
ALEXANDER INVARIANTS OF HYPERSURFACE COMPLEMENTS

LAURENTIU MAXIM

Abstract. These are notes I wrote for a series of lectures I gave at Tokyo University of Sciences and

The University of Tokyo, Tokyo, Japan, May 2006.

1. Overview

• By analogy with knot theory, define global Alexander-type invariants for complex hypersurface com-
plements.
• These were studied before in ’simple’ cases: hypersurfaces with only isolated singularities (e.g. plane
curves).
• Goal: study hypersurfaces with non-isolated singularities
• Main result: global Alexander invariants depend only on the local information encoded by link pairs
of singular strata

2. Infinite cyclic Alexander invariants

• V = {f = f1 · · · fs = 0} ⊂ Pn+1 reduced, degree d hypersurface; Vi = {fi = 0}; di = deg(Vi)
Fix a hyperplane H, ’the hyperplane at infinity’; Set U := Pn+1 − (V ∪H), the ’complement’.
• H1(U) ∼= Zs, generated by meridian loops γi about the non-singular part of each irreducible component
Vi of V ; If γ∞ is the meridian loop about H, then in H1(U) there is a relation:

s∑
i=1

diγi + γ∞ = 0

• let Uc be the infinite cyclic cover of U corresponding to the kernel of the total linking #:

LK : π1(U) → Z , α 7→ lk(α, V ∪ −dH)

i.e. LK(γi) = 1 and LK(γ∞) = −d.
• Under the deck group action, Hi(Uc; Q) become Γ := Q[t, t−1]-modules.
• {Hi(Uc; Q)}i∈Z are called the homological Alexander modules of the hypersurface comple-
ment;
• Γ is PID, so torsion Γ-modules have well-defined associated polynomials/orders;
• If Hi(Uc; Q) is torsion Γ-module, let ∆i(t) be the associated polynomial;
• U is affine, hence h.e. to a finite CW-complex of dimension n + 1 ⇒ Hi(Uc; Q) is of finite type over Γ
(not over Q). Moreover,

(2.1)

{
Hi(Uc; Q) ∼= 0, i > n + 1
Hn+1(Uc; Q) is free over Γ

GOAL: Study the Γ-modules Hi(Uc; Q), for i < n + 1.

From now on, we assume that V is transversal in the stratified sense to the hyperplane H at infinity.
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2.1. Isolated singularities. • If V is smooth, then:

H̃i(Uc; Z) ∼= 0 for i < n + 1

This follows from the general fact proved by Libgober: if V has no codim 1 singularities, then:

(2.2)

{
π1(U) = Z
πi(U) = 0, for 1 < i ≤ n− k − 1

where k = dimC(Sing(V)).
• If V has only isolated singularities, then (Libgober):
(a)

H̃i(Uc; Z) ∼= 0 for i < n

Hn(Uc; Q) is a torsion Γ−module

(b) Divisibility Theorem: If ∆n(t) := orderHn(Uc; Q), then ∆n(t) divides (up to a power of (t-1))
the product: ∏

x∈Sing(V )

∆x(t)

of the local Alexander polynomials associated to the isolated singularities of V , so ∆n depends on local
type of singularities;
(c) The zeros of ∆n(t) are roots of unity of order d, and Hn(Uc; C) is a semi-simple C[t, t−1]-module.
(d) Hn(Uc; C) has a natural mixed Hodge structure.

Example 2.1. Let C̄ ⊂ P2 is a degree d curve having only nodes and cusps as singular points. If
d 6= 0( 6), then ∆C(t) = 1 (note that for irreducible curves, we have ∆C(1) = 1).

Example 2.2. If C̄ ⊂ P2 is a (irreducible) sextic having only cusps singularities, and if C = C̄ − L for
L a generic line, then the global Alexander polynomial ∆C(t) of the curve C is either 1 or a power of
t2− t+1. How to distinguish between them? If C̄ has only 6 cusps singularities then (Zariski-Libgober):

(1) if C̄ is in ’special position’, i.e. the 6 cusps are on a conic, then ∆C(t) = t2 − t + 1 (and
π1(C2 − C) = B3).

