L²-Betti numbers of hypersurface complements

Laurentiu Maxim

University of Wisconsin-Madison

- Let *M* be a finite CW complex.
- Let $(C_*(M), \partial)$ be the cellular chain complex of M.
- $c_i(M) := \dim_{\mathbb{C}} C_i(M) \otimes \mathbb{C} =$ number of *i*-cells of *M*.
- The *i*-th Betti number of *M* is:

$$b_i(M) = \dim_{\mathbb{C}} H_i(M; \mathbb{C}).$$

• Exercise:

$$\chi(M) := \sum_{i} (-1)^{i} c_{i}(M) \stackrel{!}{=} \sum_{i} (-1)^{i} b_{i}(M).$$

- Let Γ be a countable group.
- Let M_Γ → M be the regular cover of M defined by ker(α : π₁(M) → Γ), with α an epimorphism.
- e.g., if $\alpha = id_{\pi_1(M)}$, then M_{Γ} is the universal cover.
- Gromov: "Higher versions" of topological invariants of M should take π_1 into account.
- Question: How should one define "higher Betti numbers"?
- First (wrong) guess: Consider H_i(M_Γ; C) as C[Γ]-modules, and use dimension theory of such modules.
- But C[Γ] is not Noetherian, so dimension theory does not work.
- Fix: include $\mathbb{C}[\Gamma]$ into a larger ring that has a better dimension theory.

- $\ell^2(\Gamma) := \{f : \Gamma \to \mathbb{C} \mid \sum_{g \in \Gamma} |f(g)|^2 < \infty\}$ Hilbert space.
- Γ acts on $\ell^2(\Gamma)$ by $(g \cdot f)(h) = f(hg)$.
- injective map C[Γ] → B(ℓ²(Γ))=bounded operators on ℓ²(Γ).
- view $\mathbb{C}[\Gamma]$ as a subset of $\mathcal{B}(\ell^2(\Gamma))$.
- **Def:** von Neumann algebra $\mathcal{N}(\Gamma)$ of Γ is the closure of $\mathbb{C}[\Gamma] \subset \mathcal{B}(\ell^2(\Gamma))$ w.r.t. pointwise convergence in $\mathcal{B}(\ell^2(\Gamma))$.
- **Example:** If Γ is finite, then $\mathbb{C}[\Gamma] = \ell^2(\Gamma) = \mathcal{N}(\Gamma)$.
- any $\mathcal{N}(\Gamma)$ -module \mathcal{M} has a dimension

$$\dim_{\mathcal{N}(\Gamma)}(\mathcal{M}) \in \mathbb{R}_{\geq 0} \cup \{\infty\}$$

•
$$\mathcal{M} = 0 \iff \dim_{\mathcal{N}(\Gamma)}(\mathcal{M}) = 0.$$

- M CW-complex, $\alpha : \pi_1(M) \to \Gamma$ homomorphism.
- M_{Γ} := regular cover of M defined by α .

Definition

To the pair (M, α) associate L²-Betti numbers:

$$b_i^{(2)}(M, lpha) := \dim_{\mathcal{N}(\Gamma)} H_i\left(C_*(M_{\Gamma}) \otimes_{\mathbb{Z}[\Gamma]} \mathcal{N}(\Gamma)\right) \in [0, \infty],$$

where $C_*(M_{\Gamma})$ is the cellular (or singular) chain complex of M_{Γ} , with right Γ -action by deck transformations.

Properties of L^2 -Betti numbers

• can (and will) assume that α is *onto*, since if $Im(\alpha) \subset \widetilde{\Gamma} \subset \Gamma$:

$$b_i^{(2)}(M, \alpha: \pi_1(M) \to \widetilde{\Gamma}) = b_i^{(2)}(M, \alpha: \pi_1(M) \to \Gamma)$$

• Atiyah: if *M* is a *finite* CW-complex,

$$\sum_{i} (-1)^{i} b_{i}^{(2)}(M, \alpha) = \chi(M) = \sum_{i} (-1)^{i} b_{i}(M)$$

• L^2 -Betti numbers tend to vanish more often than usual Betti numbers (e.g., $b_i^{(2)}$ are multiplicative for finite coverings).

• L^2 -Betti numbers provide obstructions to fibering over S^1 , i.e.,

Lemma

Let M be a CW complex of finite type, and $f: M \to S^1$ a fibration with connected fiber F so that the epimorphism $f_*: \pi_1(M) \to \pi_1(S^1) = \mathbb{Z}$ factors as $\pi_1(M) \xrightarrow{\alpha} \Gamma \xrightarrow{\beta} \mathbb{Z}$, with α and β epimorphisms. Then

$$b_i^{(2)}(M,\alpha) = 0$$
, for all $i \ge 0$.

