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Abstract

The aim of this paper is to study the behavior of Hodge-theoretic (intersection

homology) genera and their associated characteristic classes under proper mor-

phisms of complex algebraic varieties. We obtain formulae that relate (parame-

trized families of) global invariants of a complex algebraic variety X to such

invariants of singularities of proper algebraic maps defined on X . Such formulae

severely constrain, both topologically and analytically, the singularities of com-

plex maps, even between smooth varieties. Similar results were announced by

the first and third author in [13, 32]. c© 2007 Wiley Periodicals, Inc.

1 Introduction

This paper and its sequels study the behavior of Hodge-theoretic (intersection

homology) genera and their associated characteristic classes under proper mor-

phisms of complex algebraic varieties. The formulae obtained in the present paper

relate global invariants to singularities of complex algebraic maps. They thus shed

some light on the mysterious formulae announced some years ago by the first and

third author in [13, 32].

These formulae can be viewed as, on the one hand, yielding powerful methods

of inductively calculating (even parametrized families of) characteristic classes of

algebraic varieties (e.g., by applying them to resolutions of singularities). On the

other hand, they can be viewed as yielding powerful topological and analytic con-

straints on the singularities of any proper algebraic morphism (e.g., even between

smooth varieties), expressed in terms of (even parametrized families of) their char-

acteristic classes. (Both these perspectives will be more fully developed following

our subsequent studies of the contributions of monodromy; e.g., see our forthcom-

ing paper [10].) Among these severe parametrized constraints on singularities of

maps obtained here in complex settings, only at one special value do these formulae

have full analogues for noncomplex maps (at y = 1, where they yield topological
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constraints on the signature and associated L-polynomials of Pontrjagin classes);

for that constraint on topological maps, see Cappell and Shaneson [12] (which

employed very different methods) and a comparison in Remark 2.11 below.

The main instrument used in proving our results is the functorial calculus of

Grothendieck groups of algebraic mixed Hodge modules. Originally, some of these

results were proven by using Hodge-theoretic aspects of a deep theorem of Bern-

stein, Beilinson, Deligne, and Gabber, namely, the decomposition theorem for the

pushforward of an intersection cohomology complex under a proper algebraic mor-

phism [5, 14, 15]. The functorial approach employed here was suggested to us by

the referee. However, the core calculations used in proving the results in this pa-

per are modeled on our original considerations based on BBDG. We assume the

reader’s familiarity with the language of sheaves and derived categories, as well as

that of intersection homology, perverse sheaves, and Deligne’s mixed Hodge struc-

tures. But we do not assume any knowledge about Saito’s mixed Hodge modules,

except maybe the now-classical notion of an admissible variation of mixed Hodge

structures.

We now briefly outline the content of each section and summarize our main

results. The paper is divided into three main sections: in Section 2 we discuss gen-

era of complex algebraic varieties; in Section 3 we describe the functorial calculus

of Grothendieck groups of algebraic mixed Hodge modules, while Section 4 deals

with characteristic classes yielding the Hodge genera considered in Section 2.

In Section 2.1, we first recall the definition of Hirzebruch’s χy-genus for a

smooth, complex, projective variety [22] and explain some of its Hodge-theoretic

extensions to genera of possibly singular and/or noncompact complex algebraic

varieties, defined by means of Deligne’s mixed Hodge structures. Then we study

the behavior of these genera under proper algebraic maps f : X → Y that are

locally trivial topological fibrations over a compact, connected, smooth base Y . If

F denotes the general fiber of f , then, under the assumption of trivial monodromy,

χy is multiplicative, i.e., χy(X) = χy(Y ) · χy(F).

In Section 2.2, we consider arbitrary proper algebraic morphisms f : X → Y of

complex algebraic varieties and discuss generalizations of the above multiplicativ-

ity property to this general setting. By taking advantage of the mixed Hodge struc-

ture on the intersection cohomology groups of a possibly singular complex alge-

braic variety X [14, 27, 29, 31], we define intersection homology genera, Iχy(X),

that encode the intersection homology Hodge numbers and provide yet another

extension of Hirzebruch’s genera to the singular case. For example, Iχ−1(X) is

the intersection homology Euler characteristic of X , and if X is projective, then

Iχ1(X) = σ(X) is the Goresky-MacPherson signature [20] of the intersection

form on the middle-dimensional intersection homology of X . Iχ0(X) can be re-

garded as an extension to singular varieties of the arithmetic genus. The main

results of this section are Theorems 2.5 and 2.9, in which the (intersection homol-

ogy) genera χy(X) and Iχy(X), respectively, of the domain are expressed in terms
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of the singularities of the map. More precisely, we first fix an algebraic stratifi-

cation of the proper morphism f ; that is, we choose complex algebraic Whitney

stratifications of X and Y so that f becomes a stratified submersion. In particular,

the strata satisfy the frontier condition: V ∩ W̄ �= ∅ implies V ⊂ W̄ . Then the

finite set V := {V } of all strata of Y is partially ordered by “V ≤ W if and only if

V ⊂ W̄ .” If, moreover, we assume that Y is irreducible, then there is exactly one

top-dimensional stratum S of Y , with dim S = dim Y , and S is Zariski-open and

dense in Y , with V ≤ S for all V ∈ V . Let F denote the (generic) fiber of f above

S. Then we have:

THEOREM 1.1 Let f : X → Y be a proper algebraic map of complex algebraic
varieties, with Y irreducible. Let V be the set of components of strata of Y in an
algebraic stratification of f , and assume π1(V ) = 0 for all V ∈ V . For each
V ∈ V with dim(V ) < dim(Y ), define inductively

Îχ y(V̄ ) = Iχy(V̄ ) −
∑
W<V

Îχ y(W̄ ) · Iχy(c◦LW,V ),

where the sum is over all W ∈ V with W̄ ⊂ V̄ \ V , and c◦LW,V denotes the open
cone on the link of W in V̄ . Then:

χy(X) = Iχy(Y ) · χy(F)