(2) if C̄ is in general position, i.e. the cusps are not on a conic, then ∆C(t) = 1 (and π1(C2 − C) is
abelian).

2.2. Non-isolated singularities. Want to extend the previous results to non-isolated singularities case!
• Let V ⊂ Pn+1 be reduced, degree d singular hypersurface. Assume that V is in general position at
infinity, i.e. H is generic.
• Note. In general, for non-generic H, and V with more general singularities, the Alexander modules
Hi(Uc; Q), i ≤ n, are not torsion Γ-modules. There is a formula (Dimca, Nemethi) for their Γ-rank in
terms of vanishing cycles at bifurcation points of polynomial defining V −H in Cn+1.

Theorem 2.3. (M’05) For i ≤ n, Hi(Uc; Q) is a finitely generated torsion Γ-module (and a finite
dimensional Q-vector space).

Definition 2.4. Its order, ∆i(t), is the characteristic polynomial of the generating covering transfor-
mation, and is called the ith global Alexander polynomial of the hypersurface V .

Corollary 2.5. rankΓHn+1(Uc; Q) = (−1)n+1χ(U).

Theorem 2.6. (M’05) The zeros of ∆i(t), i ≤ n, are roots of unity of order d.

Thm 2.3, Thm 2.6 are corollaries of the following application of Lefschetz hyperplane section theorem:
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Theorem 2.7. (M’05) Let S∞ be a sphere of sufficiently large radius in Cn+1 = CPn+1 −H. Let Uc
∞

be the infinite cyclic cover of U∞ := S∞ − (V ∩ S∞) corresponding to the linking # with V ∩ S∞. Then
for i < n, there is an isomorphism of Γ-modules Hi(Uc; Q) ∼= Hi(Uc

∞; Q), and Hn(Uc; Q) is a quotient
of Hn(Uc

∞; Q).

Proof. (Libgober)
First note that S∞ \ V is homotopy equivalent to T (H) \ T (H) ∩ (V ∪H) where T (H) is the tubular
neighbourhood of H for which S∞ is the boundary. If L is a generic hyperplane in CPn+1, which we can
assume belongs to T (H), then by Lefschetz theorem we obtain that the composition:

πi(L \ L ∩ (V ∪H)) → πi(T (H) \ T (H) ∩ (V ∪H)) → πi(CPn+1 \ (V ∪H))

is isomorphism for i < n and surjective for i = n. That is, πi(U ,U∞) ∼= 0 for all i ≤ n. Therefore,
the same is true for any covering, in particular for the infinite cyclic coverings: πi(Uc,Uc

∞) ∼= 0 for all
i ≤ n. Hence, by Hurewicz Theorem, the vanishing also holds for the relative homology groups, i.e., the
maps of groups Hi(Uc

∞) → Hi(Uc) are isomorphism for i < n and onto for i = n. Since these maps are
induced by an embedding, the above are morphisms of modules over the ring of Laurent polynomials in
the variable t.

�

Definition 2.8. {Hi(Uc
∞; Q)}i are called the Alexander modules at infinity.

Proof. By Thm 2.7, STS Thm 2.3 & 2.6 for Hi(Uc
∞; Q): Let V ∩H = {g = 0} ⊂ H ∼= Pn. Then

S∞−(V ∩S∞) ' Cn+1−affine cone(V ∩H) = total space of Milnor fibration F ↪→ Cn+1−{g = 0} g→ C∗

Moreover: Uc
∞ ' F and the generator of the deck group corresponds to the monodromy of the Mil-

nor fibration. Thus Hi(Uc
∞; Q) ∼= Hi(F, Q) as Γ-modules, so for i ≤ n they are torsion, semi-simple,

annihilated by td − 1. �

Remark 2.9. Baby case: Projective hypersurface arrangements in Pn

If V is the projective cone on a degree d reduced hypersurface Y = {f = 0} ⊂ CPn, then there is a Γ-
module isomorphism: Hi(Uc; Q) ∼= Hi(F ; Q), where F = f−1(1) is the fiber of the global Milnor fibration

U = Cn+1 − f−1(0)
f→ C∗ associated to the homogeneous polynomial f , and the module structure on

Hi(F ; Q) is induced by the monodromy action. Hence zeros of the global Alexander polynomials of
V coincide with the eigenvalues of the monodromy operators acting on the homology of F . Since the
monodromy homeomorphism has finite order d, all these eigenvalues are roots of unity of order d. So a
polynomial in general position at infinity behaves much like a homogeneous polynomial.

