Fundamental groups of complex quasiprojective manifolds and their Alexander type invariants

Laurentiu Maxim

University of Wisconsin-Madison

115AM, Jaca, June 12-16, 2023

Motivation

- Every finitely presented group occurs as the fundamental group of a smooth closed real manifold of dimension ≥ 4.
- Serre's problem: Which groups are *(quasi-)projective groups*, i.e., can be realized as fundamental groups of complex (quasi-)projective *manifolds*?
- By a Zariski-Lefschetz type theorem, one can restrict to the class of fundamental groups of smooth complex (quasi-)projective *surfaces*.
- Kapovich (2013): (if one allows mild singularities) every finitely presented group is the fundamental group of a complex *irreducible* projective surface whose singularities are simple normal crossings and Whitney umbrellas.
- Kapovich-Kollár (2014): every finitely presented group is the fundamental group of a complex (non-irreducible) projective surface with simple normal crossing singularities.
- Here we focus on π_1 's of smooth varieties.

- Similar questions apply to Kähler groups.
- There is no reduction to the surface case in the Kähler context, though Kodaira showed that any compact complex analytic surface with even first Betti number b₁ (e.g., a compact Kähler surface) deforms to a projective one (this is not true in higher dimensions, as shown by Voisin).
- (Consequence of Kodaira's theorem) If *π* is a finitely presented group, the following are equivalent:
 - π is π_1 of a smooth complex projective variety
 - π is π_1 of a smooth complex projective surface
 - π is π_1 of a Kähler compact complex surface
 - π is π_1 of a compact complex surface with even b_1 .

Related open questions

- is any Kähler group a projective group?
 - Kodaira: true in dimension 2.
 - Claudon (2018): true for "linear" groups.
 - Claudon-Höring-Lin (2019): true in dimension 3.
 - Voisin (2004): there is a compact Kähler manifold which is not of the real homotopy type of any complex projective manifold.
- Singer-Hopf Conjecture: if $\pi = \pi_1(M)$ is an aspherical Kähler group, then $(-1)^n \chi(M) \ge 0$, where $n = \dim_{\mathbb{C}} M$.
- find obstructions on *homotopy types* of complex quasi-projective manifolds:
 - complex algebraic varieties are h.e. to finite CW complexes.
 - Andreotti-Frankel: a complex *n*-dim. affine variety has the homotopy type of a finite CW complex of dimension ≤ *n*.
 - structure results for the cohomology jump loci of rank-one C-local systems (Beauville, Green-Lazarsfeld, Simpson, Arapura, Campana, Libgober, Dimca-Papadima-Suciu, Budur-Wang, etc.)

Some History/Facts

- Serre: every *finite* group is a *projective group*, i.e., *π*₁ of a complex projective manifold.
- However, most finitely presented groups (e.g., free abelian groups of *odd* rank) are *not projective groups*.
 - by Hodge theory, the first Betti number b₁ (i.e., rank of abelianization of π₁) of a Kähler/projective group is even!
- Gromov: projective groups can't split as nontrivial free products
- Carlson-Toledo: If M is a closed real hyperbolic *n*-manifold $(n \ge 3)$, then $\pi_1(M)$ is not projective.
- By contrast, Taubes (1992) showed that every finitely presented group is π_1 of a compact complex manifold (of dim_C = 3).

Some exercises: quasi-projective case

• Exercise: All cyclic groups are quasi-projective.

- Hint 1: If $C \subset \mathbb{CP}^2$ is a smooth plane curve of degree d, then $\pi_1(\mathbb{CP}^2 \setminus C) = \mathbb{Z}/d$.
- Hint 2: If L_1, L_2 are lines in \mathbb{CP}^2 , then $\pi_1(\mathbb{CP}^2 \setminus (L_1 \cup L_2)) = \mathbb{Z}$.

• Exercise: All abelian groups are quasi-projective.

• Hint: If $C_0, \ldots, C_r \subset \mathbb{CP}^2$ are irreducible smooth curves of degree $d_i = \deg C_i$ intersecting transversally, then $\pi_1(\mathbb{CP}^2 \setminus (C_0 \cup \ldots \cup C_r)) = \mathbb{Z}^r \oplus \mathbb{Z}/d$,

where $d = \operatorname{gcd}(d_0, \ldots, d_r)$.