+
∑
V <S

Îχ y(V̄ ) · (χy(FV ) − χy(F) · Iχy(c◦LV,Y )),(1.1)

where FV is the fiber of f above the stratum V . Assume, moreover, that X is pure
dimensional. Then

Iχy(X) = Iχy(Y ) · Iχy(F)

+
∑
V <S

Îχ y(V̄ ) · (
Iχy( f −1(c◦LV,Y )) − Iχy(F) · Iχy(c◦LV,Y )

)
.(1.2)

Let us explain in more detail the Iχy-terms appearing in the above formu-

lae. Since f is stratified, the restrictions R j f∗(QX )|W and R j f∗(I C ′
X )|W , for all

j ∈ Z and W ∈ V , are admissible variations of mixed Hodge structures, where

I C ′
X := I CX [− dim(X)] is the shifted intersection cohomology complex of X . In

fact, the first is the classical example of a “geometric variation of mixed Hodge

structures,” whereas the assertion for the second follows from Saito’s theory of

algebraic mixed Hodge modules. Similarly, by Saito’s theory, the cohomology

sheaves H j (I C ′
V̄
)|W , for j ∈ Z and W, V ∈ V , underlie admissible variations of

mixed Hodge structures. And under the assumption that the fundamental group

of W is trivial, these are trivial variations so that the isomorphism classes of the

mixed Hodge structures

(1) R j f∗(QX )w � H j ({ f = w}; Q),

(2) R j f∗(I C ′
X )w � I H j ({ f = w}; Q) for dim(W ) = dim(Y ) and

R j f∗(I C ′
X )w � I H j ( f −1(c◦LW,Y ); Q) for dim(W ) < dim(Y ),

(3) H j (I C ′
V̄
)w � I H j (c◦LW,V ; Q),
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do not depend on the choice of the point w ∈ W . The same is true for the cor-

responding Iχy-genera, even without the assumption π1(W ) = 0, because these

genera depend only on the corresponding Hodge numbers, which are constant in

a variation of mixed Hodge structures. Also, note that the inductive definition

of Îχ y(V̄ ) depends only on the stratified space V̄ with its induced stratification.

Finally, while the existence of the mixed Hodge structure on the global cohomol-

ogy already follows from Deligne’s classical work, and the Hodge structure on

the global intersection cohomology of compact algebraic varieties can be obtained

by other methods as in [14, 15], the mixed Hodge structures on the intersection

cohomology of the open links c◦LV,Y (or of their inverse images) use the stalk de-

scription above and essentially depend on Saito’s theory of mixed Hodge modules.

In Section 3, we explain in detail the functorial calculus of Grothendieck groups

of algebraic mixed Hodge modules and prove in this language the main technical

result of this paper. The proof of this result is exactly the same as that of the

corresponding statement in the framework of Grothendieck groups of constructible

sheaves used in our paper [11]. This is indeed the case because, by Saito’s work,

the calculus of Grothendieck groups of constructible sheaves completely lifts to the

context of Grothendieck groups of algebraic mixed Hodge modules. Theorem 1.1

above as well as the formulae for characteristic classes discussed below are direct

consequences of this main theorem.

In Section 4, we outline the construction of a natural transformation, M H T y ,

which, when evaluated at the intersection cohomology complex I C ′
X of a variety X ,

yields a twisted homology class I Ty(X), whose associated genus for X compact

is Iχy(X). The definition uses Saito’s theory of mixed Hodge modules and is

based on ideas of a recent paper of Brasselet, Schürmann, and Yokura [9]. If X is

a nonsingular complex algebraic variety, then I Ty(X) is the Poincaré dual of the

modified Todd class T ∗
y (T X) that appears in the generalized Hirzebruch-Riemann-

Roch theorem. For a proper algebraic map f : X → Y with X pure dimensional

and Y irreducible, we prove a formula for the pushforward of the characteristic

class I Ty(X) in terms of characteristic classes of strata of f . The main result of

this section can be stated as follows:

THEOREM 1.2 With the notation and assumptions from the above theorem, for
each V ∈ V define inductively

Î T y(V̄ ) = I Ty(V̄ ) −
∑
W<V

Î T y(W̄ ) · Iχy(c◦LW,V ),
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where all homology characteristic classes are regarded in the Borel-Moore homol-
ogy of the ambient space Y (with coefficients in Q[y, y−1, (1 + y)−1]). Then:

f∗ I Ty(X) = I Ty(Y ) · Iχy(F)

+
∑
V <S

Î T y(V̄ ) · (
Iχy( f −1(c◦LV,Y )) − Iχy(F) · Iχy(c◦LV,Y )

)
,

where LV,Y is the link of V in Y .

Without the trivial monodromy assumption, the terms in the formulae of The-

orems 1.1 and 1.2 must be written in terms of genera and characteristic classes,

respectively, with coefficients in local systems (variations of Hodge structures) on

open strata.

The paper ends by discussing immediate consequences of the pushforward for-

mula of Theorem 1.2.

In a future paper, we will consider the behavior under proper algebraic maps of

χy-genera that are defined by using the Hodge-Deligne numbers of (compactly sup-

ported) cohomology groups of a possibly singular algebraic variety and deal with

nontrivial monodromy considerations (cf. [10]). We point out that preliminary re-

sults on the Euler characteristics χ−1 and Iχ−1, and on the homology MacPherson-

Chern classes [25] T−1 = c∗ ⊗ Q and I T−1 = I c∗ ⊗ Q of complex algebraic (re-

spectively, compact complex analytic) varieties, have been already obtained by the

authors in [11].

2 Genera

In this section, we define Hodge-theoretic genera of complex algebraic varieties

and study their behavior under proper algebraic morphisms.

2.1 Families over a Smooth Base
DEFINITION 2.1 For a smooth projective variety X , we define its Hirzebruch

χy-genus [22] by the formula

(2.1) χy(X) =
∑

p

(∑
q

(−1)qh p,q(X)

)
y p,

where h p,q(X) = dimC Hq(X;�
p
X ) are the Hodge numbers of X . Note that χ−1

is the usual Euler characteristic, χ0 is the arithmetic genus, and χ1 is the signature

of X .

