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Motivation

Every finitely presented group occurs as the fundamental
group of a smooth closed real manifold of dimension ≥ 4.

Serre’s problem: Which groups are (quasi-)projective groups,
i.e., can be realized as fundamental groups of complex
(quasi-)projective manifolds?

By a Zariski-Lefschetz type theorem, one can restrict to the
class of fundamental groups of smooth complex
(quasi-)projective surfaces.

Kapovich (2013): (if one allows mild singularities) every
finitely presented group is the fundamental group of a
complex irreducible projective surface whose singularities are
simple normal crossings and Whitney umbrellas.

Kapovich-Kollár (2014): every finitely presented group is the
fundamental group of a complex (non-irreducible) projective
surface with simple normal crossing singularities.

Here we focus on π1’s of smooth varieties.
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Similar questions apply to Kähler groups.

There is no reduction to the surface case in the Kähler
context, though Kodaira showed that any compact complex
analytic surface with even first Betti number b1 (e.g., a
compact Kähler surface) deforms to a projective one (this is
not true in higher dimensions, as shown by Voisin).

(Consequence of Kodaira’s theorem) If π is a finitely
presented group, the following are equivalent:

π is π1 of a smooth complex projective variety
π is π1 of a smooth complex projective surface
π is π1 of a Kähler compact complex surface
π is π1 of a compact complex surface with even b1.
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Related open questions

is any Kähler group a projective group?

Kodaira: true in dimension 2.
Claudon (2018): true for “linear” groups.
Claudon-Höring-Lin (2019): true in dimension 3.
Voisin (2004): there is a compact Kähler manifold which is not
of the real homotopy type of any complex projective manifold.

Singer-Hopf Conjecture: if π = π1(M) is an aspherical Kähler
group, then (−1)nχ(M) ≥ 0, where n = dimCM.

find obstructions on homotopy types of complex
quasi-projective manifolds:

complex algebraic varieties are h.e. to finite CW complexes.
Andreotti-Frankel: a complex n-dim. affine variety has the
homotopy type of a finite CW complex of dimension ≤ n.
structure results for the cohomology jump loci of rank-one
C-local systems (Beauville, Green-Lazarsfeld, Simpson,
Arapura, Campana, Libgober, Dimca-Papadima-Suciu,
Budur-Wang, etc.)
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Some History/Facts

Serre: every finite group is a projective group, i.e., π1 of a
complex projective manifold.

However, most finitely presented groups (e.g., free abelian
groups of odd rank) are not projective groups.

by Hodge theory, the first Betti number b1 (i.e., rank of
abelianization of π1) of a Kähler/projective group is even!

Gromov: projective groups can’t split as nontrivial free
products

Carlson-Toledo: If M is a closed real hyperbolic n-manifold
(n ≥ 3), then π1(M) is not projective.

By contrast, Taubes (1992) showed that every finitely
presented group is π1 of a compact complex manifold (of
dimC = 3).
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Some exercises: quasi-projective case

Exercise: All cyclic groups are quasi-projective.
Hint 1: If C ⊂ CP2 is a smooth plane curve of degree d , then
π1(CP2 \ C ) = Z/d .
Hint 2: If L1, L2 are lines in CP2, then π1(CP2 \ (L1 ∪L2)) = Z.

Exercise: All abelian groups are quasi-projective.
Hint: If C0, . . . ,Cr ⊂ CP2 are irreducible smooth curves of
degree di = degCi intersecting transversally, then

π1(CP2 \ (C0 ∪ . . . ∪ Cr )) = Zr ⊕ Z/d ,
where d = gcd(d0, . . . , dr ).

Exercise: All free groups of finite rank are quasi-projective.
Hint: What is π1 of CP1 minus a finite set of points?

Exercise: Finite index subgroups of (quasi-)projective groups
are (quasi-)projective.

Exercise: Direct products of (quasi-)projective groups are
(quasi-)projective.

