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♣ Intersection (co)homology was initially introduced in topology,
for studying properties of spaces with singularities (like Poincaré
duality).

♣ Since its inception, intersection (co)homology found applications
in many fields where singular spaces play an important role, like:
algebraic geometry, combinatorics, or representation theory.
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♣ We will work with complex projective varieties X ⊂ CPN .

♣ CPN = CN+1−{0}
C−{0} = {complex lines in CN+1}.

♣ X = {[z0 : . . . : zN ] ∈ CPN | fj(z0, . . . , zN) = 0, 1 ≤ j ≤ m},
where f1, . . . , fm are homogeneous polynomials in N + 1 variables.

♣ X is smooth (or non-singular) if the Jacobian matrix
(

∂fj
∂zi

)
has

rank m. In this case, X is a complex submanifold of CPN .

♣ Otherwise X is said to be singular.

♣ (Singular/simplicial) Homology (with C-coefficients):

H∗(X ) := H∗(X ;C) = H∗(C∗(X )⊗ C),

with C∗(X ) the chain complex of singular/PL chains in X .

♣ Cohomology (with C-coefficients):

H∗(X ) := H∗(X ;C) ∼= H∗(X )∨.
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Motivation: Kähler package for the cohomology of complex
projective manifolds
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Theorem (Kähler package)

Assume X ⊂ CPN is a complex projective manifold, dimC(X ) = n.
Then H∗(X ) := H∗(X ;C) satisfies the following properties:

(a) Poincaré duality:

H i (X ) ∼= H2n−i (X )∨

for all i ∈ Z. In particular, the Betti numbers of X in
complementary degrees coincide: bi (X ) = b2n−i (X ).

(b) Hodge decomposition:

H i (X ) ∼=
⊕

p+q=i

Hp,q(X ),

with Hq,p(X ) = Hp,q(X ). In particular, the odd Betti
numbers of X are even.
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Theorem (Kähler package, cont’d)

(c) Lefschetz hyperplane section theorem (Weak Lefschetz): If H
is a generic hyperplane in CPN , the restriction homomorphism

H i (X ) −→ H i (X ∩ H)

is an isomorphism for i < n− 1, and it is injective if i = n− 1.
In particular, generic hyperplane sections of X are connected
if n ≥ 2.

(d) Hard Lefschetz theorem: If H is a generic hyperplane in CPN ,
there is an isomorphism

Hn−i (X )
∪[H]i−→ Hn+i (X )

for all i ≥ 0, where [H] ∈ H2(X ) is the Poincaré dual of
[X ∩ H] ∈ H2n−2(X ). In particular, the Betti numbers of X
are unimodal: bi−2(X ) ≤ bi (X ) for all i ≤ n/2.
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Application to combinatorics

♣ Let p(i , d , n − d) be the number of partitions of the integer i
whose Young diagrams fit inside a d × (n − d) box (i.e., partitions
of i into ≤ d parts, with largest part ≤ n − d).

♣ Show that the sequence

p(0, d , n − d), p(1, d , n − d), · · · , p(d(n − d), d , n − d)

is symmetric and unimodal.

♣ Let X = Gd(Cn) be the Grassmann variety of d-planes in Cn;
this is a complex projective manifold of dimension d(n − d).

♣ X has an algebraic cell decomposition (i.e., all cells are complex
affine spaces), so all of its cells appear in even real dimensions.
Hence the odd Betti numbers of X vanish.

♣ The even Betti numbers of X are computed as

b2i (X ) = p(i , d , n − d)

♣ The assertion about p(i , d , n− d) follows by applying the Kähler
package to H∗(X ).
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Singular context: Kähler package fails in cohomology!
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Example

X = CP2 ∪P CP2 ⊂ CP4, Sing(X ) = {P}.

a

P δ

b

CP1 CP1

CP2 CP2

H

H i (X ) =



C i = 0

0 i = 1

C⊕ C i = 2

0 i = 3

C⊕ C i = 4.

the 0-cycles [a] and [b] ∈ C0(X ) cobound a 1-chain δ passing
through P. So [a] = [b] ∈ H0(X ) ∼= H0(X )∨.

if H is a generic hyperplane in CP4 then X ∩H = CP1 ⊔CP1

is not connected, so the Lefschetz hyperplane section theorem
fails.