Various extensions of Hirzebruch’s genus to the singular and/or noncompact

setting are explained below. First, note that the Grothendieck group K0(m Hs(p))

of the abelian category of (graded polarizable) rational mixed Hodge structures is

a ring with respect to the tensor product, with unit the pure Hodge structure Q of

weight 0. We can now make the following definition:
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DEFINITION 2.2 The E-polynomial is the ring homomorphism

E : K0(m Hs(p)) → Z[u, v, u−1, v−1]
defined by

(2.2) (V, F•, W•) 
→ E(V ) :=
∑
p,q

dimC

(
gr p

F gr W
p+q(V ⊗Q C)

) · u pvq .

This is well-defined since the functor gr p
F gr W

p+q(−⊗Q C) is exact on mixed Hodge

structures. Specializing to (u, v) = (−y, 1), we get the χy-genus

(2.3)

χy : K0(m Hs(p)) → Z[y, y−1],
[(V, F•, W•)] 
→

∑
p

dimC(gr p
F(V ⊗Q C)) · (−y)p.

Using Deligne’s mixed Hodge structure on the cohomology (with compact support)

H j
(c)(X; Q) of a complex algebraic variety X (cf. [17, 18]), we can define

(2.4) [H ∗
(c)(X; Q)] :=

∑
j

(−1) j · [H j
(c)(X; Q)] ∈ K0(m Hs p).

Then by applying one of the homomorphisms E or χy , we obtain E(X), Ec(X),

χy(X), and χ c
y (X), so that for X smooth and projective, this definition of χy(X) =

χ c
y (X) agrees with the classical Hirzebruch genus of X from Definition 2.1.

We first show that if f : X → Y is a family of compact varieties (i.e., a locally

trivial topological fibration in the complex topology) over a smooth, connected,

compact variety Y , then under certain assumptions on monodromy, χy behaves

multiplicatively. In the setting of algebraic geometry, this fact encodes as special

cases the classical multiplicativity property of the Euler-Poincaré characteristic for

a locally trivial topological fibration, and the Chern-Hirzebruch-Serre formula for

the signature of fibre bundles with trivial monodromy.

PROPOSITION 2.3 Let f : X → Y be a proper algebraic map of complex algebraic
varieties, with Y compact, smooth, and connected. Suppose that all direct image
sheaves R j f∗QX , j ∈ Z, are locally constant; e.g., f is a locally trivial topological
fibration. Assume π1(Y ) acts trivially on the cohomology of the general fiber F of
f (e.g., π1(Y ) = 0); i.e., all these local systems R j f∗QX ( j ∈ Z) are constant.
Then:

(2.5) χy(X) = χy(Y ) · χy(F).

PROOF: The local systems R j f∗QX ( j ∈ Z) define geometric variations of

mixed Hodge structures, and thus admissible variations in the sense of Steenbrink-

Zucker and Kashiwara (cf. [23, 36]). Since Y is a smooth, compact algebraic va-

riety, the cohomology groups Hi (Y ; R j f∗QX ) get an induced (polarizable) mixed
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Hodge structure. So, for each j ∈ Z we can define

[H ∗(Y ; R j f∗QX )] :=
∑

i

(−1)i · [Hi (Y ; R j f∗QX )] ∈ K0(m Hs p).

Moreover, the following key equality holds:

(2.6) [H ∗(X; Q)] =
∑

j

(−1) j [H ∗(Y ; R j f∗QX )] ∈ K0(m Hs p).

The proof of this equality will be given in Proposition 3.1 in terms of mixed Hodge

modules. Finally, if the local system R j f∗QX ) is constant, we have an isomor-

phism of mixed Hodge structures

Hi (Y ; R j f∗QX ) ∼= Hi (Y ; Q) ⊗ H j (F; Q).

Altogether, we get the equality

(2.7) [H ∗(X; Q)] = [H∗(Y ; Q)] · [H∗(F; Q)] ∈ K0(m Hs p).

We obtain the claimed multiplicativity by applying the χy-genus homomorphism

to the identity in formula (2.7). Note that by applying the E-polynomial to (2.7),

we obtain a similar multiplicativity property for the E-polynomials. �

2.2 Proper Maps of Complex Algebraic Varieties
Let f : X → Y be a proper map of complex algebraic varieties. Such a map

can be stratified with subvarieties as strata. In particular, there is a filtration of Y
by closed subvarieties, underlying a Whitney stratification V , so that the restriction

of f to the preimage of any component of a stratum in Y is a locally trivial map of

Whitney stratified spaces; i.e., f becomes a stratified submersion.

In this paper all intersection cohomology complexes are those associated to the

middle perversity. By convention, the restriction of the intersection cohomology

complex I CX to the dense open stratum of X is the constant sheaf shifted by the

complex dimension of X . If X is a complex algebraic variety of pure dimension n,

the intersection cohomology groups (with compact support) are defined by the rule

I H k
(c)(X; Q) := H k−n

(c) (X; I CX ).

Another possible extension of Hirzebruch’s χy-genus to the singular setting is

obtained by using intersection homology theory [20, 21] as follows:

DEFINITION 2.4 For a pure dimensional complex algebraic variety X we let

I C ′
X := I CX [− dim(X)]

be the shifted intersection cohomology complex. Then, by Saito’s theory of mixed

Hodge modules, the group I H k
(c)(X; Q) := H k

(c)(X; I C ′
X ) gets a (graded polariz-

able) mixed Hodge structure, which is pure of weight k if X is compact. So we can

define

(2.8) [I H ∗
(c)(X; Q)] :=

∑
j

(−1) j [I H j
(c)(X; Q)] ∈ K0(m Hs p)
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and polynomials