Theorem 2.10. (Dimca-Libgober ’05) For i ≤ n, there is a mixed Hodge structure on Hi(Uc; Q).

2.2.1. Divisibility. Let S be a Whitney stratification of V , i.e. a decomposition of V into disjoint
connected non-singular subvarieties {Sα}, called strata, s.t. V is uniformly singular along each stratum.
This yields a Whitney stratification of the pair (Pn+1, V ), with S the set of singular strata. Fix S ∈ S
a s-dim stratum of (Pn+1, V ). A point p ∈ S has a distinguished neighborhood in (Pn+1, V ), which is
homeo in a stratum-preserving way to

Cs × c◦(S2n−2s+1(p), L(p))

The link pair (S2n−2s+1(p), L(p)) has constant topological type along S, denoted (S2n−2s+1, L). This is
a singular algebraic link, and has an associated local Milnor fibration:

F s ↪→ S2n−2s+1 − L → S1

with fibre F s and monodromy hs : F s → F s. Let ∆s
r(t) = det(tI − (hs)∗ : Hr(F s) → Hr(F s)) be the

r-th (local) Alexander polynomial associated to S.
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Theorem 2.11. (M’05) Fix an arbitrary irreducible component of V , say V1, and fix i ≤ n. Then
the zeros of ∆i(t) are among the zeros of polynomials ∆s

r(t), associated to strata S ⊂ V1, s.t. n − i ≤
s = dimS ≤ n, and r is in the range 2n − 2s − i ≤ r ≤ n − s. Moreover, if V has no codimension 1
singularities and is a rational homology manifold, then ∆i(1) 6= 0.

Remark 2.12. 0-dim strata of V only contribute to ∆n, 1-dim strata contribute to ∆n and ∆n−1 and
so on.

Corollary 2.13. (Vanishing of Alexander polynomials) Let V be a degree d hypersurface in general
position at infinity, which is rationally smooth and has no codimension 1 singularities. Assume that the
local monodromies of link pairs of strata contained in some irreducible component V1 of V have orders
which are relatively prime to d (e.g., the transversal singularities along strata of V1 are Brieskorn-type
singularities, having all exponents relatively prime to d). Then ∆i(t) ∼ 1, for 1 ≤ i ≤ n.

Example 2.14. (One-dimensional singularities) V = {y2z+x3+tx2+v3 = 0} ⊂ P4 = {(x : y : z : t : v)},
H = {t = 0}.

Theorem 2.15. (M’05) If V has only isolated singularities, ∆n(t) divides (up to a power of (t−1)) the
product

∏
p∈V1∩Sing(V ) ∆p(t) of local Alexander polynomials of links of the singular points p of V which

are contained in V1.

Remark 2.16. Thm 2.15 shows the weakness of Alexander polynomial of plane curves: e.g. if C is a
union of 2 curves that intersect transversally, then (Oka): ∆C(t) = (t−1)s−1. To overcome this problem,
study higher-order coverings of the complement.

Remark 2.17. Projective hypersurface arrangements
Apply the divisibility result to the case when V is the cone over a projective hypersurface arrangement
in Pn. Get a similar result for the characteristic polynomials of monodromy operators of the Milnor fiber
of the arrangement.

Corollary 2.18. (Triviality of monodromy) If λ 6= 1 is a d-th root of unity such that λ is not an
eigenvalue of any of the local monodromies corresponding to link pairs of singular strata of Y1 in a
stratification of the pair (Pn, Y ), then λ is not an eigenvalue of the monodromy operators acting on
Hq(F ) for q ≤ n− 1.

Remark 2.19. Let Pq(t) be the characteristic polynomial of the monodromy operator hq : Hq(F ) →
Hq(F ). The polynomials Pi(t), i = 0, · · · , n, are related by the formula:

n∏
q=0

Pq(t)(−1)q+1
= (1− td)−χ(F )/d

where χ(F ) is the Euler characteristic of the Milnor fiber. Therefore, it suffices to compute only the
polynomials P0(t), · · · , Pn−1(t) and the Euler characteristic of F .