- Exercise: All free groups of finite rank are quasi-projective.
 - Hint: What is π_1 of \mathbb{CP}^1 minus a finite set of points?
- **Exercise:** Finite index subgroups of (quasi-)projective groups are (quasi-)projective.
- **Exercise:** Direct products of (quasi-)projective groups are (quasi-)projective.
- Morgan (1978), Kapovich-Milson (1997), etc. found *infinitely* many non-isomorphic examples of non-quasi-projective groups.

Some exercises: projective/Kähler

- **Exercise:** \mathbb{Z}^{2n} is projective (hence Kähler).
 - Hint: Z²ⁿ = π₁(A), where A ≅ Cⁿ/Z²ⁿ is an abelian variety of complex dimension n.
- Exercise: Direct products of Kähler groups are Kähler.
 - Hint: a product of Kähler manifolds is Kähler.
- Exercise: Finite index subgroups of Kähler groups are Kähler.
 Hint: Kähler metrics can be lifted to finite coverings.
- Exercise: Non-trivial free groups are not Kähler.
 - Hint: such groups have subgroups of finite index and odd rank.
- **Exercise:** $\mathbb{Z}/2 * \mathbb{Z}/2$ is not Kähler.
 - Hint: it contains ${\mathbb Z}$ with index 2.
- **Exercise:** $SL(2,\mathbb{Z})$ is not Kähler.
 - Hint: it contains subgroups of finite index which are free.
- $SL(n,\mathbb{Z})$ is not Kähler for n > 2 (non-abelian Hodge theory).

 A group may contain a Kähler/projective group without being itself Kähler/projective: e.g., π₁ of the Klein bottle is not projective (why?), but it contains Z² with index 2.

- One may also study sub-classes of (quasi-)projective/Kähler groups.
- Delzant (2010): a solvable Kähler group is virtually nilpotent.
- Donaldson-Goldman Conjecture (proved by Dimca-Suciu, Kotschick,...): If π is a Kähler group and π = π₁(M) for M a closed 3-manifold, then π is a finite group.
- Hence, infinite 3-manifold groups are not Kähler!
 E.g., π₁(S × Z) is not Kähler (with S a closed orientable real surface).
- Blasco-Garcia, Cogolludo: studied quasi-projectivity of Artin groups (cf. also Dimca-Papadima-Suciu for the case of right-angled Artin groups).

π_1 's of hypersurface complements

- From now on, consider only the sub-class of π₁ of complex quasi-projective manifolds which are complements to hypersurfaces in Cⁿ (or CPⁿ).
- Reduction to a low-dimensional topology problem: by a Zariski-Lefschetz type theorem, possible π₁'s of complements to hypersurfaces in Cⁿ (or CPⁿ) are precisely the fundamental groups of complements to plane curves in C² (resp. CP²), a class of groups already considered by Zariski and Van Kampen in 1930s.
- Question: What groups can be π₁ of complements to curves in C² (resp. CP²)? What obstructions are there?
- E.g., many knot groups cannot be realized as π₁(C² \ C) for a plane curve C (to be justified later).

• This question is also motivated by Zariski's problem:

Find examples of Zariski pairs, i.e., pairs of plane curves in \mathbb{CP}^2 which have homeo tubular neighborhoods (hence same type of singularities), but non-homeo complements (due to the position of their singularities.)

- E.g., Let C
 ⊂ CP² be a sextic with 6 cusps (i.e., locally defined by x² = y³). Zariski showed that the moduli space of such curves has (at least) two connected components, representatives in each component being distinguished by π₁ of their complements.
- A lot of work on Zariski pairs done by Artal-Bartolo, Tokunaga, Oka, Shimada, Eyral, Cogolludo, etc.

- π_1 's of plane curve complements are difficult to handle.
- Zariski's conjecture: If $\overline{C} \subset \mathbb{CP}^2$ has only nodal singularities (i.e., locally defined by $x^2 = y^2$), then $\pi_1(\mathbb{CP}^2 \setminus \overline{C})$ is abelian. (proved by Deligne and Fulton, cf. also Orevkov, Oka,...)
- Nori: If $\overline{C} \subset \mathbb{CP}^2$ has a nodes and b cusps, and $2a + 6b < d^2$ $(d = \deg \overline{C})$, then $\pi_1(\mathbb{CP}^2 \setminus \overline{C})$ is abelian.
- Tokunaga: If $\overline{C} \subset \mathbb{CP}^2$ has a nodes and b cusps, and $2a + 6b > 2d^2 6d + 6$, then $\pi_1(\mathbb{CP}^2 \setminus \overline{C})$ is not abelian.
- There are Zariski pairs of degree d = 6 with a nodes (a = 0, ..., 3) and 6 cusps which fail one test or the other.