Conjecture (Atiyah)

The L²-Betti numbers $b_i^{(2)}(M, \alpha : \pi_1(M) \to \Gamma)$ of a finite CW-complex are rational. Moreover, if Γ is torsion-free, then $b_i^{(2)}(M, \alpha)$ are integers.

- known to be false for groups which are not finitely presented.
- proved for many groups (Linnell, Schick, etc.)
- Atiyah's conjecture ⇒ Kaplansky's conjecture: if Γ is torsion-free, then C[Γ] has no non-trivial zero-divisors.

Conjecture (Hopf)

Let M be a closed manifold of real dimension 2n, with negative sectional curvature. Then $(-1)^n \cdot \chi(M) > 0$.

Theorem

If M^{2n} is a closed manifold with $-1 \leq \sec(M) < -(1-\frac{1}{n})^2$, then $(-1)^n \cdot \chi(M) > 0$.

Conjecture (Singer)

Let M^{2n} be a closed aspherical manifold. Then

$$b_i^{(2)}(M, id) = \begin{cases} 0, & \text{if } i \neq n, \\ (-1)^n \chi(M), & \text{if } i = n, \end{cases}$$

In particular, $(-1)^n \chi(M) \ge 0$.

Theorem (Jost-Zuo)

Let M be a compact Kähler manifold of complex dimension n, and non-positive sectional curvature. Then:

$$b_i^{(2)}(M, id) = \begin{cases} 0, & \text{for } i \neq n, \\ (-1)^n \chi(M), & \text{for } i = n, \end{cases}$$

Remark

If M carries a Riemannian metric with non-positive sectional curvature, then M is aspherical.

Affine hypersurface complements

• $f : \mathbb{C}^n \to \mathbb{C}$ square-free polynomial $(n \ge 2)$.

•
$$X := f^{-1}(0) \subset \mathbb{C}^n$$

•
$$M := \mathbb{C}^n \setminus X$$
.

• $\phi: \pi_1(M) \to \mathbb{Z}$ be the total linking number homomorphism:

$$\gamma \mapsto lk \# (\gamma, X).$$

- \widetilde{M} = infinite cyclic cover of M defined by ker(ϕ).
- $\alpha : \pi_1(M) \to \Gamma$ is called admissible if ϕ factors through α , i.e.,

$$\phi: \pi_1(M) \stackrel{\alpha}{\to} \Gamma \stackrel{\widetilde{\phi}}{\to} \mathbb{Z}$$

• $\widetilde{\Gamma} := \ker(\widetilde{\phi})$

- get induced epimorphism $\widetilde{\alpha} : \pi_1(\widetilde{M}) \to \widetilde{\Gamma}$.
- Look at $b_i^{(2)}(M, \alpha)$ and $b_i^{(2)}(\widetilde{M}, \widetilde{\alpha})$.

Remark

 M := Cⁿ \ X is a n-dim. affine variety, so it has the homotopy type of a finite CW-complex of real dim. n. Hence

$$b_i^{(2)}(M, lpha) = 0$$
, $i > n$.

- *M* is an infinite CW complex, so its L²-Betti numbers may be infinite.
- Theorem (M., 05) If X is "well-behaved at infinity", then b_i(*M̃*) are finite for all 0 ≤ i ≤ n − 1.
- Here I give a "noncommutative" generalization of this fact.

Proposition

Let X be an affine hypersurface defined by a weighted homogeneous polynomial $f : \mathbb{C}^n \to \mathbb{C}$, with $M := \mathbb{C}^n \setminus X$. Then, for any admissible epimorphism $\alpha : \pi_1(M) \to \Gamma$, we have:

- All L^2 -Betti numbers $b_i^{(2)}(M, \alpha)$ of the complement M vanish.
- All L²-Betti numbers b_i⁽²⁾(M̃, α̃) of the infinite cyclic cover M̃ are finite, and b_i⁽²⁾(M̃, α̃) = 0 for i ≥ n.

Remark

 $\chi(M)=0.$

Proof.

• f is w.h., so there exist a global Milnor fibration

$$F = \{f = 1\} \hookrightarrow M = \mathbb{C}^n \setminus X \xrightarrow{f} \mathbb{C}^*.$$

- Milnor: F is connected and has the homotopy type of a finite CW-complex of dim. n − 1.
- *M* fibers over $S^1 \stackrel{Lemma}{\Longrightarrow} b_i^{(2)}(M, \alpha) = 0$, all *i*.
- *M̃* ≃ *F*, hence *M̃* has the homotopy type of a *finite* CW complex of dimension *n* − 1.
- So $b_i^{(2)}(\widetilde{M},\widetilde{\alpha})$ are finite, and $b_i^{(2)}(\widetilde{M},\widetilde{\alpha}) = 0$ for $i \ge n$.

