain the following generalization
of [6, Theorem 13] (see also [31, Proposition 2.9]) to singular varieties.

Corollary 6.3. Let X ⊂ Cn be an affine variety, with projective closure X ⊂ Pn.

Assume that the hyperplane at infinity H∞ is not contained in X
∨
. Then the sectional
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LO degrees of X coincide with the polar degrees of X, that is, si(X) = δi+1(X) for all
0 ≤ i ≤ dimX.

Remark 6.4. If the affine variety X ⊂ Cn is defined by homogeneous polynomials,
i.e., X is the cone of a projective variety, then its closure intersects the hyperplane at

infinity H∞ transversally. In this case, H∞ is not contained in X
∨
, and hence we have

δi+1(X) = si(X) = bi(X), for all 0 ≤ i ≤ dimX. For example, if X ⊂ C9 is defined by

the vanishing of the determinant of the matrix
[
x0 x1 x2
x3 x4 x5
x6 x7 x8

]
then the LO bidegrees of X

and the polar degrees of X are given by

[T ∗
XC9] = 6[P0 × P9] + 12[P1 × P8] + 12[P2 × P7] + 6[P3 × P6] + 3[P4 × P5],

[NX ] = 6[P0 × P8] + 12[P1 × P7] + 12[P2 × P6] + 6[P3 × P5] + 3[P4 × P4].

The following examples illustrate that, when H∞ ∈ X
∨
, the two sets of bidegrees

considered above are different.

Example 6.5. Let X in C3 be the curve V(x2 + y2 + z2 − 1, y− x2). The curve X and
its projective closure X = V(x2 + y2 + z2 − u2, yu− x2) are smooth. The LO bidegrees
of X and the polar degrees of X are given by

[T ∗
XC3] = 6[P0 × P3] + 4[P1 × P2],

[NX ] = 8[P0 × P2] + 4[P1 × P1].

In this case, X
∨
has codimension 1, and as predicted by Proposition 6.2, b0 = 6 < δ1 = 8.

Note that this example satisfies the assumption that the real algebraic curve obtained
by intersecting X and R3 is compact (compare with [6, Theorem 13]).

Example 6.6. If X ⊂ C4 is the hypersurface V(x2
1x2−x3x4) then its projective closure

is X = V(x2
1x2 − x0x3x4). The dual variety X

∨
contains the point [0 : 0 : 0 : 0 : 1] and

is defined by the binomial y21y2 +4y0y3y4. The LO bidegrees of X and the polar degrees
of X are very different:

[T ∗
XCn] = 1[P0 × P4] + 4[P1 × P3] + 5[P2 × P2] + 3[P3 × P1],

[NX ] = 3[P0 × P3] + 6[P1 × P2] + 6[P2 × P1] + 3[P3 × P0].

7. Applied Algebraic Geometric Context

The algebraic degree of an optimization problem is a well studied topic in applied alge-
braic geometry. It appears in numerous fields including statistics [5, 13, 25], semidefinite
programming [12, 23, 26], computer vision [14, 21], physics [7, 32], and polynomial opti-
mization [22]. A recent useful machine learning application of optimizing linear functions
on varieties appears in Wasserstein optimization [6] and, more generally, in computing
the distance to a variety with respect to any polyhedral norm [6, Equation 3.2]. In
many of these applications, the computational results rely on the notion of genericity
and counting intersection points. In this section, we make use of Theorem 1.4 to bring
our results into this realm, and to provide a bijection between critical points of a linear
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objective function on X restricted to a linear space with a set of points in the affine
conormal variety.

We fix an affine variety X in Cn. Recall that T ∗Cn ≃ Cn
x ×Cn

u, where x and u denote
the coordinates of vector and covector components of T ∗Cn. The conormal variety
T ∗
XCn inside of Cn

x × Cn
u is of dimension n. Let L be an affine subspace of codimension

i. Throughout this section, for u = (u1, . . . , un) in Cn
u, we define the linear function

hu : Cn → C, (x1, . . . , xn) 7→ u1x1 + · · ·unxn. We let L⊥
u ⊂ Cn

u denote the affine
subspace orthogonal to L containing u. Then L× L⊥

u ⊂ Cn
x × Cn

u is n-dimensional.

Proposition 7.1. Let u be a generic point in Cn
u and L ⊂ Cn

x be a generic affine subspace
of codimension i. Then, p is a critical point of hu restricted to (X ∩ L)reg if and only
if there exists a unique y ∈ Cn such that (p,y) ∈ T ∗

XCn ∩ (L × L⊥
u ). In particular, the

number of points in T ∗
XCn ∩ (L× L⊥

u ) equals si(X).