Example (Oka, Nemethi)

Let $p,q \in \mathbb{Z}$, $p,q \ge 2$, with (p,q) = 1. Consider

$$ar{\mathcal{C}}_{p,q}:(x^p+y^p)^q+(y^q+z^q)^p=0$$

Then

$$\pi_1(\mathbb{CP}^2 \setminus \overline{\mathcal{C}}_{p,q}) = \mathbb{Z}/p * \mathbb{Z}/q$$

p = 2, *q* = 3: Zariski's sextic curve with six cusps on a conic.
 recent generalizations by Cogolludo-Elduque.

- It is natural to look for invariants of π₁ which are easier to handle that π₁, and still capture a lot of the topology of the curve. For instance, one may consider
 - Alexander-type invariants (polynomials, modules)
 - Novikov-Betti numbers
 - L² Betti numbers
- Rigidity properties for such invariants impose lots of obstructions on π₁'s of curve complements.

I. Alexander-type invariants of plane curve complements

Plane curve complements: Setting

- Let $\overline{C} = \{F(x, y, z) = 0\}$ be a degree *d* reduced curve in \mathbb{CP}^2 .
- Let $L_{\infty} = \{z = 0\} \subset \mathbb{CP}^2$ be a generic line, i.e., $\overline{C} \pitchfork L_{\infty}$.

• Let
$$f(x,y) := F(x,y,1)$$
, and
 $\mathcal{C} = \{f(x,y) = 0\} = \overline{\mathcal{C}} \setminus L_{\infty} \subset \mathbb{C}^{2}.$

• Zariski: there is a *central extension*:

$$0 o \mathbb{Z} o \pi_1(\mathbb{C}^2 \setminus \mathcal{C}) o \pi_1(\mathbb{CP}^2 \setminus \overline{\mathcal{C}}) o 0,$$

so $\pi_1(\mathbb{C}^2\setminus\mathcal{C})$ and $\pi_1(\mathbb{CP}^2\setminus\bar{\mathcal{C}})$ carry the "same" info.

- it is more convenient to work with $\mathbb{C}^2 \setminus C$, which has a larger π_1 than $\mathbb{CP}^2 \setminus \overline{C}$.
- Set $M = \mathbb{C}^2 \setminus C$, with $\pi = \pi_1(M)$.
- *M* is h.e. to a finite CW complex of *real* dimension 2.
- $H_1(M) = H_1(\pi) = \mathbb{Z}^r$, for r = # of irred. components of \mathcal{C} .

(a) Classical Alexander polynomials

•
$$M = \mathbb{C}^2 \setminus \mathcal{C} = \mathbb{CP}^2 \setminus (\overline{\mathcal{C}} \cup L_\infty)$$
, with $\overline{\mathcal{C}} \pitchfork L_\infty$.

- f_{*}: π = π₁(M) → π₁(C^{*}) = Z induces a Z-fold cover M^c of M, the pullback of the universal cover C → C^{*}.
- $H_i(M^c;\mathbb{C})$ is a finitely generated $\mathbb{C}[\mathbb{Z}]\simeq\mathbb{C}[t^{\pm 1}]$ -module.

Theorem (Libgober)

 $H_1(M^c; \mathbb{C})$ is a torsion $\mathbb{C}[t^{\pm 1}]$ -module.

Definition

 $\Delta_{\mathcal{C}}(t) := order H_1(M^c; \mathbb{C})$ is the Alexander polynomial of \mathcal{C} (or π).

- Δ_C(t) can be computed by Fox calculus from a presentation of π (e.g., obtained via *braid monodromy*).
- *Rigidity* properties of $\Delta_{\mathcal{C}}(t)$ impose obstructions on π .

Relation to Milnor fiber of F

• Let $M_F := F^{-1}(1)$ be the *Milnor fiber* of the degree dhomogeneous polynomial F(x, y, z) which defines $\overline{C} \subset \mathbb{CP}^2$, with *monodromy* $h : M_F \to M_F$.

•
$$h^d = id$$
, and $M_F / \langle h \rangle \simeq \mathbb{CP}^2 \setminus \overline{C}$.