H0(X ) = C ≇ C⊕ C = H4(X ), so Poincaré duality and Hard
Lefschetz also fail for the singular space X .
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Example: Nodal cubic

X = {x30 + x31 = x0x1x2} ⊂ CP2, Sing(X ) = {P = [0 : 0 : 1]}.

P

δ

η

We have

H1(X ) = C = ⟨η⟩ ∼= H1(X ),

where η is a longitude in X . (The
meridian δ is a boundary in X .)
As the first Betti number b1(X )
is odd, there cannot exist a Hodge
decomposition for H1(X ).
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Intersection homology: chain definition
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♣ To restore the Kähler package for singular varieties, one has to
replace cohomology by (middle-perversity) intersection cohomology
IH∗(X ).

♣ Homologically, this is a theory of allowable chains

IC∗(X ) ⊂ C∗(X )

(with induced boundary maps).

♣ Allowability controls the defect of transversality of intersections
of chains with the singular strata of X .
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Example

X = CP2 ∪P CP2 ⊂ CP4, Sing(X ) = {P}.

a

P δ

b

CP1 CP1

CP2 CP2

H

H i (X ) =



C i = 0

0 i = 1

C⊕ C i = 2

0 i = 3

C⊕ C i = 4.

to restore the symmetry of Betti numbers, 1-chains should not
be allowed to pass through singularities.

the 1-chain δ connecting the 0-cycles [a] and [b] will not be
allowed, hence [a] ̸= [b] in IH0(X ) = C⊕ C.
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Example: Nodal cubic

X = {x30 + x31 = x0x1x2} ⊂ CP2, Sing(X ) = {P = [0 : 0 : 1]}.

P

δ

η

H1(X ) = C = ⟨η⟩.
If we do not allow 1-chains
to pass through P, the
1-chain η is not allowed, but
2-chains are allowed to go
through P (so δ is still a
boundary).

[δ] = 0 in IH1(X ) = 0.
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For simplicity, include here the chain definition of intersection
homology only for complex varieties with isolated singularities.
Everything works with coefficients in an arbitrary noetherian ring A
(e.g., Z or a field), but use C for convenience.

Definition (Goresky-MacPherson)

Let X be a pure-dimensional (e.g., irreducible) complex algebraic
variety with only isolated singularities, with dimC(X ) = n.
If ξ is a PL i-chain on X with support |ξ| (in a sufficiently fine
triangulation of X compatible with the natural stratification
Sing(X ) ⊂ X ), then:

ξ ∈ ICi (X ) ⇐⇒

{
dim(|ξ| ∩ Sing(X )) < i − n

dim(|∂ξ| ∩ Sing(X )) < i − n − 1.

with boundary ∂ : ICi (X ) → ICi−1(X ) induced from ∂ of C∗(X ).
Get a chain complex (IC∗(X ), ∂) of allowable chains whose
homology is the (middle-perversity) intersection homology IH∗(X ).
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Since low-dimensional chains are not allowed to meet the singular
points and there are no restriction on higher chains, we get:

Proposition

Let X be a pure-dimensional complex algebraic variety,
dimC(X ) = n, with only one isolated singular point P. Then,

IHi (X ) =


Hi (X − {P}), i < n,

Image(Hn(X − {P}) → Hn(X )), i = n,

Hi (X ), i > n.

Example (Nodal cubic)

For the nodal cubic, X−{P} deformation
retracts to δ, a boundary in X . So:

IHi (X ) =


C, i = 0,

0, i = 1,

C, i = 2.