Morgan (1978), Kapovich-Milson (1997), etc. found infinitely
many non-isomorphic examples of non-quasi-projective groups.
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Some exercises: projective/Kähler

Exercise: Z2n is projective (hence Kähler).
Hint: Z2n = π1(A), where A ∼= Cn/Z2n is an abelian variety of
complex dimension n.

Exercise: Direct products of Kähler groups are Kähler.
Hint: a product of Kähler manifolds is Kähler.

Exercise: Finite index subgroups of Kähler groups are Kähler.
Hint: Kähler metrics can be lifted to finite coverings.

Exercise: Non-trivial free groups are not Kähler.
Hint: such groups have subgroups of finite index and odd rank.

Exercise: Z/2 ∗ Z/2 is not Kähler.
Hint: it contains Z with index 2.

Exercise: SL(2,Z) is not Kähler.
Hint: it contains subgroups of finite index which are free.

SL(n,Z) is not Kähler for n > 2 (non-abelian Hodge theory).
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A group may contain a Kähler/projective group without being
itself Kähler/projective: e.g., π1 of the Klein bottle is not
projective (why?), but it contains Z2 with index 2.

Laurentiu Maxim Fundamental groups



One may also study sub-classes of (quasi-)projective/Kähler
groups.

Delzant (2010): a solvable Kähler group is virtually nilpotent.

Donaldson-Goldman Conjecture (proved by Dimca-Suciu,
Kotschick,...): If π is a Kähler group and π = π1(M) for M a
closed 3-manifold, then π is a finite group.

Hence, infinite 3-manifold groups are not Kähler!
E.g., π1(S × Z) is not Kähler (with S a closed orientable real
surface).

Blasco-Garcia, Cogolludo: studied quasi-projectivity of Artin
groups (cf. also Dimca-Papadima-Suciu for the case of
right-angled Artin groups).
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π1’s of hypersurface complements

From now on, consider only the sub-class of π1 of complex
quasi-projective manifolds which are complements to
hypersurfaces in Cn (or CPn).

Reduction to a low-dimensional topology problem: by a
Zariski-Lefschetz type theorem, possible π1’s of complements
to hypersurfaces in Cn (or CPn) are precisely the fundamental
groups of complements to plane curves in C2 (resp. CP2), a
class of groups already considered by Zariski and Van Kampen
in 1930s.

Question: What groups can be π1 of complements to curves
in C2 (resp. CP2)? What obstructions are there?

E.g., many knot groups cannot be realized as π1(C2 \ C) for a
plane curve C (to be justified later).
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This question is also motivated by Zariski’s problem:

Find examples of Zariski pairs, i.e., pairs of plane curves in
CP2 which have homeo tubular neighborhoods (hence same
type of singularities), but non-homeo complements (due to
the position of their singularities.)

E.g., Let C̄ ⊂ CP2 be a sextic with 6 cusps (i.e., locally
defined by x2 = y3). Zariski showed that the moduli space of
such curves has (at least) two connected components,
representatives in each component being distinguished by π1
of their complements.

A lot of work on Zariski pairs done by Artal-Bartolo,
Tokunaga, Oka, Shimada, Eyral, Cogolludo, etc.

Laurentiu Maxim Fundamental groups



π1’s of plane curve complements are difficult to handle.

Zariski’s conjecture: If C̄ ⊂ CP2 has only nodal singularities
(i.e., locally defined by x2 = y2), then π1(CP2 \ C̄) is abelian.
(proved by Deligne and Fulton, cf. also Orevkov, Oka,...)

Nori: If C̄ ⊂ CP2 has a nodes and b cusps, and 2a+ 6b < d2

(d = deg C̄), then π1(CP2 \ C̄) is abelian.

Tokunaga: If C̄ ⊂ CP2 has a nodes and b cusps, and
2a+ 6b > 2d2 − 6d + 6, then π1(CP2 \ C̄) is not abelian.