Proof. Denote by Wu the set of critical points of hu on (X ∩L)reg. For each p ∈ Wu, we
know u is in the row span of the Jacobian of generators of the ideal of X ∩ L evaluated
at p because p is a critical point of the linear function hu restricted to (X ∩ L)reg. In
other words, there exist y ∈ Cn and z ∈ Cn such that u = z+ y with

(1) z is in the row span of the Jacobian of generators of the ideal of L,
(2) y in the row span of the Jacobian of generators of the ideal of X evaluated at p.

Recall L⊥
u is the orthogonal complement of L translated to pass through the point u.

Therefore y ∈ L⊥
u . So for p ∈ Wu, we have (p,y) ∈ T ∗

XCn ∩ (L × L⊥
u ). Uniqueness

follows from Theorem 1.4. For the other implication, first notice that the genericity of
L and u implies that the intersection T ∗

XCn ∩ (L × L⊥
u ) lies over Xreg. Moreover, since

L is generic, the sectional LO degree si(X) is the number of critical points of hu on
(X ∩ L)reg, hence the last assertion follows. □

Corollary 7.2. For u and L as in Proposition 7.1, there are bi(X) points of intersection
in T ∗

XCn ∩ (L× L⊥
u ).

Proof. Let M be a generic affine linear space of codimension n−i. Then T ∗
XCn∩(L×M)

consists of bi points of intersection by definition of LO bidegree. Since L is generic and
L⊥
u is a generic translate, we have L × L⊥

u is a generic translate and T ∗
XCn ∩ (L × L⊥

u )
consists of finitely many points (by Bertini’s theorem). Since L⊥

u is of codimension n− i,
the number of points in T ∗

XCn ∩ (L × L⊥
u ) is at most bi. Thus, it suffices to show the

cardinality of T ∗
XCn ∩ (L × L⊥

u ) is at least bi. This follows from Proposition 7.1 and
Theorem 1.4. □

Remark 7.3. Corollary 7.2 is in stark contrast to the maximum likelihood degree
case [20] where the ML bidegree bi is usually a strict upper bound on the ML sectional
degree si.

Example 7.4 (Illustrative). LetX be the sphere in C3 defined by x2
1+x2

2+x2
3 = 100. The

LO bidegrees and sectional LO-degrees of X are (b0, b1, b2) = (s0, s1, s2) = (2, 2, 2). With
this setup, our interest is in b1(X) and s1(X). We let u = (10, 5, 17) and L = V(x3 − 6)
so that L⊥

u = V(y1− 10, y2− 5). Then, T ∗
XCn ∩ (L×L⊥

u ) has b1 = 2 points. To compute
s1(X), we can find the set of two critical points of hu restricted to (X ∩ L)reg to be

(23) {(2α, α, 6) ∈ C3 : 5α2 = 64}.
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From (23), we can recover T ∗
XCn ∩ (L×L⊥

u ) by following the proof in Proposition 7.1.
We have the Jacobian of {x2

1 + x2
2 + x2

3 − 100, x3 − 6} evaluated at p = (2α, α, 6) is[
4α 2α 12
0 0 1

]
.

We see how u is a linear combinators of the rows of the evaluated Jacobian:

u = (10, 5, 17) =
10 · 5α
4 · 64

· (4α, 2α, 12) + (−75

32
α + 17) · (0, 0, 1).

We take y = (10, 5, 75
32
α) and so y − u = (0, 0, 75

32
α − 17) is in the row span of (0, 0, 1).

Thus,

T ∗
XCn ∩ (L× L⊥

u ) =

{(
2α, α, 6, 10, 5,

75

32
α

)
∈ C3 × C3 : 5α2 = 64

}
.

Remark 7.5. In Example 7.4, we chose L to be a general coordinate hyperplane for
illustrative purposes. This is not sufficiently generic for every example. For instance, if
we let f = 1 + x1 + x2

2 + x3
3 instead, then the LO bidegrees of V (f) are the sequence

(2, 4, 3). However, T ∗
XCn ∩ (L× L⊥

u ) has only one point: (−3473/16, 1/4, 6, 10, 5, 1080),
and so L× L⊥

u does not intersect the affine conormal variety at b1 points.
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[28] J. Schürmann, M. Tibăr. Index formula for MacPherson cycles of affine algebraic varieties. Tohoku
Math. J. (2), 62(1):29–44, 2010. 2
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