(2.9) I E(c)(X) := E([I H ∗
(c)(X; Q)])

and

(2.10) Iχ(c)
y := χy([I H∗

(c)(X; Q)]).
As a natural extension of the multiplicativity property for χy-genera of families

over a smooth base described in Proposition 2.3, we aim to find the deviation from

multiplicativity of the χy- and Iχy-genus, respectively, in the more general setting

of an arbitrary proper algebraic map. The formulae proved in Theorem 2.5 and

Theorem 2.9 below include correction terms corresponding, respectively, to genera

of strata and of their normal slices and to those of fibers of f above each stratum

in Y . The first main result of this section concerns the χy-genus:

THEOREM 2.5 Let f : X → Y be a proper algebraic map of complex algebraic
varieties, with Y irreducible. Let V be the set of components of strata of Y in an
algebraic stratification of f , and assume π1(V ) = 0 for all V ∈ V .1 For each
V ∈ V with dim(V ) < dim(Y ), define inductively

Îχ y(V̄ ) = Iχy(V̄ ) −
∑
W<V

Îχ y(W̄ ) · Iχy(c◦LW,V ),

where the sum is over all W ∈ V with W̄ ⊂ V̄ \ V , and c◦LW,V denotes the open
cone on the link of W in V̄ . Then:

χy(X) = Iχy(Y ) · χy(F)

+
∑
V <S

Îχ y(V̄ ) · (χy(FV ) − χy(F) · Iχy(c◦LV,Y )
)
,(2.11)

where F is the (generic) fiber over the top-dimensional stratum S, and FV is the
fiber of f above the stratum V ∈ V \ {S}.

The proof is a direct consequence of the calculus of Grothendieck groups of

algebraic mixed Hodge modules and will be given in Proposition 3.5. We want to

point out that similar formulae also hold for χ c
y (X) and E(c)(X), which in the same

way follow from the results of Section 3.3.

In the special case when f is the identity map, equation (2.11) measures the

difference between the χy- and the Iχy-genus of a complex algebraic variety (with

no monodromy restrictions in the case of Euler characteristics, that is, for y = −1;

see [11, cor. 3.5]):

1 Contributions of nontrivial monodromy to such formulae will be the subject of further studies;

e.g., see our forthcoming paper [10]; see also [2, 3] for some results on monodromy contributions

for signatures and related characteristic classes in topological settings.
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COROLLARY 2.6 Let Y be an irreducible complex algebraic variety, and assume
there is a Whitney stratification V of Y with all strata simply connected. Then,
using the notation of the above theorem, we obtain

(2.12) χy(Y ) = Iχy(Y ) +
∑
V <S

Îχ y(V̄ ) · (1 − Iχy(c◦LV,Y )).

Example 2.7 (Smooth Blowup). Let Y be a smooth, compact, n-dimensional vari-

ety and Z ⊂ Y a submanifold of pure codimension r +1. Let X be the blowup of Y
along Z , and f : X → Y be the blowup map. Then X is an n-dimensional smooth

variety, and f is an isomorphism over Y \Z and a projective bundle (Zariski locally

trivial with fibre CPr ) over Z , corresponding to the projectivization of the normal

bundle of Z in Y of rank r + 1. As we later explain in Example 3.3, the formula

(2.11) of Theorem 2.5 is also true in this context (without assuming that all strata

V are simply connected), and it reduces to a more familiar one [9, example 3.3]:

(2.13) χy(X) = χy(Y ) + χy(Z) · (−y + · · · + (−y)r ).

In fact, formula (2.13) can be easily obtained just by using the (additivity and mul-

tiplicativity) properties of the χ c
y -genera of complex algebraic varieties (cf. [16]),

and it holds if one considers X to be the blowup of a complete variety Y along

a regularly embedded subvariety Z of pure codimension r + 1. By the “weak

factorization theorem” [1], any birational map h : S → T between complete, non-

singular, complex algebraic varieties can be decomposed as a finite sequence of

projections from smooth spaces lying over T , which are obtained by blowing up or

blowing down along smooth centers. Then (2.13) yields the birational invariance

of the arithmetic genus χ0 of nonsingular projective varieties (see the discussion

in [9, example 3.3].

Remark 2.8. Formula (2.11) yields calculations of classical topological and alge-

braic invariants of the complex algebraic variety X , e.g., the Euler characteristic,

and if X is smooth and projective, the signature and arithmetic genus in terms of

singularities of proper algebraic maps defined on X .

The second main result of this section asserts that the Iχy-genus defined in

(2.10) satisfies the so-called “stratified multiplicative property” (cf. [13, 32]). More

precisely, we have the following:

THEOREM 2.9 Let f : X → Y be a proper algebraic map of complex algebraic
varieties, with X pure dimensional and Y irreducible. Let V be the set of compo-
nents of strata of Y in an algebraic stratification of f , and assume π1(V ) = 0 for
all V ∈ V . Then in the notation of Theorem 2.5, we have

Iχy(X) = Iχy(Y ) · Iχy(F)

+
∑
V <S

Îχ y(V̄ ) · (
Iχy( f −1(c◦LV,Y )) − Iχy(F) · Iχy(c◦LV,Y )

)
.(2.14)
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Again, the proof will follow from the considerations of Proposition 3.5, which

will also imply that similar formulae hold for Iχ c
y (X) and I E(c)(X). Let us only

explain here the identification of stalks at a point w in a stratum W of Y that yield

the Iχy-terms in formula (2.14). Let iw : {w} ↪→ Y be the inclusion map. Then:

LEMMA 2.10 We have the following isomorphisms:

(i) R j f∗(I C ′
X )w = H j (i∗

w R f∗(I C ′
X )) � I H j ({ f = w}; Q)

for dim(W ) = dim(Y ), and
R j f∗(I C ′

X )w = H j (i∗
w R f∗(I C ′

X )) � I H j ( f −1(c◦LW,Y ); Q)

for dim(W ) < dim(Y ),

(ii) H j (I C ′
V̄
)w = H j (i∗

w I C ′
V̄
) � I H j (c◦LW,V ; Q),

which endow the intersection cohomology groups on the right-hand side of the
above identities with canonical mixed Hodge structures.