Example 2.20. If
⋃s

i=1 Yi is a normal crossing divisor at any point x ∈ Y1, the monodromy action on
Hq(F ; Q) is trivial for q ≤ n− 1.

2.2.2. On the proof of Divisibility Thm: Intersection Alexander modules. A Whitney stratification S of V
induces stratifications of pairs (Pn+1, V ) and (Pn+1, V ∪H). Define local system L on U = Pn+1−V ∪H:

(2.3)

{
stalk : Γ = Q[t, t−1]
for α ∈ π1(U), γ ∈ Γ : α× γ = tlk(V ∪−dH,α)γ

• The intersection homology complex:

IC•
p̄ := IC•

p̄ (Pn+1,L)

is defined for any perversity p̄ by Deligne’s axioms.
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Definition 2.21. The modules

IHm̄
i (Pn+1;L) := H−i(Pn+1; IC•

m̄)

are called the intersection Alexander modules of the hypersurface V .

Lemma 2.22. (M’05)

IC•
m̄|V ∪H

∼= 0

Theorem 2.23. (M’05) There is an isomorphism of Γ-modules:

IHm̄
i (Pn+1;L) ∼= Hi(U ;L) ∼= Hi(Uc; Q)

so the intersection Alexander modules are isomorphic to the Alexander modules of the hypersurface
complement.

One can use derived categories, the sheaf-theoretical intersection homology and the functorial language
for the study of the Alexander modules of hypersurface complements.

3. Universal abelian Alexander invariants (joint with Alex Dimca)

• By analogy with the case of links in S3, Hironaka and Libgober defined new topological invariants of
a plane curve complement: the sequence of characteristic varieties.
• The new invariants were mainly used to obtain information about all abelian covers of P2, branched
along a curve.
• They were previously studied in relation with the cohomology support loci of rank 1 local systems
defined on the complement of a hyperplane arrangement or a plane curve.
• Goal: Study universal abelian invariants of complements to arbitrary hypersurfaces.

3.1. Definitions. • Let R be a commutative ring with unit, which is Noetherian and UFD. Let A be a
finitely generated R-module and M a presentation matrix of A given by the sequence

Rm → Rn → A → 0

Definition 3.1. (a) The i-th elementary ideal Ei(A) of A is the ideal in R generated by the (n −
i) × (n − i) minor determinants of M , with the convention that Ei(A) = R if i ≥ n, and Ei(A) = 0 if
n− i > m.
(b) The support Supp(A) of A is the reduced sub-scheme of Spec(R) defined by the order ideal E0(A).
Equivalently, if P ∈ Spec(R) then P ∈ Supp(A) iff AP 6= 0, i.e.,

Supp(A) = {P ∈ Spec(R), P ⊃ Ann(A)}

(c) The i-th characteristic variety Vi(A) of A is the reduced sub-scheme of Spec(R) defined by the
(i-th Fitting ideal) ideal Ei−1(A). Equivalently,

Vi(A) = Supp(R/Ei−1(A)) = Supp(∧iA).

(note: V1(A) = Supp(A)).

Note. Vi(A) are invariants of the R-isomorphism type of A, i.e., independent (up to multiplication by a
unit of R) of all choices.
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3.2. Hypersurface complements. Recall that H1(U) ∼= Zs, freely generated by meridian loops γi

about the non-singular part of each irreducible component Vi of V ;
• Let Uab be the universal abelian cover of U , i.e., given by the kernel of the linking #:

lk : π1(U) → Zs

α 7→ (lk(α, V1 ∪ −d1H), · · · , lk(α, Vs ∪ −dsH)),

i.e., lk(γi) = ei and lk(γ∞) = (−d1, · · · ,−ds).
• The deck group of Uab is Zs.
• Set Γs := C[Zs] ∼= C[t1, t−1

1 , · · · , ts, t
−1
s ]. Then Γs is a regular Noetherian domain.