Theorem (M.)

Assume that the affine hypersurface $X \subset \mathbb{C}^n$ is in general position at infinity, i.e., the hyperplane at infinity $H \subset \mathbb{CP}^n$ is transversal in the stratified sense to the projective completion \overline{X} . Then, for any admissible epimorphism $\alpha : \pi_1(M) \to \Gamma$, we have:

- The L²−Betti numbers b_i⁽²⁾(M̃, α̃) of the infinite cyclic cover are finite for all 0 ≤ i ≤ n − 1.
- The L^2 -Betti numbers of the complement M are computed by

$$b_i^{(2)}(M,\alpha) = \begin{cases} 0, & \text{for } i \neq n, \\ (-1)^n \chi(M), & \text{for } i = n. \end{cases}$$

In particular,

$$(-1)^n \cdot \chi(M) \ge 0.$$

Remark

- For plane curves (n = 2), the result was proved by Friedl-Leidy-M. (2009).
- For hyperplane arrangements, a similar result holds for $b_i^{(2)}(M, id)$, by Davis-Januskiewitz-Leary (2007).

Remark

Our result looks similar to Jost-Zuo's theorem, but it is independent of any metric considerations. Is there any relation between the two vanishing results? (Note that $M = \mathbb{C}^n \setminus X$ is not aspherical in general.)

Idea of proof: reduce to the study of the "link at infinity"

• link at infinity: $X^{\infty} := X \cap S^{\infty}$, for S^{∞} a large sphere in \mathbb{C}^{n} .

•
$$M^{\infty} := S^{\infty} \setminus X^{\infty} \subset M.$$

- Zariski-Lefschetz thm: $\pi_i(M, M^{\infty}) = 0$, for $i \leq n 1$.
- so $\alpha^{\infty} : \pi_1(M^{\infty}) \to \pi_1(M) \stackrel{\alpha}{\to} \Gamma$ is onto.
- \widetilde{M}^{∞} := infinite cyclic cover of M^{∞} defined by α^{∞} .
- Lefschetz hyperplane thm: for all $i \le n-1$ we have:

$$b_i^{(2)}(M, \alpha) \leq b_i^{(2)}(M^\infty; \alpha^\infty), \quad b_i^{(2)}(\widetilde{M}, \widetilde{\alpha}) \leq b_i^{(2)}(\widetilde{M}^\infty; \widetilde{\alpha}^\infty)$$

 By general position at infinity, M[∞] is h.e. to the total space of a fibration over S¹ with connected fiber F. So, by Lemma: b_i⁽²⁾(M[∞]; α[∞]) = 0, all i.

• F is a finite dim CW complex and $\widetilde{M}^{\infty} \simeq F$. So $b_i^{(2)}(\widetilde{M}^{\infty}; \widetilde{\alpha}^{\infty}) < \infty$, all i.

Special case: plane curve complements

Theorem (Friedl-Leidy-M., 2009)

If $M = \mathbb{C}^2 \setminus C$ for some curve C in general position at infinity, and $\alpha : \pi_1(X) \to \Gamma$ is admissible, then

$$b_i^{(2)}(M,\alpha) = \begin{cases} 0, & i \neq 2, \\ \chi(M), & i = 2. \end{cases}$$

Corollary

 $b_i^{(2)}(M, \alpha)$ $(i \ge 0)$ depends only on the degree of C and on the local type of singularities, and is independent of α and of the position of singularities of C. Indeed,

$$b_2^{(2)}(M, \alpha) = (d-1)^2 - \sum_{x \in \operatorname{Sing}(\mathcal{C})} \mu(\mathcal{C}, x),$$

where $\mu(\mathcal{C}, x)$ is the Milnor number of the germ near x.

Remark

 $b_1^{(2)}(\widetilde{M},\widetilde{lpha})$ depends in general on the position of singularities of \mathcal{C} .

Example (Leidy-M.)

Let $\Gamma = \Gamma_n := \pi_1/\pi_1^{(n)}$ and $\alpha = \alpha_n : \pi_1 \to \Gamma_n$. Let $\overline{C} \subset \mathbb{CP}^2$ be a sextic with six cusps, L a generic line, and $M = \mathbb{CP}^2 \setminus (\overline{C} \cup L)$.

If the six cusps are on a conic, then

$$b_1^{(2)}(\widetilde{M},\widetilde{\alpha_n}) = \begin{cases} 1, & n > 0\\ 2, & n = 0. \end{cases}$$

if the six cusps are not on a conic, then $b_1^{(2)}(\widetilde{M}, \widetilde{\alpha_n}) = 0$, for all n ≥ 0.

THANK YOU !!!