PROOF: If dim(W ) = dim(Y ), then { f = w} is the generic fiber F of f ; thus

it is locally normally nonsingular embedded in X . It follows from [21, sec. 5.4.1]

that we have a quasi-isomorphism:

I C ′
X |F � I C ′

F .

Then by proper base change, we obtain that

H j (i∗
w R f∗(I C ′

X )) � I H j ({ f = w}; Q).

Assume now that dim(W ) < dim(Y ). Let N be a normal slice to W at w

in local analytic coordinates (Y, w) ↪→ (Cn, w), that is, a germ of a complex

manifold (N , w) ↪→ (Cn, w), intersecting W transversally only at w, and with

dim(W ) + dim(N ) = n. Recall that the link LW,Y of the stratum W in Y is defined

as

LW,Y := Y ∩ N ∩ ∂ Br (w),

where Br (w) is an open ball of (very small) radius r around w. Moreover, Y ∩ N ∩
Br (w) is isomorphic (in a stratified sense) to the open cone c◦LW,Y on the link [8,

p. 44]. By factoring the inclusion map iw as the composition

{w} φ
↪→ Y ∩ N

ψ
↪→ Y

we can now write

H j (i∗
w R f∗ I C ′

X ) ∼= H j (w, φ∗ψ∗ R f∗ I C ′
X )

∼= H j (ψ∗ R f∗ I C ′
X )w

∼= H j (c◦LW,Y , R f∗ I C ′
X )

∼= H j ( f −1(c◦LW,Y ), I C ′
X )
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(∗)∼= H j ( f −1(c◦LW,Y ), I C ′
f −1(c◦LW,Y )

)

∼= I H j ( f −1(c◦LW,Y ); Q)

where in (∗) we used the fact that the inverse image of a normal slice to a stratum

of Y in a stratification of f is (locally) normally nonsingular embedded in X (this

fact is a consequence of the first isotopy lemma).

The isomorphism H j (i∗
w I C ′

V̄
) � I H j (c◦LW,V ; Q) follows, for example, from

[8, prop. 4.2].

The statement about the existence of the canonical mixed Hodge structures is a

consequence of Saito’s theory of mixed Hodge modules (see Section 3.1). Indeed,

since the complexes R f∗ I C ′
X and I C ′

V̄
, underlie complexes of mixed Hodge mod-

ules (cf. Section 3), their pullbacks over the point w become complexes of mixed

Hodge structures, so their cohomologies are (graded polarizable) rational mixed

Hodge structures. �

Remark 2.11. For a projective algebraic variety X of pure dimension n, the value

at y = 1 of the intersection homology genus Iχy(X) is the Goresky-MacPherson

signature σ(X) of the intersection form in the middle-dimensional intersection co-

homology I H n(X; Q) with middle perversity [20]. Therefore, under the trivial

monodromy assumption, formula (2.14) calculates the signature of the domain of a

proper map f in terms of singularities of the map. In [12], a different formula was

given for the behavior of the signature (and associated L-class) under any stratified

map. Those topological results were obtained by a very different sheaf-theoretic

method, i.e., introducing a notion of cobordism of self-dual sheaves and showing

sheaf decompositions up to such cobordism. By comparing the two formulae in the

case of a proper map of algebraic varieties, one obtains interesting Hodge-theoretic

interpretations of the normal data encoded in the topological formula for signature

[12]. We exemplify this relation in a simple situation, namely that of blowing up a

point: Let X be obtained from Y by blowing up a point y. Let L be the link of y in

Y . Formula (2.14) becomes in this case

σ(X) = σ(Y ) + Iχ1( f −1(c◦L)) − Iχ1(c◦L).

On the other hand, the topological formula for signature in [12] yields

σ(X) = σ(Y ) + σ(Ey),

where Ey = f −1(N )/ f −1(L) is the topological completion of f −1(int N ) for N
a piecewise linear neighborhood of y in Y with ∂ N = L . By comparing the two

formulae above, we obtain a Hodge-theoretic interpretation for the signature of the

topological completion Ey , namely,

σ(Ey) = Iχ1( f −1(c◦L)) − Iχ1(c◦L).
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3 Grothendieck Groups of Algebraic Mixed Hodge Modules

In this section we explain the functorial calculus of Grothendieck groups of

algebraic mixed Hodge modules and prove in this language the main technical

result of this paper. All other results, in particular those stated in Section 2, are

direct consequences of this main theorem.

3.1 Mixed Hodge Modules
For ease of reading, we begin by introducing a few notions that will be used

throughout this paper. A quick introduction to Saito’s theory can be also found in

[9, 26, 27]. Generic references are [28, 29], but see also [31].

Let X be an n-dimensional complex algebraic variety. To such an X one can

associate an abelian category of algebraic mixed Hodge modules, MHM(X), to-

gether with functorial pushdowns f! and f∗ on the level of derived categories

Db MHM(X) for any, not necessarily proper, map. If f is a proper map, then

f∗ = f!. In fact, the derived category Db
c (X) of bounded (algebraically) con-

structible complexes of sheaves of Q-vector spaces underlies the theory of mixed

Hodge modules; i.e., there is a forgetful functor

rat : Db MHM(X) → Db
c (X)

that associates their underlying Q-complexes to complexes of mixed Hodge mod-

ules, so that

rat(MHM(X)) ⊂ Perv(QX ),

that is to say, that rat ◦H = pH◦rat, where H stands for the cohomological functor

in Db MHM(X) and pH denotes the perverse cohomology. Then the functors f∗,

f!, f ∗, f !, ⊗, and � on Db MHM(X) are “lifts” of the similar functors defined on

Db
c (X), with ( f ∗, f∗) and ( f!, f !) also pairs of adjoint functors in the context of

mixed Hodge modules.

The objects of the category MHM(X) can be roughly described as follows:

If X is smooth, then MHM(X) is a full subcategory of the category of objects

((M, F), K , W ) such that:

(1) (M, F) is an algebraic holonomic filtered D-module M on X , with an

exhaustive, bounded-from-below, and increasing “Hodge” filtration F by algebraic

OX -modules.