• Define a local coefficient system L on U , with stalk Γs and action:

π1(U) 3 α 7→
s∏

j=1

(tj)lk(α,Vj∪−djH).

In particular, γj 7→ tj , for j = 1, · · · , s.
• let L̄ be the local system obtained from L by composing all module structures with the natural
involution of Γs, sending tj to t−1

j , for j = 1, · · · , s.

Definition 3.2. The universal homology k-th Alexander module of U is Ak(U) := Hk(U ,L), i.e.,
the group Hk(Uab; C) regarded as a Γs-module via the action of the deck group.
The universal cohomology k-th Alexander module of U is defined as Ak(U) := Hk(U ; L̄).

• Note. If C∗ is the cellular complex of Uab, as Z[Zs]-modules, and if C0
∗ := C∗ ⊗ C, then:

Ak(U) = Hk(C0
∗), Ak(U) = Hk(HomΓs

(C0
∗ ,Γs))

• Facts:

• the modules Ak(U) and resp. Ak(U) are trivial for k > n + 1.
• An+1(U) is a torsion-free Γs-module.
• Ak(U), Ak(U) are Γs-modules of finite type, so have well-defined characteristic varieties, which

are sub-varieties of the s-dimensional torus Ts = (C∗)s = the set of closed points in Spec(Γs).

Notation: For λ = (λ1, · · · , λs) ∈ Ts, let mλ the corresponding maximal ideal in Γs, and Cλ :=
Γs/mλΓs. Note: Cλ

∼= C and the canonical projection ρλ : Γs → Γs/mλΓs = Cλ corresponds to
replacing each tj by λj .
If A is a Γs-module, denote by Aλ the localization of A at mλ. For A = Γs, use Γλ.
• If A is of finite type, then A = 0 iff Aλ = 0 for all λ ∈ Ts. Hence

Supp(A) = {λ ∈ Ts;Aλ 6= 0}

Note: A0(U) = C1, where 1 = (1, · · · , 1), so Supp(A0(U)) = {1}.
• Let Vi,k(U) the i-th characteristic variety of Ak(U), and V i,k(U) that of Ak(U). For each universal
Alexander module, its characteristic varieties form a decreasing filtration of the character torus Ts.
Note. All definitions work also in the local setting, i.e., when U is a complement of a hypersurface germ
in a small ball.

Example 3.3. (a) The support of the universal homological Alexander module of a link complement in
S3 is the set of zeros of the multivariable Alexander polynomial.
(b) In the case of irreducible hypersurfaces, the infinite cyclic and universal abelian cover coincide, so
the support of an Alexander module is the zero set of the associated one-variable polynomial.

3.3. Study of Supports.
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3.3.1. Homology vs. cohomology invariants.

(UCSS) : Extq
Γs

(Ap(U),Γs) ⇒ Ap+q(U)

Relations b/w the corresponding characteristic varieties are obtained by localizing at any λ ∈ Ts:

(LUCSS) : Extq
Γλ

(Ap(U)λ,Γλ) ⇒ Ap+q(U)λ.

Notation: For a fixed λ ∈ Ts, let:

k(λ) = min{m ∈ N;Am(U)λ 6= 0}

Proposition 3.4. For any λ ∈ Ts, Ak(U)λ = 0 for k < k(λ), and

Ak(λ)(U)λ = Hom(Ak(λ)(U)λ,Γλ).

Example 3.5. (i) Let U be the complement of a NC divisor germ in a small ball. Then Uab is contractible,
so A0(U) = C1 and Ak(U) = 0 for k > 0. Moreover, for any λ 6= 1, Ak(U)λ = 0, for any k.
(ii) Let (Y, 0) be an INNC singularity germ at the origin of Cn+1, and U be its complement in a small
open ball centered at the origin in Cn+1. Assume that n ≥ 2.
Then Uab is (n− 1)-connected, being a bouquet of n-spheres (Dimca-Libgober). Hence A0(U) = C1 and
Ak(U) = 0 for k 6= n. Moreover, for λ 6= 1, get Ak(U)λ = 0 for k < n.