P

δ

η
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Remarks

♣ For a projective variety X of complex pure dimension n and with
arbitrary singularities, we start with a Whitney (pseudomanifold)
stratification of X and the associated filtration

X = Xn ⊇ Xn−1 ⊇ . . . ⊇ X0 ⊇ ∅,

where Xi denotes the (closed) union of strata of complex
dimension ≤ i , and impose conditions on how chains and their
boundaries meet all singular strata:

ξ ∈ ICi (X ) ⇐⇒ ∀k ≥ 1,

{
dim(|ξ| ∩ Xn−k) < i − k

dim(|∂ξ| ∩ Xn−k) < i − k − 1.

Similar constructions apply to real pseudomanifolds, e.g., (open)
cones on manifolds, etc.
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Remarks

♣ If X is a compact pseudomanifold of real dimension m (e.g., a
complex projective variety of dimenison m/2), McCrory showed
that

Hm−i (X ) ∼= Hi (C
tr
∗ (X ))

is the homology of the complex of transverse chains (which meet
the singular strata in the expected dimension).
Since Hi (X ) = Hi (C∗(X )) is the homology of all chains, the
intersection homology IH∗(X ) splits the difference, so the cap
product map

∩[X ] : Hm−i (X ) → Hi (X )

factors through IHi (X ).
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Remarks

♣ If X is not compact, we can also work with locally finite
allowable chains IC lf

i (X ), which compute the Borel-Moore version
of intersection homology, IHBM

∗ (X ). This theory is good for
sheafification.

♣ IH∗ is not a homotopy invariant (e.g., if L is a real manifold,
then IH∗(c̊L) is the same as H∗(L) in low degrees; recall that low
dimensional chains cannot go through the cone/singular point.)

♣ IH∗ is not functorial.

♣ IH∗ is independent of the stratification and PL structure used to
define it.

♣ IH∗ is a topological invariant.

♣ If X is a (rational homology) manifold, then IH∗(X ) = H∗(X ).
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Remarks

♣ A singular version of intersection homology was developed by
King. An allowable singular i-simplex on X is a singular i-simplex
σ : ∆i → X satisfying

σ−1(Xn−k − Xn−k−1) ⊆ (i − k)-skeleton of ∆i

for all k ≥ 1 (again, k denotes here the complex codimension).
A singular i-chain is allowable if it is a (locally finite) combination
of allowable singular i-simplices. In order to form a subcomplex of
allowable chains, need to ask that boundaries of allowable singular
chains are allowable.
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Sheafification of allowable chains.
Deligne’s IC -complex
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Setup

♣ For simplicity, work with field coefficients A, e.g., Q or C.
♣ X pure-dimensional complex algebraic variety, dimC(X ) = n.

♣ X has a Whitney (pseudomanifold) stratification which yields a
filtration

X = Xn ⊇ Xn−1 ⊇ . . . ⊇ X0 ⊇ ∅,

with Xi the (closed) union of strata of complex dimension ≤ i .

♣ X admits a PL structure compatible with the stratification (i.e.,
each Xi is a union of simplices).

♣ If U ⊆ X is an open subset, then U gets an induced PL
structure, so ICi (U) and IC lf

i (U) can be defined.
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Sheafification of allowable chains

Definition

For every integer i , define a (soft) sheaf IC−i ∈ ShA(X ) whose
sections on each open subset U of X are given by

IC−i (U) := IC lf
i (U),

i.e., the allowable locally finite i-chains on U (with A-coefficients).
Differentials

d−i : IC−i → IC−i+1

are induced by the boundary maps ∂i : ICi → ICi−1.
This defines a bounded complex of sheaves of A-modules IC •

top,
called the intersection cohomology complex of X .

Laurentiu Maxim Intersection homology



Proposition

We have:

IHBM
i (X ) := Hi (IC

lf
• (X )) = H−i (IC lf

−•(X )) = H−iΓ(X , IC •
top)

∼= H−i (X ; IC •
top).

Similarly,
IHi (X ) ∼= H−i

c (X ; IC •
top).