There are Zariski pairs of degree d = 6 with a nodes
(a = 0, .., 3) and 6 cusps which fail one test or the other.
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An interesting example of π1

Example (Oka, Nemethi)

Let p, q ∈ Z, p, q ≥ 2, with (p, q) = 1. Consider

C̄p,q : (xp + yp)q + (yq + zq)p = 0

Then
π1(CP2 \ C̄p,q) = Z/p ∗ Z/q

♣ p = 2, q = 3: Zariski’s sextic curve with six cusps on a conic.
♣ recent generalizations by Cogolludo-Elduque.
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It is natural to look for invariants of π1 which are easier to
handle that π1, and still capture a lot of the topology of the
curve. For instance, one may consider

Alexander-type invariants (polynomials, modules)
Novikov-Betti numbers
L2 Betti numbers

Rigidity properties for such invariants impose lots of
obstructions on π1’s of curve complements.
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I. Alexander-type invariants of plane curve complements
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Plane curve complements: Setting

Let C̄ = {F (x , y , z) = 0} be a degree d reduced curve in CP2.

Let L∞ = {z = 0} ⊂ CP2 be a generic line, i.e., C̄ ⋔ L∞.

Let f (x , y) := F (x , y , 1), and

C = {f (x , y) = 0} = C̄ \ L∞ ⊂ C2.

Zariski: there is a central extension:

0 → Z → π1(C2 \ C) → π1(CP2 \ C̄) → 0,

so π1(C2 \ C) and π1(CP2 \ C̄) carry the “same” info.

it is more convenient to work with C2 \ C, which has a larger
π1 than CP2 \ C̄.
Set M = C2 \ C, with π = π1(M).

M is h.e. to a finite CW complex of real dimension 2.

H1(M) = H1(π) = Zr , for r = # of irred. components of C.
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(a) Classical Alexander polynomials

M = C2 \ C = CP2 \ (C̄ ∪ L∞), with C̄ ⋔ L∞.

f∗ : π = π1(M) → π1(C∗) = Z induces a Z-fold cover Mc of
M, the pullback of the universal cover C → C∗.

Hi (M
c ;C) is a finitely generated C[Z] ≃ C[t±1]-module.

Theorem (Libgober)

H1(M
c ;C) is a torsion C[t±1]-module.

Definition

∆C(t) := order H1(M
c ;C) is the Alexander polynomial of C (or π).

∆C(t) can be computed by Fox calculus from a presentation
of π (e.g., obtained via braid monodromy).

Rigidity properties of ∆C(t) impose obstructions on π.
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Relation to Milnor fiber of F

Let MF := F−1(1) be the Milnor fiber of the degree d
homogeneous polynomial F (x , y , z) which defines C ⊂ CP2,
with monodromy h : MF → MF .

hd = id , and MF/⟨h⟩ ≃ CP2 \ C̄.
Randell: The Alexander polynomial ∆C(t) equals the
characteristic polynomial of monodromy h∗ : H1(MF ) ⟲
Consequences:

deg∆C(t) = b1(MF ).
if C is irreducible, then ∆C(t) = 1 ⇐⇒ H1(MF ) is at most a
finite group.
if π1(CP2 \ C̄) is a finite group, then ∆C(t) = 1.
the multiplicity of the factor (t − 1) in ∆C(t) is r − 1, i.e.,
rankH1(MF )1, with r = # of irred. components of C.
Libgober: ∆C(t) divides (t

d − 1)d−2(t − 1).

∆C(t) is a product of cyclotomic polynomials.
roots of ∆C(t) are d-th roots of unity.
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Example

Many knot groups, e.g. that of figure eight knot (whose
Alexander polynomial is t2 − 3t + 1), cannot be of the form
π1(C2 \ C).
However, the class of possible π1 of plane curve complements
includes braid groups, or groups of torus knots of type (p, q).