(2) K ∈ Perv(QX ) is the underlying rational sheaf complex, and there is a

quasi-isomorphism α : DR(M) � C ⊗ K in Perv(CX ), where DR is the de Rham

functor shifted by the dimension of X .

(3) W is a pair of filtrations on M and K compatible with α.

For a singular X , one works with suitable local embeddings into manifolds and

corresponding filtered D-modules with support on X . In addition, these objects

have to satisfy a long list of very complicated properties, but the details of the

full construction are not needed here. Instead, we will only use certain formal
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properties that will be explained below. In this notation, the functor rat is defined

by rat((M, F), K , W ) = K .

It follows from the definition of mixed Hodge modules that every M ∈
MHM(X) has a functorial increasing filtration W in MHM(X), called the weight
filtration of M , so that the functor M → Gr W

k M is exact. We say that M ∈
MHM(X) is pure of weight k if Gr W

i M = 0 for all i �= k. A complex M• ∈
Db MHM(X) is mixed of weight ≤ k (respectively, ≥ k) if Gr W

i H j M• = 0 for all

i > j + k (respectively, i < j + k), and it is pure of weight k if Gr W
i H j M• = 0

for all i �= j + k. If f is a map of algebraic varieties, then f! and f ∗ preserve

weight ≤ k, and f∗ and f ! preserve weight ≥ k. If M• ∈ Db MHM(X) is of

weight ≤ k (respectively, ≥ k), then H j M• has weight ≤ j + k (respectively,

≥ j + k). In particular, if M ∈ Db MHM(X) is pure and f : X → Y is proper,

then f∗M ∈ Db MHM(Y ) is pure.

If j : U ↪→ X is a Zariski-open dense subset in X , then the intermediate

extension j!∗ (cf. [5]) preserves the weights.

We say that M ∈ MHM(X) is supported on S if and only if rat(M) is sup-

ported on S. Saito showed that the category of mixed Hodge modules supported

on a point, MHM(pt), coincides with the category m Hs p of (graded) polarizable,

rational, mixed Hodge structures. Here one has to switch the increasing D-module

filtration F∗ of the mixed Hodge module to the decreasing Hodge filtration of the

mixed Hodge structure by F∗ := F−∗, so that gr p
F � gr F−p. In this case, the functor

rat associates to a mixed Hodge structure the underlying rational vector space. Fol-

lowing [29], there exists a unique object QH ∈ MHM(pt) such that rat(QH ) = Q

and QH is of type (0, 0). In fact, QH = ((C, F), Q, W ), with gr F
i = 0 = gr W

i for

all i �= 0, and α : C → C ⊗ Q the obvious isomorphism.

For a complex algebraic variety X , we define the complex of mixed Hodge

modules

QH
X := k∗QH ∈ Db MHM(X)

with rat(QH
X ) = QX , where k : X → pt is the constant map to a point. If X

is smooth and of dimension n, then QX [n] ∈ Perv(QX ), and QH
X [n] ∈ MHM(X)

is a single mixed Hodge module (in degree 0) explicitly described by QH
X [n] =

((OX , F), QX [n], W ), where F and W are trivial filtrations so that gr F
i = 0 =

gr W
i+n for all i �= 0. So if X is smooth of dimension n, then QH

X [n] is pure

of weight n. By the stability of the intermediate extension functor, this shows

that if X is an algebraic variety of pure dimension n and j : U ↪→ Z is the in-

clusion of a smooth Zariski-open dense subset, then the intersection cohomology

module I C H
X := j!∗(QH

U [n]) is pure of weight n, with underlying perverse sheaf

rat(I C H
X ) = I CX .

The pure objects in Saito’s theory are the polarized Hodge modules (see [28],

but here we work in the more restricted algebraic context as defined in [29]). The

category MH(X, k)p of polarizable Hodge modules on X of weight k is a semisim-

ple abelian category in the sense that every polarizable Hodge module on X can be
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written in a unique way as a direct sum of polarizable Hodge modules with strict

support in irreducible closed subvarieties of X . This is the so-called decomposition
by strict support of a pure Hodge module. If MHZ (X, k)p denotes the category of

pure Hodge modules of weight k and strict support Z , then MHZ (X, k)p depends

only on Z , and any M ∈ MHZ (X, k)p is generically a polarizable variation of

Hodge structures VU on a Zariski open dense subset U ⊂ Z , with quasi-unipotent
monodromy at infinity.

Conversely, any such polarizable variation of Hodge structures can be extended

uniquely to a pure Hodge module. In other words, there is an equivalence of cate-

gories:

(3.1) MHZ (X, k)p � VHSgen(Z , k − dim(Z))p,

where the right-hand side is the category of polarizable variations of Hodge struc-

tures of weight k − dim(Z) defined on nonempty smooth subvarieties of Z , whose

local monodromies are quasi-unipotent. Note that, under this correspondence, if

M is a pure Hodge module with strict support Z , then rat(M) = I CZ (V), where V

is the corresponding variation of Hodge structures.

If X is smooth of dimension n, an object M ∈ MHM(X) is called smooth if

and only if rat(M)[−n] is a local system on X . Smooth mixed Hodge modules are

(up to a shift) admissible (at infinity) variations of mixed Hodge structures. Con-

versely, an admissible variation of mixed Hodge structures V on a smooth variety

X of pure dimension n gives rise to a smooth mixed Hodge module (cf. [29]), i.e.,

to an element VH [n] ∈ MHM(X) with rat(VH [n]) = V[n]. A pure polarizable

variation of weight k yields an element of MH(X, k + n)p. By the stability by the

intermediate extension functor, it follows that if X is an algebraic variety of pure

dimension n and V is an admissible variation of (pure) Hodge structures (of weight

k) on a smooth Zariski-open dense subset U ⊂ X , then I C H
X (V) is an algebraic

mixed Hodge module (pure of weight k + n), so that rat(I C H
X (V)|U ) = V[n].

We conclude this section with a short explanation of the “rigidity” property

for admissible variations of mixed Hodge structures, as this will be used later on.