Remark

One can start with a local system L on X − Xn−1, get (soft)
sheaves IC−i (L ) and a complex IC •

top(L ) whose

hypercohomology computes IHBM
i (X ;L ).

♣ One can now employ the 6-functor formalism (in the derived
category Db(X )) and homological algebra to recast old, and prove
new, results about IH∗.
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Theorem

IC •
top(L ) is uniquely characterized in the derived category Db(X )

of bounded complexes by a set of axioms (derived from local chain
calculations), and can be constructed by Deligne’s recipe,
consisting of a sequence of (derived) pushforwards and truncations,
starting with L [2n] on X − Xn−1.

Remark

No PL structure is involved into Deligne’s construction of IC •
top, so

IH∗(X ), IHBM
∗ (X ) are independent of the underlying PL structure.

To get topological independence, it suffices to show that IC •
top is

independent of the stratification. For this, one can rephrase the
axioms in a way that depends minimally on the stratification.
(This involves (co)supports, like for defining perverse sheaves.)

Proposition

ICX := IC •
top[−n] is a (simple) perverse sheaf on X .
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Definition

Intersection cohomology groups with A-coefficients are defined by

IH i (X ) := Hi−n(X ; ICX ) = IHBM
2n−i (X ),

IH i
c(X ) := Hi−n

c (X ; ICX ) = IH2n−i (X ).

♣ For X of pure complex dimension n, there is a canonical map

QX [n] −→ ICX ,

induced by the isomorphism on the smooth locus of X , hence
inducing a homomorphism

H i (X ;Q) −→ IH i (X ;Q), for i ∈ Z.

Theorem

X is a rational homology manifold if and only if ICX = QX [n].
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Theorem (Poincaré Duality for IH∗)

For A a field and X a pure-dimensional complex projective variety
of dimC(X ) = n, there is a non-degenerate intersection pairing

IH i (X )⊗ IH2n−i (X ) −→ A

induced from the quasi-isomorphism in Db(X ):

DX (ICX ) ≃ ICX

Proof.

The dual complex DX (ICX ) satisfies the axioms for ICX .

♣ Geometrically, the intersection pairing is defined by an
appropriate count of intersection points of cycles of complementary
dimensions, upon perturbing them so that these intersections
happen in the nonsingular locus of X .
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Theorem (Lefschetz hyperplane section theorem for IH∗)

Assume A is a field. Let X ⊂ CPN be a pure n-dimensional closed
algebraic subvariety with a Whitney stratification X . Let
H ⊂ CPN be a generic hyperplane (transversal to all strata of X ).
Then for 0 ≤ i ≤ n − 2 the natural homomorphism

IH i (X ;A) −→ IH i (X ∩ H;A)

is an isomorphism, and it is a monomorphism for i = n − 1.

Proof.

For D = X ∩ H and U = X − D, one has a long exact sequence

· · · −→ IHk
c (U) −→ IHk(X ) −→ IHk(D) −→ · · ·

Stratified Morse theory (Goresky-MacPherson) for U affine yields:

IHk
c (U) = 0, ∀ k < n.
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♣ Hodge structures and Hard Lefschetz for IH∗(X ) are much more
involved and follow from work of Beinlinson-Bernstein-Deligne (by
positive characteristic methods), Saito (via mixed Hodge modules)
and/or de Cataldo-Migliorini (by classical Hodge theory).

Theorem (Hodge decomposition)

If X is a complex projective variety of pure complex dimension n,
then IH i (X ;Q) has a pure Hodge structure of weight i . Hence, the
odd intersection cohomology Betti numbers of X are even.