Example

Let p, q ∈ Z, p, q ≥ 2, with (p, q) = 1. Consider Oka’s curve

C̄p,q : (xp + yp)q + (yq + zq)p = 0

with Cp,q = C̄p,q \ L∞. Then π1(C2 \ Cp,q) is π1 of a torus knot of
type (p, q), and

∆Cp,q(t) =
(tpq − 1)(t − 1)

(tp − 1)(tq − 1)
.
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Relation to Milnor fiber, cont’d

Let MF := F−1(1) be the Milnor fiber of the degree d
homogeneous polynomial F (x , y , z), with monodromy h.

Recall: deg∆C(t) = b1(MF ).

H1(MF ) = H1(MF )1 ⊕ H1(MF ) ̸=1

rankH1(MF )1 = rankH1(CP2 \ C̄) = r − 1

rankH1(MF )̸=1 = b3(V ), where V is a d-fold cover of CP2

branched along C̄. (This non-unipotent piece is the jump.)

Problem: compute b1(MF ).

Main difficulty: as we will see, b1(MF ) depends on the
position of singularities of C̄ in CP2.

Conjecture: if F defines a line arrangement in CP2, then
b1(F ) and h∗ : H1(MF ) ⟲ are combinatorially determined.
(Progress: Dimca, Papadima, Suciu, Libgober, etc.)
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Divisibility results for Alexander polynomials

For each x ∈ Sing(C), let Lx := S3
x ∩ C be the link of x , with

(local) complement Mx := S3
x \ Lx .

Milnor: There is a locally trivial fibration Fx ↪→ Mx → S1

The Milnor fibre Fx is homotopy equivalent to a join of circles,
their number being equal to the Milnor number µ(C, x).
Let hx : Fx → Fx be the monodromy homeomorphism.

The local Alexander polynomial at x is defined by

∆x(t) := det (tI − (hx)∗ : H1(Fx) → H1(Fx))

Monodromy theorem: the zeros of ∆x(t) are roots of 1.
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Theorem (Libgober)

∆C(t) divides (t − 1)r−1 ·
∏

x∈Sing(C)∆x(t)

Theorem (M.)

For any irreducible component Ci of C, ∆C(t) divides
(t − 1)r−1 ·

∏
x∈Sing(C)∩Ci ∆x(t)

Corollary

∆C(t) is a product of cyclotomic polynomials.

Corollary

Let C̄ ⊂ CP2 be an irreducible degree d curve with only nodes and
cusps as its singularities. If d ̸≡ 0 (mod 6), then ∆C(t) = 1.

Theorem (Budur-Liu-Wang)

If π = π1(M) is a quasi-projective group, and ϵ : π → Z an
epimorphism, then ∆π(t) is a product of cyclotomic polynomials,
where ∆π is the order of the torsion part of H1(Mϵ;C).

Laurentiu Maxim Fundamental groups



The divisibility results for ∆C(t) show that the local type of
singularities affects the topology of C.
Zariski showed that the position of singularities has effect on
the topology of C.
Moreover, Libgober noticed that ∆C(t) is already sensitive to
the position of singularities.

Example (Zariski’s sextics with 6 cusps)

Let C̄ ⊂ CP2 be an irreducible sextic with only 6 cusps.
Set C := C̄ \ L∞, for L∞ a generic line at infinity in CP2.

If the 6 cusps are on a conic, then π1(C2 \ C) is isomorphic to π1 of
the trefoil knot, and has Alexander polynomial ∆C(t) = t2 − t + 1.
(In fact, π1(CP2 \ C̄) ∼= Z2 ∗ Z3)

If the 6 cusps are not on a conic, then π1(C2 \ C) is abelian, so
∆C(t) = 1. (In fact, π1(CP2 \ C̄) ∼= Z2 × Z3)
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Artin’s Braid groups