Assume X is smooth, connected, and of dimension n, with M ∈ MHM(X) a

smooth mixed Hodge module, so that the local system V := rat(M)[−n] has the

property that the restriction map r : H 0(X; V) → Vx is an isomorphism for all

x ∈ X . Then the (admissible) variation of mixed Hodge structures is a constant

variation since r underlies the morphism of mixed Hodge structures (induced by

the adjunction id → i∗i∗):

H 0(k∗(M)[−n]) → H 0(k∗i∗i∗(M)[−n])
with k : X → pt the constant map, and i : {x} ↪→ X the inclusion of the point.

This implies

M[−n] = VH � k∗i∗VH = k∗VH
x ∈ Db MHM(X).
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3.2 The Functorial Calculus of Grothendieck Groups
In this section, we describe the functorial calculus of Grothendieck groups of

algebraic mixed Hodge modules. As a first application, we indicate the proof of

the identity (2.6), which was used in Proposition 2.3.

Let X be a complex algebraic variety. By associating to (the class of) a com-

plex the alternating sum of (the classes of) its cohomology objects, we obtain the

following identification (e.g., compare [24, p. 77], [33, lemma 3.3.1]):

(3.2) K0(Db MHM(X)) = K0(MHM(X)).

In particular, if X is a point,

(3.3) K0(Db MHM(pt)) = K0(m Hs p),

and the latter is a commutative ring with respect to the tensor product, with unit

QH
pt . All functors f∗, f!, f ∗, f !, ⊗, and � induce corresponding functors on

the groups K0(MHM(·)). Moreover, K0(MHM(X)) becomes a K0(MHM(pt))-
module, with the multiplication induced by the exact exterior product

� : MHM(X) × MHM(pt) → MHM(X × {pt}) � MHM(X).

Also note that

M ⊗ QH
X � M � QH

pt � M

for all M ∈ MHM(X). Therefore, K0(MHM(X)) is a unitary K0(MHM(pt))-
module. Finally, the functors f∗, f!, f ∗, and f ! commute with exterior products

(and f ∗ also commutes with the tensor product ⊗), so that the induced maps at the

level of Grothendieck groups K0(MHM(·)) are K0(MHM(pt))-linear. Moreover,

by the functor

rat : K0(MHM(X)) → K0(Db
c (X)) � K0(Perv(QX )),

these maps lift the corresponding transformations from the (topological) level of

Grothendieck groups of constructible (or perverse) sheaves.

As a first application, we can now explain the proof of Proposition 2.3 in the

following, more general form:

PROPOSITION 3.1 Let f : X → Y be a proper algebraic map, with Y a smooth,
connected variety, of dimension n. Fix M ∈ Db MHM(X) so that all higher direct
image sheaves R j f∗ rat(M) ( j ∈ Z) are locally constant. Then we have

(3.4) [H ∗(X; rat(M)] =
∑

j

(−1) j · [H∗(Y ; R j f∗ rat(M))] ∈ K0(m Hs p).

If, moreover, the local systems R j f∗ rat(M) ( j ∈ Z) are constant, then we obtain
the following multiplicative relation in K0(m Hs p) (extending (2.7)):

(3.5) [H ∗
(c)(X; rat(M)] = [H ∗

(c)(Y ; Q)] · [H∗({ f = y}; rat(M))].
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PROOF: We first need to explain the various mixed Hodge structures appearing

in the above formulae. Let k : X → pt be the constant map. Then the cohomology

groups

H j (X; rat(M)) = rat(H j (k∗M)) and H j
c (X; rat(M)) = rat(H j (k!M))

get induced (graded polarizable) mixed Hodge structures, so that we can define

[H ∗
(c)(X; rat(M))] := k∗(!)[M] ∈ K0(m Hs p).

By a deep theorem of Saito (cf. [30]), these mixed Hodge structures agree for

M = QH
X with those of Deligne, so that in this case we get back our old notation

from (2.4).

Since all direct image sheaves R j f∗ rat(M) are locally constant ( j ∈ Z), the

usual and perverse cohomology sheaves of R f∗ rat(M) are the same up to a shift

by n (since Y is smooth), so that for each j ∈ Z, H j ( f∗M) is a smooth mixed

Hodge module with

rat(H j+n( f∗M)) = R j f∗ rat(M)[n].
In particular, the local system R j f∗ rat(M) underlies an admissible variation of

mixed Hodge structures. By pushing down under the constant map k ′ : Y → pt ,
we obtain

[H∗(Y ; R j f∗ rat(M))] = (−1)n · k ′
∗([H j+n( f∗M)]) ∈ K0(m Hs p),

which, by construction, agrees in the case when M = QH
X and Y compact with the

element of K0(m Hs p) appearing in equation (2.6). By taking the alternating sum

of cohomology sheaves, we also have that

f∗[M] = [ f∗M] =
∑

j

(−1) j · [H j ( f∗M)] ∈ K0(MHM(Y )),

and, by functoriality, we get the equality in the formula (3.4):

[H∗(X; rat(M)] := k∗[M] = k ′
∗ f∗[M]

=
∑

j

(−1) j+n · k ′
∗[H j+n( f∗M)]

=
∑

j

(−1) j · [H∗(Y ; R j f∗ rat(M))] ∈ K0(m Hs p).

Note that in the case when M = QH
X and Y is compact, this implies the claimed

identity (2.6) of Proposition 2.3.

If we assume in addition that the local system R j f∗ rat(M) is constant with

stalk the mixed Hodge structure M j , then, by “rigidity,” when viewed as a mixed

Hodge module it is isomorphic to k ′∗M j � QH
Y ⊗ k ′∗M j . Therefore, by the

K0(MHM(pt))-linearity of k ′∗, this implies

[H∗(Y ; R j f∗ rat(M))] = [H ∗(Y ; rat(QH
Y ))] · [M j ] ∈ K0(m Hs p).
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Next note that for a fixed y ∈ Y ,∑
j

(−1) j · [M j ] = [H∗({ f = y}; rat(M))] ∈ K0(m Hs p).