Remark

Ker
(
H i (Y ;Q) → IH i (Y ;Q)

)
= W≤i−1H

i (Y ;Q),

where W≤i−1H
i (Y ;Q) is the vector subspace of H i (Y ;Q)

consisting of classes of Deligne weight ≤ i − 1.
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Theorem (Hard Lefschetz theorem for intersection cohomology)

Let X be a complex projective variety of pure complex dimension
n, with [H] ∈ H2(X ;Q) the first Chern class of an ample line
bundle on X . Then there are isomorphisms

∪[H]i : IHn−i (X ;Q)
∼=−→ IHn+i (X ;Q)

for every integer i > 0, induced by the cup product by [H]i . Hence,
the intersection cohomology Betti numbers of X are unimodal.
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Theorem (Decomposition theorem)

Let f : X → Y be a proper map of irreducible complex algebraic
varieties, and let Y be the set of connected components of strata
of Y in a stratification of f . There is an isomorphism in Db(Y ):

Rf∗ICX ≃
⊕
i∈Z

⊕
S∈Y

ICS(Li ,S)[−i ],

where the local systems Li ,S on S are semi-simple.
In particular, for every j ∈ Z there is a splitting:

IH j(X ;Q) ∼=
⊕
i∈Z

⊕
S∈Y

IH j−dimC X+dimC S−i (S ;Li ,S).

Example

If F is a compact variety, the decomposition for the projection
Y × F → Y yields Künneth formula for intersection cohomology.
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♣ The set of supports of f is the collection of subvarieties S̄
(closure of strata) appearing in the above decomposition with a
non-zero local system Li ,S . E.g., f (X ) is in the support of f . This
set is difficult to determine in general, but it can be described
explicitly for toric maps (de Cataldo-Migliorini-Mustaţă), for
certain Hilbert-Chow maps (Migliorini-Schende, Maulik-Yun), etc.
♣ The following consequence of the decomposition theorem was
used by Ngô in the proof of his support theorem, which gives a
sharp condition for the absence of supports in the case of abelian
fibrations (a key step in his proof of the fundamental lemma in the
Langlands’ program):

Theorem

Let f : X → Y be a proper surjective map of complex algebraic
varieties, with X smooth. Assume f has pure relative dimension d
(i.e., all fibers of f have pure complex dimension d). Let S be a
subvariety of Y appearing in the decomposition of Rf∗QX [dimC X ].
Then codim Y (S) ≤ d .
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More generally, one has the following application of the
decomposition theorem:

Theorem

Let f : X → Y be a proper surjective map of complex irreducible
algebraic varieties. Then IH j(Y ;Q) is a direct summand of
IH j(X ;Q) for every integer j .
More precisely, if d = dimC X − dimC Y is the relative dimension
of f , then ICY [d ] is a direct summand of Rf∗ICX .

Corollary

The intersection cohomology IH j(Y ;Q) of an irreducible complex
algebraic variety Y is a direct summand of the cohomology
H j(X ;Q) of a resolution of singularities X of Y .
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Application: Stanley’s proof of McMullen’s conjecture
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♣ Stanley used intersection cohomology and its Kähler package to
prove McMullen’s conjecture, giving an if and only if condition for
the existence of a simplicial polytope with a prescribed face vector.

♣ Summary of Stanley’s idea:

to a simplicial polytope P one associates a projective (toric)
variety XP so that McMullen’s combinatorial conditions for P
translate into properties of the Betti numbers of XP .

XP is in general singular, but its singularities are mild (finite
quotient singularities), making XP into a rational homology
manifold. Hence H∗(XP ;Q) ∼= IH∗(XP ;Q).

the assertions about the Betti number of XP follow from the
Poincaré duality and the Hard Lefschetz theorem for its
intersection cohomology.
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McMullen’s conjecture

♣ Let P be an n-dimensional convex polytope.

♣ The face vector of P collects the numbers fi = fi (P) of its
i-dimensional faces, 0 ≤ i ≤ n − 1, into a string

f (P) := (f0, · · · , fn−1).

♣ Realization Problem: find conditions by which one can
recognize if a given string of natural numbers is the f -vector of a
convex polytope or not.

♣ Obvious obstructions, e.g., the face vector f (P) of P satisfies
the generalized Euler formula:

f0 − f1 + f2 − · · ·+ (−1)n−1fn−1 = 1 + (−1)n−1.