- Randell: The Alexander polynomial Δ_C(t) equals the characteristic polynomial of monodromy h_{*} : H₁(M_F)
- Consequences:
 - deg $\Delta_{\mathcal{C}}(t) = b_1(M_F)$.
 - if C is irreducible, then $\Delta_C(t) = 1 \iff H_1(M_F)$ is at most a finite group.
 - if $\pi_1(\mathbb{CP}^2 \setminus \overline{\mathcal{C}})$ is a finite group, then $\Delta_{\mathcal{C}}(t) = 1$.
 - the multiplicity of the factor (t 1) in $\Delta_{\mathcal{C}}(t)$ is r 1, i.e., $\operatorname{rank} H_1(M_F)_1$, with r = # of irred. components of \mathcal{C} .
 - Libgober: $\Delta_{\mathcal{C}}(t)$ divides $(t^d 1)^{d-2}(t-1)$.
 - $\Delta_{\mathcal{C}}(t)$ is a product of cyclotomic polynomials.
 - roots of $\Delta_{\mathcal{C}}(t)$ are *d*-th roots of unity.

Example

- Many knot groups, e.g. that of *figure eight knot* (whose Alexander polynomial is $t^2 3t + 1$), cannot be of the form $\pi_1(\mathbb{C}^2 \setminus C)$.
- However, the class of possible π₁ of plane curve complements includes *braid groups*, or groups of *torus knots* of type (p, q).

Example

Let $p,q\in\mathbb{Z}$, $p,q\geq 2$, with (p,q)=1. Consider Oka's curve

$$\bar{\mathcal{C}}_{p,q}:(x^{p}+y^{p})^{q}+(y^{q}+z^{q})^{p}=0$$

with $C_{p,q} = \overline{C}_{p,q} \setminus L_{\infty}$. Then $\pi_1(\mathbb{C}^2 \setminus C_{p,q})$ is π_1 of a torus knot of type (p, q), and

$$\Delta_{\mathcal{C}_{p,q}}(t) = rac{(t^{pq}-1)(t-1)}{(t^p-1)(t^q-1)}.$$

Relation to Milnor fiber, cont'd

 Let M_F := F⁻¹(1) be the Milnor fiber of the degree d homogeneous polynomial F(x, y, z), with monodromy h.

• Recall: deg
$$\Delta_{\mathcal{C}}(t) = b_1(M_F)$$
.

- $H_1(M_F) = H_1(M_F)_1 \oplus H_1(M_F)_{\neq 1}$
- $\operatorname{rank} H_1(M_F)_1 = \operatorname{rank} H_1(\mathbb{CP}^2 \setminus \overline{C}) = r 1$
- rankH₁(M_F)_{≠1} = b₃(V), where V is a d-fold cover of CP² branched along C̄. (This non-unipotent piece is the jump.)
- Problem: compute $b_1(M_F)$.
- Main difficulty: as we will see, b₁(M_F) depends on the position of singularities of C
 [¯] in CP².
- Conjecture: if F defines a line arrangement in CP², then b₁(F) and h_{*} : H₁(M_F) ♂ are combinatorially determined. (Progress: Dimca, Papadima, Suciu, Libgober, etc.)

Divisibility results for Alexander polynomials

- For each x ∈ Sing(C), let L_x := S³_x ∩ C be the *link* of x, with (local) complement M_x := S³_x \ L_x.
- Milnor: There is a locally trivial fibration $F_x \hookrightarrow M_x \to S^1$
- The Milnor fibre F_x is homotopy equivalent to a join of circles, their number being equal to the Milnor number μ(C, x).
- Let $h_x : F_x \to F_x$ be the monodromy homeomorphism.
- The *local Alexander polynomial at x* is defined by

$$\Delta_x(t) := \det \left(tI - (h_x)_* : H_1(F_x) \to H_1(F_x) \right)$$

• Monodromy theorem: the zeros of $\Delta_x(t)$ are roots of 1.

Theorem (Libgober)

$$\Delta_{\mathcal{C}}(t)$$
 divides $(t-1)^{r-1} \cdot \prod_{x \in Sing(\mathcal{C})} \Delta_x(t)$

Theorem (M.)

For any irreducible component C_i of C, $\Delta_c(t)$ divides $(t-1)^{r-1} \cdot \prod_{x \in Sing(C) \cap C_i} \Delta_x(t)$

Corollary

 $\Delta_{\mathcal{C}}(t)$ is a product of cyclotomic polynomials.

Corollary

Let $\overline{C} \subset \mathbb{CP}^2$ be an irreducible degree d curve with only nodes and cusps as its singularities. If $d \not\equiv 0 \pmod{6}$, then $\Delta_{\mathcal{C}}(t) = 1$.