3.3.2. Characterisctic varieties vs. (Co)homology support loci of rank 1 local systems. Let λ = (λ1, · · · , λs) ∈
Ts, and Lλ the local system on U with stalk C = Cλ and action:

π1(U) 3 α 7→
s∏

j=1

(λj)lk(α,Vj∪−djH)

Definition 3.6. Define topological characteristic varieties by

V t
i,k(U) = {λ ∈ Ts; dimCHk(U ,Lλ) > i}

and similarly for cohomology.

• Note that
Hk(U ,Lλ) = Hk(C0

∗ ⊗Γs
Cλ).

So by Künneth spectral sequence get:

E2
p,q = TorΓs

p (Aq(U), Cλ) ⇒ Hp+q(U ,Lλ).

• By localization and base change for Tor under Γs → Γλ, get:

E2
p,q = TorΓλ

p (Aq(U)λ, Cλ) ⇒ Hp+q(U ,Lλ).

Proposition 3.7. For any point λ ∈ Ts:
(1) min{m ∈ N, Hm(U ,Lλ) 6= 0} = min{m ∈ N, λ ∈ Supp(Am(U))},

i.e., min{m ∈ N, λ ∈ V t
0,m(U)} = k(λ).

(2) dimHk(λ)(U ,Lλ) = max{m ∈ N, λ ∈ Vm,k(λ)(U)}.

• There is also a spectral sequence

Ep,q
2 = Extq

Γλ
(Ap(U)λ, Cλ) ⇒ Hp+q(U ,Lλ−1)

Thus: Hm(U ,Lλ−1) = 0 for m < k(λ), and

Hk(λ)(U ,Lλ)∗ = Hk(λ)(U ,Lλ−1)
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Example 3.8. (cont. of Example 3.5)
(1) Let U be the complement of a NC divisor germ in a small ball. Then for all non-trivial characters
λ ∈ Ts and all k ∈ Z we have that: Hk(U ;Lλ) = Hk(λ)(U ,Lλ−1) = 0.
(2) Let (Y, 0) be an INNC singularity germ at the origin of Cn+1, and U be its complement in a small
open ball centered at the origin in Cn+1. Assume that n ≥ 2. Then for all non-trivial characters λ ∈ Ts

and all k < n we have that: Hk(U ;Lλ) = Hk(λ)(U ,Lλ−1) = 0.

3.4. Local versus Global. Assume that V is transversal to the hyperplane at infinity H.

Theorem 3.9. For k ≤ n,
Supp(Ak(U)) ⊂ {td1

1 · · · tds
s − 1 = 0},

thus has positive codimension in Ts.

This generalizes a result of Libgober on supports of plane affine curves in general position at infinity,
and is the analogue of the torsion property from the infinite cyclic case.

• For x ∈ V , let Ux = U ∩Bx, for Bx a small open ball at x in Pn+1. Set Lx = L|Ux
. Then:

Theorem 3.10. Let λ = (λ1, · · · , λs) ∈ Ts and ε ∈ Z≥0. Fix an irreducible component V1 of V , and
assume that λ /∈ Supp(Hq(Ux, L̄x)) for all q < n + 1 − ε and all points x ∈ V1. Then λ /∈ Supp(Aq(U))
for all q < n + 1− ε.

The proofs of Theorems 3.9 and 3.10 rely in an essential way on the theory of perverse sheaves and
Artin-type vanishing results.
• The tranversality at infinity, together with (UCSS) imply that H∗(Ux, L̄x) can be expressed only in
terms of the local universal homology Alexander modules A∗(U ′x), where U ′ := Pn+1 − V and U ′x :=
U ′ ∩Bx. The latter depend only on the singularity germ (V, x).

Corollary 3.11. NC & INNC
(ε = 0) If V is a NC divisor at any point x ∈ V1, then: Supp(Ak(U)) ⊂ {1} for any k < n + 1.
(ε = 1) If V is an INNC divisor at any point x ∈ V1, then Supp(Ak(U)) ⊂ {1} for any k < n.