Example

Moishezon showed that Artin’s braid group on k strands

Bk = ⟨σ1, . . . , σk−1 | σiσj = σjσi , |i − j | ≥ 2;σiσi+1σi = σi+1σiσi+1⟩

appears as π1(C2 \ Ck), where Ck is an affine curve in general
position at infinity, whose projective completion C̄k is the
branching locus of a generic projection Vk → CP2, with Vk a
degree k smooth surface in CP3.
Then C̄k is an irreducible curve of degree k(k − 1) with
k(k − 1)(k − 2)(k − 3)/2 nodes and k(k − 1)(k − 2) cusps.
E.g., if k = 3, C̄3 is the six-cuspidal sextic with all cusps on a
conic, and recall that B3 is π1 of the trefoil knot.
For k ≥ 5, one computes (e.g., using Reidemeister-Schreier)
B ′
k/B

′′
k = 0, hence Ck has a trivial Alexander polynomial.

The Alexander polynomial of C4 is t2 − t + 1.
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Several important algebro-geometric descriptions of ∆C(t)
have been obtained by Libgober, Loeser-Vaquié, Esnault,
Artal-Bartolo, etc.

Cogolludo-Libgober: If C̄ ⊂ CP2 is a degree d irreducible
curve with only nodes and cusps singularities, then

deg∆C(t) ≤
5

3
d − 2.
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Mixed Hodge structure on the Alexander module

Libgober, Kulikov-Kulikov: the Alexander module Hi (M
c ;Q)

carries a canonical mixed Hodge structure.

Libgober: generalization to higher dimensional hypersurfaces
with only isolated singularities.

M., Dimca-Libgober: generalization to higher dimensional
hypersurfaces with arbitrary singularities.

Elduque-Geske-Herradon-M.-Wang: constructed MHS on the
torsion parts of the Alexander modules of a complex
quasi-projective manifold X , induced via an algebraic map
f : X → C∗.

Laurentiu Maxim Fundamental groups



“Weakness” of Alexander polynomial

Assume C̄ = C̄1 ∪ C̄2 ⊂ CP2, so that C̄1, C̄2 are reduced and
intersect transversally.

Fix a generic line L∞ at infinity, and let C = C̄ \ L∞,
Ci = C̄i \ L∞ (i = 1, 2).

Oka-Sakamoto: There is an isomorphism (induced by
inclusions C2 \ C ⊂ C2 \ Ci ):

π1(C2 \ C)
∼=−→ π1(C2 \ C1)× π1(C2 \ C2).

∆C(t) = (t − 1)r−1, where r = # of irred. components of C.
so, while π1(C2 \ C) retains information about C̄1, C̄2, the
Alexander polynomial ∆C(t) does not!

to overcome this “weakness”, can study twisted versions of
Alexander polynomials or higher coverings of the plane curve
complement (e.g., universal abelian cover, solvable covers,
etc.).
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(b) Twisted Alexander invariants

introduced by Lin, Wada, Kirk-Livingston in 1990s.

striking applications to the study of real closed 3-manifolds by
Friedl-Vidussi.

adapted to the study of plane curve complements by
Cogolludo-Florens, who found new examples of Zariski pairs
which can be detected by the twisted Alexander polynomial,
but which have the same classical Alexander polynomial.
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Setup

M := path-connected finite CW complex, π := π1(M).

ε : π → Z homomorphism.

Mε := infinite cyclic cover of M defined by π̄ := ker(ε).

V - finite dim. C-vector space, ℓ := dimCV.
ρ : π → GL(V) representation, denoted by Vρ.

Definition (Twisted Alexander modules)

The i-th twisted Alexander module of (M, ε, ρ) is:

Hε,ρ
i (M;C[t±1]) = Hi (Mε;Vρ) := Hi (C∗(Mε,Vρ)) ,

where C∗(Mε,Vρ) := V⊗C[π̄] C∗(Mε) is the twisted chain complex
of Mε.
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Twisted Alexander invariants of plane curve complements

Assume M = C2 \ C, with C̄ ⋔ L∞, and let π = π1(M).