Theorem (Budur-Liu-Wang)

If $\pi = \pi_1(M)$ is a quasi-projective group, and $\epsilon : \pi \to \mathbb{Z}$ an epimorphism, then $\Delta_{\pi}(t)$ is a product of cyclotomic polynomials, where Δ_{π} is the order of the torsion part of $H_1(M_{\epsilon}; \mathbb{C})$. Fundamental groups

Laurentiu Maxim

- The divisibility results for Δ_C(t) show that the *local type* of singularities affects the topology of C.
- Zariski showed that the *position* of singularities has effect on the topology of *C*.
- Moreover, Libgober noticed that Δ_C(t) is already sensitive to the position of singularities.

Example (Zariski's sextics with 6 cusps)

Let $\overline{C} \subset \mathbb{CP}^2$ be an irreducible *sextic* with only 6 *cusps*. Set $C := \overline{C} \setminus L_{\infty}$, for L_{∞} a generic line at infinity in \mathbb{CP}^2 .

- If the 6 cusps are on a conic, then π₁(C² \ C) is isomorphic to π₁ of the trefoil knot, and has Alexander polynomial Δ_C(t) = t² t + 1. (In fact, π₁(CP² \ C
) ≅ Z₂ * Z₃)
- If the 6 cusps are not on a conic, then $\pi_1(\mathbb{C}^2 \setminus \mathcal{C})$ is abelian, so $\Delta_{\mathcal{C}}(t) = 1$. (In fact, $\pi_1(\mathbb{CP}^2 \setminus \overline{\mathcal{C}}) \cong \mathbb{Z}_2 \times \mathbb{Z}_3$)

Artin's Braid groups

Example

Moishezon showed that Artin's braid group on k strands

$$B_k = \langle \sigma_1, \dots, \sigma_{k-1} \mid \sigma_i \sigma_j = \sigma_j \sigma_i, |i-j| \ge 2; \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \rangle$$

appears as $\pi_1(\mathbb{C}^2 \setminus \mathcal{C}_k)$, where \mathcal{C}_k is an affine curve in general position at infinity, whose projective completion \bar{C}_k is the branching locus of a generic projection $V_k \to \mathbb{CP}^2$, with V_k a degree k smooth surface in \mathbb{CP}^3 . Then \overline{C}_k is an irreducible curve of degree k(k-1) with k(k-1)(k-2)(k-3)/2 nodes and k(k-1)(k-2) cusps. E.g., if k = 3, \overline{C}_3 is the six-cuspidal sextic with all cusps on a conic, and recall that B_3 is π_1 of the trefoil knot. For $k \geq 5$, one computes (e.g., using Reidemeister-Schreier) $B'_{k}/B''_{k} = 0$, hence C_{k} has a trivial Alexander polynomial. The Alexander polynomial of C_4 is $t^2 - t + 1$.

- Several important algebro-geometric descriptions of $\Delta_{\mathcal{C}}(t)$ have been obtained by Libgober, Loeser-Vaquié, Esnault, Artal-Bartolo, etc.
- Cogolludo-Libgober: If $\overline{C} \subset \mathbb{CP}^2$ is a degree *d* irreducible curve with only nodes and cusps singularities, then

$$\deg \Delta_{\mathcal{C}}(t) \leq rac{5}{3}d-2.$$

Mixed Hodge structure on the Alexander module

- Libgober, Kulikov-Kulikov: the Alexander module H_i(M^c; ℚ) carries a canonical mixed Hodge structure.
- Libgober: generalization to higher dimensional hypersurfaces with only isolated singularities.
- M., Dimca-Libgober: generalization to higher dimensional hypersurfaces with arbitrary singularities.
- Elduque-Geske-Herradon-M.-Wang: constructed MHS on the torsion parts of the Alexander modules of a complex quasi-projective manifold X, induced via an algebraic map f: X → C*.