3.5. Jumping loci of rank-one local systems. For λ = (λ1, · · · , λs) ∈ Ts, let Lλ be the corresponding
local system on U . Let αj ∈ C be s.t. exp(−2πiαj) = λj for j = 1, ..., s. {αj} are called the residues of
the connection ∇α defined below. It follows that Lλ = Ker(∇α), where:

∇α : OU → Ω1
U , ∇α(u) = du + u · ωα,

for

ωα =
∑

j=1,s

αj
dgj

gj

and gj(x1, · · · , xn+1) = fj(1, x1, · · · , xn+1).
Alternatively,

ωα =
∑

j=0,s

αj
dfj

fj

where α0 = −
∑

j=1,s dj · αj and f0 = x0.
It follows that the complex (Ω∗

U ,∇α) is a soft resolution of Lλ, therefore we have:

Hm(U ,Lλ) = Hm(Γ(U ,Ω∗
U ),∇α).

This result is not useful for explicit calculations, as the groups Γ(U ,Ω∗
U ) are too large. Instead, we use

logarithmic connections.
• Let (Z,D) π→ (Pn+1, V ∪H) be an embedded resolution of singularities for the reduced divisor V ∪H.
Set ∇̃α = π∗∇α, and let ρi be the residue of ∇̃α along the component Di of D.
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Proposition 3.12. Assume that α = (α0, α1, ..., αs) is an admissible choice of residues for Lλ (i.e.
ρi /∈ N>0, all i), and that Hm(U) is pure of type (m,m) for all m ≤ k. Then for all m ≤ k:

Hm(U ,Lλ) = Hm(H∗(U), ωα∧)

Proof. First note that there is a Hodge-Deligne spectral seq.

Ep,q
1 = Hq(Z,Ωp

Z(logD)) ⇒ Hp+q(U , C)

degenerating at E1 and inducing the Hodge filtration of the Deligne MHS on Hp+q(U , C). If the
Deligne MHS on Hm(U) is pure of type (m,m), then the only non-trivial graded piece in Hm(U) is
grm

F grW
2mHm(U) = grm

F Hm(U) = FmHm(U). Therefore, for all q > 0 and p + q = m we have that
0 = F p/F p+1 = Hq(Z,Ωp

Z(logD)) and

Hm(U) = grm
F Hm(U) = Γ(Z,Ωm

Z (logD)).

Next, following Deligne, for any admissible choice of residues, there is a spectral sequence

Ep,q
1 = Hq(Z,Ωp

Z(logD)) ⇒ Hp+q(U ,Lλ)

whose differential d1 is induced by ∇̃α = d + ωα. Now if Hm(U) is pure of type (m,m) for m ≤ k, then
the first page of the spectral sequence above looks like:

Ep,q
1 = 0 for p + q = m and q > 0

and
Em,0

1 = H0(Z,Ωm
Z (logD)) = Hm(U).

Also, in this range, the differential d1 on E1 reduces to ∧ωα since d = 0 on closed forms. The conclusion
follows.

�

Example 3.13. If V is either a hyperplane arrangement or a smooth rational curve arrangement (i.e.
the irreducible components are lines or smooth conics), then Hm(U) is pure of type (m,m) for all m.
Get the results of [ESV], [STV], [Cog].

• More generally, let U0 = Pn+1 − V . Then
∑s

i=1 diγi = 0, so use the 1-form

ωα =
∑

j=1,s

αj
dfj

fj

where α satisfies:
∑

j=1,s dj · αj = 0. Then Prop. 3.12 holds in this setting.

Example 3.14. Let s = 2, n > 1 and assume that:
(i) each Vi has at most isolated singularities and is a Q-manifold;
(ii) V ′ = V1 ∩ V2 has at most isolated singularities (e.g., d1 < d2 and V2 is smooth).
Then:

(1) H0(U0) = C is pure of type (0,0),
H1(U0) = C is pure of type (1,1), spanned by

ω1 = d2 ·
df1

f1
− d1 ·

df2

f2

(note: ωα = a(α)ω1; indeed, ωα = α1
df1
f1

+ α2
df2
f2

with d1α1 + d2α2 = 0).
(2) Hk(U0) = 0 for 1 < k < n.
(3) Hn(U0) is pure of weight n + 2 and

bn(U0) ≤ dim Hn
0 (V ′).

If d1 < d2 and V2 is smooth, then

Hn(U0) = 0.
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(4) Hn+1(U0) has weights n + 2 and n + 3.