♣ McMullen (1971): conjectural description of f -vectors of
simplicial polytopes (i.e., convex polytopes whose faces are all
simplices).
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McMullen’s conjecture

♣ The h-vector h(P) := (h0, · · · , hn) of an n-dimensional
simplicial polytope P with face vector f (P) is defined by the
coefficients of the h-polynomial

h(P, t) =
∑n

i=0 hi t
i := (t − 1)n + f0(t − 1)n−1 + · · ·+ fn−1,

i.e., with f−1 := 1,

hi =
∑i

j=0

(n−j
n−i

)
(−1)i−j fj−1.

Conjecture (McMullen)

f = (f0, · · · , fn−1) ∈ Nn is the face vector f (P) of an n-dimensional
simplicial polytope P if and only if the following conditions hold:

(1) (Dehn–Sommerville) hi = hn−i for all 0 ≤ i ≤ n;

(2) there is a graded commutative Q-algebra R =
⊕

i≥0 Ri , with
R0 = Q, generated by R1, and with dimQ Ri = hi − hi−1 for
1 ≤ i ≤ ⌊n/2⌋. (In particular, hi−1 ≤ hi for 1 ≤ i ≤ ⌊n/2⌋.)
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Stanley’s proof of McMullen’s conjecture–necessity part

♣ The sufficiency part of McMullen’s conjecture was verified by
Billera–Lee (1980). Stanley proved the necessity part.
♣ By a slight perturbation and translation (which don’t change
f (P)), can assume P is rational (i.e., its vertices are in the rational
points of the given lattice) and contains the origin is in its interior.
♣ Define the fan Σ(P) consisting of the cones (with vertex at the
origin) over the proper faces of P, and let XP := XΣ(P) be the
associated toric variety.
♣ XP is projective and simplicial with dimC XP = n, hence a
rational homology manifold. Moreover, for every 0 ≤ i ≤ n,

b2i+1(XP) = 0 and b2i (XP) = hi (P).

♣ H∗(XP ;Q) ∼= IH∗(XP ;Q) satisfies Poincaré duality and Hard
Lefschetz.
♣ the Dehn–Sommerville relation (1) follows from Poincaré duality,
and the unimodality of the hi ’s in (2) follows by Hard Lefschetz.
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Remark

♣ If the polytope P is non-simplicial, the h-polynomial h(P, t) may
have negative coefficients and the Dehn–Sommerville relations do
not hold. Moreover, assuming P is rational, H∗(XP ;Q) can exist in
odd degrees, and the corresponding Betti numbers are not
invariants of the combinatorics of faces.
♣ To generalize the above to the rational non-simplicial context,
one needs to replace H∗(XP ;Q) by IH∗(XP ;Q). The generalized
h-polynomial h(P, t) =

∑n
i=0 hi (P)t

i is defined as

hi (P) := dimQ IH2i (XP ;Q),

and its coefficients satisfy the Dehn–Sommerville relations and
unimodality by Poincaré duality and, resp., Hard Lefschetz for IH∗.
♣ The generalized h-polynomial is a combinatorial invariant (can
be defined only in terms of the partially ordered set of faces of P).
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Application: Dowling-Wilson and Rota conjectures
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♣ Let E = {v1, · · · , vd} be a spanning subset of an n-dimensional
complex vector space V .

♣ Let wi (E ) be the number of i-dimensional subspaces spanned by
subsets of E .

Conjecture (Dowling-Wilson top-heavy conjecture)

For all i < n/2 one has:

wi (E ) ≤ wn−i (E ).

Conjecture (Rota’s unimodal conjecture)

There is some j so that

w0(E ) ≤ · · · ≤ wj−1(E ) ≤ wj(E ) ≥ wj+1(E ) ≥ · · · ≥ wn(E ).
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♣ Huh-Wang used the Kähler package on intersection cohomology
to prove the Dowling-Wilson top-heavy conjecture, and of the
unimodality of the “lower half” of the sequence {wi (E )}:

Theorem (Huh-Wang)

For all i < n/2, the following properties hold:

(a) (top heavy) wi (E ) ≤ wn−i (E ).