"Weakness" of Alexander polynomial

- Assume $\overline{C} = \overline{C}_1 \cup \overline{C}_2 \subset \mathbb{CP}^2$, so that \overline{C}_1 , \overline{C}_2 are reduced and *intersect transversally*.
- Fix a generic line L_{∞} at infinity, and let $C = \overline{C} \setminus L_{\infty}$, $C_i = \overline{C}_i \setminus L_{\infty}$ (i = 1, 2).
- Oka-Sakamoto: There is an isomorphism (induced by inclusions C² \ C ⊂ C² \ C_i):

$$\pi_1(\mathbb{C}^2 \setminus \mathcal{C}) \xrightarrow{\cong} \pi_1(\mathbb{C}^2 \setminus \mathcal{C}_1) \times \pi_1(\mathbb{C}^2 \setminus \mathcal{C}_2).$$

- $\Delta_{\mathcal{C}}(t) = (t-1)^{r-1}$, where r = # of irred. components of \mathcal{C} .
- so, while $\pi_1(\mathbb{C}^2 \setminus \mathcal{C})$ retains information about \overline{C}_1 , \overline{C}_2 , the Alexander polynomial $\Delta_{\mathcal{C}}(t)$ does not!
- to overcome this "weakness", can study twisted versions of Alexander polynomials or higher coverings of the plane curve complement (e.g., universal abelian cover, solvable covers, etc.).

- introduced by Lin, Wada, Kirk-Livingston in 1990s.
- striking applications to the study of real closed 3-manifolds by Friedl-Vidussi.
- adapted to the study of plane curve complements by Cogolludo-Florens, who found *new examples of Zariski pairs* which can be detected by the *twisted Alexander polynomial*, but which have the same classical Alexander polynomial.

Setup

- M := path-connected finite CW complex, $\pi := \pi_1(M)$.
- $\varepsilon: \pi \to \mathbb{Z}$ homomorphism.
- M_{ε} := infinite cyclic cover of M defined by $\bar{\pi}$:= ker(ε).
- \mathbb{V} finite dim. \mathbb{C} -vector space, $\ell := \dim_{\mathbb{C}} \mathbb{V}$.
- $\rho: \pi \to GL(\mathbb{V})$ representation, denoted by \mathbb{V}_{ρ} .

Definition (Twisted Alexander modules)

The *i*-th twisted Alexander module of (M, ε, ρ) is:

$$H_i^{arepsilon,
ho}(M;\mathbb{C}[t^{\pm 1}])=H_i(M_arepsilon;\mathbb{V}_
ho):=H_i(C_*(M_arepsilon,\mathbb{V}_
ho))\,,$$

where $C_*(M_{\varepsilon}, \mathbb{V}_{\rho}) := \mathbb{V} \otimes_{\mathbb{C}[\bar{\pi}]} C_*(M_{\varepsilon})$ is the twisted chain complex of M_{ε} .

Twisted Alexander invariants of plane curve complements

• Assume $M = \mathbb{C}^2 \setminus C$, with $\overline{C} \pitchfork L_{\infty}$, and let $\pi = \pi_1(M)$.

Theorem (M.-Wong)

For any pair (ε, ρ) , the twisted Alexander modules $H_i^{\varepsilon, \rho}(M; \mathbb{C}[t^{\pm 1}])$ of $M = \mathbb{C}^2 \setminus \mathcal{C}$ are torsion $\mathbb{C}[t^{\pm 1}]$ -modules, for i = 0, 1.

Remark

If $\varepsilon = lk$, $\mathbb{V} = \mathbb{C}$ and $\rho = trivial$, get back the classical Alexander modules $H_i(M^c; \mathbb{C})$ of M.

Definition

 $\Delta_{\mathcal{C}}^{\varepsilon,\rho}(t) = order \ H_1^{\varepsilon,\rho}(M; \mathbb{C}[t^{\pm 1}]) \text{ is the twisted Alexander} \\ polynomial \ of \ (\mathcal{C}, \varepsilon, \rho).$

•
$$M = \mathbb{C}^2 \setminus \mathcal{C} = \mathbb{CP}^2 \setminus (\overline{\mathcal{C}} \cup L_\infty).$$

• Let γ_{∞} be the meridian in $\pi = \pi_1(M)$ about L_{∞} .

Theorem (M.-Wong)

Assume $\varepsilon = lk$, and $\rho : \pi \to GL(\mathbb{V})$ an arbitrary representation. Let $\lambda_1, \dots, \lambda_\ell$ be the eigenvalues of $\rho(\gamma_\infty)^{-1}$. Then the roots of $\Delta_{\mathcal{C}}^{\varepsilon,\rho}(t)$ are contained in the splitting field of $\prod_{i=1}^{\ell} (t^d - \lambda_i)$ over \mathbb{Q} , which is cyclotomic over $\mathbb{Q}(\lambda_1, \dots, \lambda_\ell)$.