Proof. Let Ui = CPn+1 \ Vi, i = 1, 2. So U0 = U1 ∩ U2. Set U ′ = CPn+1 \ V ′ = U1 ∪ U2. Then the
Mayer-Vietoris sequence of the covering U ′ reads like

(3.1) ... → Hk−1(U0) → Hk(U ′) → Hk(U1)⊕Hk(U2) → Hk(U0) → ...

Here and in the sequel the constant coefficients C are used unless stated otherwise.
Since Vi is a Q-manifold with only isolated singularities, we have that

Hj(Ui) = 0, for 1 ≤ j ≤ n

for i = 1, 2. Indeed, here we need the following Lefschetz theorem: Let V be a n-dimensional complete
intersection in Pn+c and let l = dimCSing(V ). Then Hj(V ) ∼= Hj(Pn+c) for n + l + 2 ≤ j ≤ 2n.
1 In our case, c = 1 and l = −1 since we work over C. Therefore, for i = 1, 2, Hj(Vi) = Hj(Pn+1)
for n + 1 ≤ j ≤ 2n. Now, by the long sequence of the pair (Pn+1, Vi), get Hj(Pn+1, Vi) = 0 for
n + 2 ≤ j ≤ 2n + 1. So, as C-vector spaces (ignore the Hodge structures for the moment), we have that

Hj(Ui) ∼= Hj(Ui)∨
P.D.∼= H2n+2−j(Pn+1, V )∨ = 0

if n + 2 ≤ 2n + 2− j ≤ 2n + 1, i.e., 1 ≤ j ≤ n.
Now, from the sequence 3.1, it follows that Hj(U0) ∼= Hj+1(U ′) for 1 ≤ j ≤ n − 1, and we have a

monomorphism 0 → Hn(U0) → Hn+1(U ′). Thus for proving (2), it suffices to show that Hj(U ′) = 0
for 3 ≤ j ≤ n. But this follows from the Lefschetz theorem mentioned above by noting that V ′ is a
n− 1-dimensional complete intersection in Pn+1.

For proving (3) and (4), we write what’s left of the sequence 3.1 in its upper part:

0 → Hn(U0) → Hn+1(U ′) → Hn+1(U1)⊕Hn+1(U2) → Hn+1(U0) → Hn+2(U ′) → 0

Next, note that the Alexander duality isomorphism is compatible with the MHS after taking the Tate
twist (−n− 1), so

(3.2) Hj(U ′) = H2n+2−j(CPn+1, V ′)∨(−n− 1) = H2n+1−j
0 (V ′)∨(−n− 1)

Moreover, since V ′ has only isolated singularities, the group Hk
0 (V ′) has a pure Hodge structure of weight

k and the Hodge numbers satisfy:

(3.3) hp,q(Hk(U ′)) = hn+1−p,n+1−q(H2n+1−k
0 (V ′)).

Therefore, Hn+1(U ′) ∼= Hn
0 (V ′)∨(−n− 1) is pure of weight n+2, thus the same is true for Hn(U0). The

bound on bn(U0) is obvious.
Similarly, Hn+2(U ′) is pure HS of weight n + 3, and Hn+1(Ui) (i = 1, 2) is pure of weight n + 2. The

rest follows.
�

Corollary 3.15. By the above proposition, for a non-trivial rank one local system L on U0 for which
an admissible choice of residues α = (d2 · a(α),−d1 · a(α)) exists, get:

(1) Hk(U0,L) = 0 for k < n.
(2) If Hn

0 (V ′) = 0 (e.g., if V ′ is a Q-homology manifold) or if d1 < d2 and V2 is smooth, then:
Hn(U0,L) = 0.

1In general, for a hypersurface V we only have that H∗(Pn+1) → H∗(V ) is a monomorphism for 0 ≤ ∗ ≤ 2n. Thus, as

C-vector spaces:

Hj(U) ∼= Hj(U)∨
P.D.∼= H2n+2−j(Pn+1, V )∨ ∼= H2n+1−j

0 (V )∨,

where H∗
0 (V ) := Coker

�
H∗(Pn+1) → H∗(V )

�
.