(b) (unimodality) wi (E ) ≤ wi+1(E ).

The proof rests on two key steps:

(1) There exists a (highly singular) complex n-dimensional
projective variety Y such that for every 0 ≤ i ≤ n one has:

H2i+1(Y ;Q) = 0 and dimQH2i (Y ;Q) = wi (E ).

(2) There exists a resolution of singularities π : X → Y of Y such
that the induced homomorphism

π∗ : H∗(Y ;Q) −→ H∗(X ;Q)

is injective in each degree.
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♣ To define the variety Y of Step (1), use E = {v1, · · · , vd} to
construct a map iE : V ∨ → Cd by regarding each vi ∈ E as a
linear map on the dual vector space V ∨. Precomposing iE with the
open inclusion Cd ↪→ (CP1)d yields a map

f : V ∨ → (CP1)d .

The matroid Schubert variety of E is defined as

Y := Im (f ) ⊂ (CP1)d .

♣ Ardila-Boocher showed that the variety Y has an algebraic cell
decomposition, the number of Ci ’s appearing in the decomposition
of Y being exactly wi (E ). This completes Step (1) by cellular
cohomology.
♣ Having defined Y , the resolution X is a sequence of blow-ups (a
wonderful model) associated to a certain canonical stratification of
Y . The cohomology rings of both Y and X are well-understood
combinatorially and Step (2) can be checked directly.
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♣ Assuming (1) and (2), note that π∗ factorizes as

π∗ : H∗(Y ;Q)
α→ IH∗(Y ;Q)

β
↪→ H∗(X ;Q).

♣ Since π∗ is injective by Step (2), get that

α : H∗(Y ;Q) → IH∗(Y ;Q)

is injective.

♣ The injectivity of α can be shown directly without using a
resolution, by making use of Hodge theory instead. This is a
consequence of two facts:

(i) Ker
(
α : H i (Y ;Q) → IH i (Y ;Q)

)
= W≤i−1H

i (Y ;Q).

(ii) the MHS on H i (Y ;Q) is pure of weight i (since Y has an
algebraic cell decomposition).
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Proof of Huh-Wang theorem

♣ Aim to follow the pattern of Stanley’s proof of McMullen’s
conjecture. But the space Y whose Betti numbers encode {wi (E )}
is singular, so H∗(Y ;Q) does not satisfy the Kähler package.
♣ For i < n/2, consider the following commutative diagram:

H2i (Y ;Q)

∪[H]n−2i

��

� � α // IH2i (Y ;Q)

∪[H]n−2i∼=
��

H2n−2i (Y ;Q) �
� α // IH2n−2i (Y ;Q)

where the right-hand vertical arrow is the Hard Lefschetz
isomorphism for IH∗(Y ;Q). Since the α’s are injective, get that

H2i (Y ;Q)
∪[H]n−2i

−−−−−→ H2n−2i (Y ;Q)

is also injective. Hence, for every i < n/2:

wi (E ) = dimQH2i (Y ;Q) ≤ dimQH2n−2i (Y ;Q) = wn−i (E )

♣ Part (b) follows similarly, using the unimodality of the
intersection cohomology Betti numbers.
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Remark

Dowling-Wilson and Rota conjectures concern matroids. The proof
by Huh-Wang discussed above is applicable only for matroids
realizable over some field. A more general proof was obtained
recently by Huh et co. for any matroid.
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Many more applications

♣ Topology of Hilbert schemes of points.

♣ Representation theory, e.g., Kazhdan-Lusztig polynomials are
computed from the IC -complex of Schubert varieties.

♣ Characteristic classes for singular varieties.

♣ Higher (rational and Du Bois) singularities via Hodge theory.

♣ . . . . . .
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Thank you !
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