Theorem (M.-Wong)

For any pair (ε, ρ), the twisted Alexander modules Hε,ρ
i (M;C[t±1])

of M = C2 \ C are torsion C[t±1]-modules, for i = 0, 1.

Remark

If ε = lk, V = C and ρ = trivial , get back the classical Alexander
modules Hi (M

c ;C) of M.

Definition

∆ε,ρ
C (t) = order Hε,ρ

1 (M;C[t±1]) is the twisted Alexander
polynomial of (C, ε, ρ).
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Roots of twisted Alexander polynomials

M = C2 \ C = CP2 \
(
C̄ ∪ L∞

)
.

Let γ∞ be the meridian in π = π1(M) about L∞.

Theorem (M.-Wong)

Assume ε = lk, and ρ : π → GL(V) an arbitrary representation.
Let λ1, · · · , λℓ be the eigenvalues of ρ(γ∞)−1.
Then the roots of ∆ε,ρ

C (t) are contained in the splitting field of∏ℓ
i=1(t

d − λi ) over Q, which is cyclotomic over Q(λ1, · · · , λℓ).
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Divisibility for twisted Alexander polynomials

If x ∈ Sing(C), let Lx = S3
x ∩ C be the link of x , with local

complement Mx = S3
x \ Lx .

Let πx := π1(Mx).

Let (εx , ρx) be the pair induced by (ε, ρ) on πx via πx → π.

Theorem (M.-Wong)

If x ∈ Sing(C), the local twisted Alexander modules at x, i.e.,
Hεx ,ρx
i (Mx ;C[t±1]), are torsion C[t±1]-modules for i = 0, 1.

Definition

∆εx ,ρx
x (t) := order Hεx ,ρx

1 (Mx ;C[t±1]) is the local twisted
Alexander polynomial at x .

Theorem (Cogolludo-Florens, M.-Wong)

divisibility for twisted Alexander polynomials, relating the local and
global ones.
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II. Novikov homology
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Novikov-Betti and Novikov-torsion numbers

M :=connected topological space, h.e. to a finite CW
complex, π := π1(M).

fix ξ ∈ H1(M;R) ∼= Hom(π,R).

Γξ := Im(π
ξ→ R) ↪→ R, so Γξ ∼= Zs , for some s = rk(ξ) ≥ 0.

Mξ := covering of M defined by ker(ξ), so Hi (Mξ;Z) are
finitely generated Z[Γξ]-modules.

the i -th Novikov-Betti number bi (M, ξ) of (M, ξ) is the
Z[Γξ]-rank of Hi (Mξ;Z):

bi (M, ξ) := dimQξ
Qξ ⊗Z[Γξ] Hi (Mξ;Z) = rkRΓξHi (M;RΓξ),

where Qξ := Frac(Z[Γξ]), and RΓξ is the rational Novikov
ring of Γξ (a certain PID localization of Z[Γξ]).
the i -th Novikov-torsion number qi (M, ξ) is the minimal
number of generators of Tors(Hi (M;RΓξ)).
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Theorem (Properties of Novikov-Betti numbers)

χ(M) =
∑

i (−1)ibi (M, ξ).

bi (M, ξ) ≤ bi (M), for any ξ ∈ H1(M;R).
bi (M, 0) = bi (M).
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Novikov-type invariants of plane curve complements

Assume M = C2 \ C, with C̄ ⋔ L∞, and let π = π1(M)

Definition

ξ ∈ H1(M;R) is called positive if ξ : π → R takes strictly positive
values on each positively oriented meridian about the irreducible
components of C.

Theorem (Friedl-M.)

For any positive ξ ∈ H1(M;R), we have:

bi (M, ξ) =

{
0, i ̸= 2,

χ(M), i = 2.

qi (M, ξ) = 0 for all i ≥ 0.

Remark

The above result holds more generally, for twisted Novikov-type
invariants.