Divisibility for twisted Alexander polynomials

- If x ∈ Sing(C), let L_x = S³_x ∩ C be the link of x, with local complement M_x = S³_x \ L_x.
- Let $\pi_x := \pi_1(M_x)$.
- Let (ε_x, ρ_x) be the pair induced by (ε, ρ) on π_x via $\pi_x \to \pi$.

Theorem (M.-Wong)

If $x \in \text{Sing}(\mathcal{C})$, the local twisted Alexander modules at x, i.e., $H_i^{\varepsilon_x, \rho_x}(M_x; \mathbb{C}[t^{\pm 1}])$, are torsion $\mathbb{C}[t^{\pm 1}]$ -modules for i = 0, 1.

Definition

 $\Delta_x^{\varepsilon_x,\rho_x}(t) := order \ H_1^{\varepsilon_x,\rho_x}(M_x; \mathbb{C}[t^{\pm 1}]) \text{ is the local twisted}$ Alexander polynomial at x.

Theorem (Cogolludo-Florens, M.-Wong)

divisibility for twisted Alexander polynomials, relating the local and global ones.

II. Novikov homology

Novikov-Betti and Novikov-torsion numbers

M :=connected topological space, h.e. to a *finite* CW complex, π := π₁(M).

• fix
$$\xi \in H^1(M; \mathbb{R}) \cong \operatorname{Hom}(\pi, \mathbb{R})$$
.

• $\Gamma_{\xi} := Im(\pi \xrightarrow{\xi} \mathbb{R}) \hookrightarrow \mathbb{R}$, so $\Gamma_{\xi} \cong \mathbb{Z}^{s}$, for some $s = rk(\xi) \ge 0$.

- *M_ξ* := covering of *M* defined by ker(ξ), so *H_i*(*M_ξ*; ℤ) are finitely generated ℤ[Γ_ξ]-modules.
- the *i-th Novikov-Betti number* $b_i(M,\xi)$ of (M,ξ) is the $\mathbb{Z}[\Gamma_{\xi}]$ -rank of $H_i(M_{\xi};\mathbb{Z})$:

 $b_i(M,\xi) := \dim_{\mathbb{Q}_{\xi}} \mathbb{Q}_{\xi} \otimes_{\mathbb{Z}[\Gamma_{\xi}]} H_i(M_{\xi};\mathbb{Z}) = rk_{R\Gamma_{\xi}}H_i(M;R\Gamma_{\xi}),$

where $\mathbb{Q}_{\xi} := Frac(\mathbb{Z}[\Gamma_{\xi}])$, and $R\Gamma_{\xi}$ is the *rational Novikov* ring of Γ_{ξ} (a certain PID localization of $\mathbb{Z}[\Gamma_{\xi}]$).

the *i-th Novikov-torsion number* q_i(M, ξ) is the minimal number of generators of Tors(H_i(M; RΓ_ξ)).

Theorem (Properties of Novikov-Betti numbers)

•
$$\chi(M) = \sum_i (-1)^i b_i(M,\xi).$$

- $b_i(M,\xi) \leq b_i(M)$, for any $\xi \in H^1(M;\mathbb{R})$.
- $b_i(M, 0) = b_i(M)$.

Novikov-type invariants of plane curve complements

• Assume
$$M = \mathbb{C}^2 \setminus \mathcal{C}$$
, with $\bar{\mathcal{C}} \pitchfork L_\infty$, and let $\pi = \pi_1(M)$

Definition

 $\xi \in H^1(M; \mathbb{R})$ is called *positive* if $\xi : \pi \to \mathbb{R}$ takes strictly positive values on each positively oriented meridian about the irreducible components of C.

Theorem (Friedl-M.)

For any positive $\xi \in H^1(M; \mathbb{R})$, we have:

•
$$b_i(M,\xi) = \begin{cases} 0, & i \neq 2, \\ \chi(M), & i = 2. \end{cases}$$

•
$$q_i(M,\xi) = 0$$
 for all $i \ge 0$.

Remark

The above result holds more generally, for twisted Novikov-type invariants.