Laurentiu Maxim Fundamental groups



III. L2-Betti numbers
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To any CW complex M, countable group Γ, and group
homomorphism α : π1(M) → Γ, one associates L2-Betti numbers

b
(2)
i (M, α) := dimN (Γ)Hi

(
C∗(Mα)⊗ZΓ N (Γ)

)
∈ [0,∞],

where Mα is the covering of M defined by α, and N (Γ) is the
von Neumann algebra of Γ (a certain completion of C[Γ]), so that

b
(2)
i (M, α) is a homotopy invariant of the pair (M, α).

if M is a finite CW-complex,

χ(M) =
∑
i≥0

(−1)i · b(2)i (M, α)

Remark (Friedl-M.)

Novikov-Betti numbers associated to ξ ∈ H1(M;R) are special
cases of L2-Betti numbers (but torsion-Novikov numbers do not
have an L2 interpretation):

bi (M, ξ) = b
(2)
i (M, π1(M)

ξ
↠ Im(ξ))
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Back to Curves

C = {f (x , y) = 0}, M = C2 \ C, π = π1(M).

α : π → Γ is called admissible if f∗ : π → Z factors through α.

For admissible α, let π̄ = ker(f∗), with corresponding covering
Mc , and Γ̄ := Im(π̄ ↪→ π

α→ Γ) with induced map ᾱ : π̄ → Γ̄.

Consider b
(2)
p (M, α) and b

(2)
p (Mc , ᾱ).

A priori, there is no reason to expect b
(2)
1 (Mc , ᾱ) to be finite

(as Mc is not a finite CW complex).
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Obstructions on the L2-Betti numbers of curves

Theorem (Friedl-Leidy-M.)

If α : π1(M) → Γ is admissible, then

b
(2)
i (M, α) =

{
0, i ̸= 2,

χ(M), i = 2.

Corollary

b
(2)
i (M, α) (i ≥ 0) depends only on the degree of C and on the

local type of singularities, and is independent on α and on the
position of singularities of C. In fact,

b
(2)
2 (M, α) = (d − 1)2 −

∑
x∈Sing(C)

µ(C, x).
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Obstructions on the L2-Betti numbers of curves, cont’d

Theorem (Friedl-Leidy-M.)

If α : π1(M) → Γ is admissible, then b
(2)
1 (Mc , ᾱ) is finite, and an

upper bound is determined by the local type of singularities of C:

b
(2)
1 (Mc , ᾱ) ≤

∑
x∈Sing(C) (µ(C, x) + nx − 1) + 2g + d ,

where nx is the number of branches through x ∈ Sing(C) and g is
the genus of the normalization of C.

Remark

b
(2)
1 (Mc , ᾱ) depends in general on the position of singularities of C

(this can be checked on Zariski’s example of sextics with 6 cusps).
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Consequences of finiteness property

Free groups Fm with m ≥ 2 cannot be of the form π1(C2 \ C), for
C a curve in general position at infinity, and similarly for groups of
(complements of) boundary links (i.e., those links whose
components admit mutually disjoint Seifert surfaces).
Equivalently, such groups cannot be central extensions by Z of
groups of the form π1(CP2 \ C̄).
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Concluding remarks

All invariants of plane curve complements discussed in this
lecture are dominated by the corresponding invariants of the
link of C at infinity (i.e., Hopf link on d components) and,
resp., by those of the boundary manifold of C.

All the above finiteness/torsion/rigidity results for
homological-type invariants (Alexander modules and
polynomials, various types of Betti numbers etc.) admit higher
dimensional generalizations to complements of hypersurfaces
in Cn (or CPn) with arbitrary singularities. Proofs are more
involved (use intersection homology, perverse sheaves, etc.).

One can prove similar statements even after relaxing mildly
the transversality assumption (in works of Libgober,
Elduque-M.)
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THANK YOU !!!
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Happy Birthday
Enrique and Alejandro !!!
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