III. L²-Betti numbers

To any CW complex M, countable group Γ , and group homomorphism $\alpha : \pi_1(M) \to \Gamma$, one associates L^2 -Betti numbers

$$b_i^{(2)}(M,\alpha) := \dim_{\mathcal{N}(\Gamma)} H_i\big(C_*(M_\alpha) \otimes_{\mathbb{Z}\Gamma} \mathcal{N}(\Gamma)\big) \in [0,\infty],$$

where M_{α} is the covering of M defined by α , and $\mathcal{N}(\Gamma)$ is the von Neumann algebra of Γ (a certain completion of $\mathbb{C}[\Gamma]$), so that

- $b_i^{(2)}(M, \alpha)$ is a homotopy invariant of the pair (M, α) .
- if *M* is a finite CW-complex,

$$\chi(M) = \sum_{i \ge 0} (-1)^i \cdot b_i^{(2)}(M, \alpha)$$

Remark (FriedI-M.)

Novikov-Betti numbers associated to $\xi \in H^1(M; \mathbb{R})$ are special cases of L^2 -Betti numbers (but torsion-Novikov numbers do not have an L^2 interpretation):

$$b_i(M,\xi) = b_i^{(2)}(M,\pi_1(M) \stackrel{\xi}{\twoheadrightarrow} Im(\xi))$$

- $\mathcal{C} = \{f(x, y) = 0\}, M = \mathbb{C}^2 \setminus \mathcal{C}, \pi = \pi_1(M).$
- $\alpha : \pi \to \Gamma$ is called *admissible* if $f_* : \pi \to \mathbb{Z}$ factors through α .
- For admissible α , let $\bar{\pi} = \ker(f_*)$, with corresponding covering M^c , and $\bar{\Gamma} := \operatorname{Im}(\bar{\pi} \hookrightarrow \pi \stackrel{\alpha}{\to} \Gamma)$ with induced map $\bar{\alpha} : \bar{\pi} \to \bar{\Gamma}$.
- Consider $b_p^{(2)}(M, \alpha)$ and $b_p^{(2)}(M^c, \overline{\alpha})$.
- A priori, there is no reason to expect b₁⁽²⁾(M^c, ā) to be finite (as M^c is not a finite CW complex).

Theorem (Friedl-Leidy-M.)

If $\alpha : \pi_1(M) \to \Gamma$ is admissible, then

$$b_i^{(2)}(M, \alpha) = \begin{cases} 0, & i \neq 2, \\ \chi(M), & i = 2. \end{cases}$$

Corollary

 $b_i^{(2)}(M, \alpha)$ $(i \ge 0)$ depends only on the degree of C and on the local type of singularities, and is independent on α and on the position of singularities of C. In fact,

$$b_2^{(2)}(M,\alpha) = (d-1)^2 - \sum_{x \in \operatorname{Sing}(\mathcal{C})} \mu(\mathcal{C},x).$$

Theorem (Friedl-Leidy-M.)

If $\alpha : \pi_1(M) \to \Gamma$ is admissible, then $b_1^{(2)}(M^c, \bar{\alpha})$ is finite, and an upper bound is determined by the local type of singularities of C:

$$b_1^{(2)}(M^c, \bar{lpha}) \leq \sum_{x \in \operatorname{Sing}(\mathcal{C})} (\mu(\mathcal{C}, x) + n_x - 1) + 2g + d,$$

where n_x is the number of branches through $x \in \text{Sing}(\mathcal{C})$ and g is the genus of the normalization of \mathcal{C} .

Remark

 $b_1^{(2)}(M^c, \bar{\alpha})$ depends in general on the position of singularities of C (this can be checked on Zariski's example of sextics with 6 cusps).

Free groups \mathbb{F}_m with $m \geq 2$ cannot be of the form $\pi_1(\mathbb{C}^2 \setminus \mathcal{C})$, for \mathcal{C} a curve in general position at infinity, and similarly for groups of (complements of) boundary links (i.e., those links whose components admit mutually disjoint Seifert surfaces). Equivalently, such groups cannot be central extensions by \mathbb{Z} of groups of the form $\pi_1(\mathbb{CP}^2 \setminus \overline{\mathcal{C}})$.

Concluding remarks

- All invariants of plane curve complements discussed in this lecture are dominated by the corresponding invariants of the link of C at infinity (i.e., Hopf link on d components) and, resp., by those of the boundary manifold of C.
- All the above finiteness/torsion/rigidity results for homological-type invariants (Alexander modules and polynomials, various types of Betti numbers etc.) admit higher dimensional generalizations to complements of hypersurfaces in Cⁿ (or CPⁿ) with arbitrary singularities. Proofs are more involved (use intersection homology, perverse sheaves, etc.).
- One can prove similar statements even after relaxing mildly the transversality assumption (in works of Libgober, Elduque-M.)

THANK YOU !!!

Happy Birthday Enrique and Alejandro !!!