So, if all direct image sheaves R j f∗ rat(M) ( j ∈ Z) are constant, then we obtain

the multiplicative relation claimed in formula (3.5):

[H ∗(X; rat(M)] = [H ∗(Y ; Q)] · [H∗({ f = y}; rat(M))] ∈ K0(m Hs p).

By using k ′
! instead of k ′∗ in the above arguments, we get a similar multiplicative

relation for the cohomology with compact support. �

3.3 Main Theorem and Immediate Consequences
We can now formulate the main technical result of this paper and explain, as an

application, the proofs of Theorems 2.5 and 2.9.

Let Y be an irreducible complex algebraic variety endowed with a complex

algebraic Whitney stratification V so that the intersection cohomology complexes

I C ′
W̄ := I CW̄ [− dim(W )]

are V-constructible for all strata W ∈ V . Denote by S the top-dimensional stratum,

so S is Zariski-open and dense, and V ≤ S for all V ∈ V . Let us fix for each

W ∈ V a point w ∈ W with inclusion iw : {w} ↪→ Y . Then

(3.6) i∗
w[I C ′H

W̄ ] = [i∗
w I C ′H

W̄ ] = [QH
pt ] ∈ K0(MHM(w)) = K0(MHM(pt))

and i∗
w[I C ′H

V̄
] �= [0] ∈ K0(MHM(pt)) only if W ≤ V . Moreover, for any j ∈ Z,

we have

(3.7) H j (i∗
w I C ′

V̄ ) � I H j (c◦LW,V ),

with c◦LW,V the open cone on the link LW,V of W in V̄ for W ≤ V (cf. [8,

prop. 4.2]). So

i∗
w[I C ′H

V̄ ] = [I H∗(c◦LW,V )] ∈ K0(MHM(pt)),

with the mixed Hodge structures on the right-hand side defined by the isomorphism

(3.7).

The main technical result of this section is the following:

THEOREM 3.2 For each stratum V ∈ V \ {S} define inductively

(3.8) Î C H (V̄ ) := [I C ′H
V̄ ] −

∑
W<V

Î C H (W̄ ) · i∗
w[I C ′H

V̄ ] ∈ K0(Db MHM(Y )).

As the notation suggests, Î C H (V̄ ) depends only on the complex algebraic variety V̄
with its induced algebraic Whitney stratification. Assume [M] ∈ K0(Db MHM(Y ))
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is an element of the K0(MHM(pt))-submodule 〈[I C ′H
V̄

]〉 of K0(Db MHM(Y )) gen-
erated by the elements [I C ′H

V̄
], V ∈ V . Then we have the following equality in

K0(Db MHM(Y )):
(3.9) [M] = [I C ′H

Y ] · i∗
s [M] +

∑
V <S

Î C H (V̄ ) · (i∗
v [M] − i∗

s [M] · i∗
v [I C ′H

Y ]).

PROOF: In order to prove formula (3.9), consider

(3.10) [M] =
∑
V ∈V

[I C ′H
V̄ ] · L(V )

for some L(V ) ∈ K0(MHM(pt)). The aim is to identify these coefficients L(V ).

Since S is an open stratum, by applying i∗
s to (3.10) we obtain

i∗
s [M] = L(S) ∈ K0(MHM(s)) = K0(MHM(pt)).

Next fix a stratum W �= S and apply i∗
w to (3.10). Recall that i∗

w[I C ′H
W̄

] = [QH
pt ] ∈

K0(MHM(w)) = K0(MHM(pt)) and i∗
w[I C ′H

V̄
] �= [0] ∈ K0(MHM(pt)) only if

W ≤ V . We obtain

(3.11) i∗
w[M] = L(W ) +

∑
W<V

i∗
w[I C ′H

V̄ ] · L(V )

∈ K0(MHM(w)) = K0(MHM(pt)).

Since S is dense, we have that W < S, so the stratum S appears in the summation

on the right-hand side of (3.11). Therefore

(3.12) i∗
w[M] − i∗

w[I C ′H
Y ] · i∗

s [M] = L(W ) +
∑

W<V <S

i∗
w[I C ′H

V̄ ] · L(V )

∈ K0(MHM(pt)).

This implies that we can inductively calculate L(V ) in terms of

L ′(W ) := i∗
w[M] − i∗

w[I C ′H
Y ] · i∗

s [M].
Indeed, (3.12) can be rewritten as

(3.13) L ′(W ) =
∑

W≤V <S

i∗
w[I C ′H

V̄ ] · L(V ) ∈ K0(MHM(pt)),

and the matrix A = (aW,V ) with aW,V := i∗
w[I C ′H

V̄
] ∈ K0(MHM(pt)) for W, V ∈

V \ {S} is upper-triangular with respect to ≤, with 1’s on the diagonal. So A can be

inverted. The nonzero coefficients of A−1 = (a′
W,V ) can be calculated inductively

(e.g., see [35, prop. 3.6.2]) by a′
V,V = 1 and

(3.14) a′
W,V = −

∑
W≤T <V

a′
W,T · aT,V
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for W < V . Then equation (3.10) becomes

[M] = [I C ′H
Y ] · i∗

s [M] +
∑
W<S

[I C ′H
W̄ ] · L(W )

= [I C ′H
Y ] · i∗

s [M] +
∑

W≤V <S

[I C ′H
W̄ ] · a′

W,V · L ′(V ).
(3.15)

The result follows by the inductive identification (for V < S fixed)∑
W≤V

[I C ′H
W̄ ] · a′

W,V = [I C ′H
V̄ ] −

∑
W≤T <V

[I C ′H
W̄ ] · a′

W,T · aT,V = Î C
H
(V̄ ).

�

Before stating immediate consequences of the above theorem, let us describe

some cases when the technical hypothesis [M] ∈ 〈[I C ′H
V̄

]〉 needed in the proof is

satisfied for a fixed M ∈ Db(MHM(Y )).

Example 3.3.

(1) Assume that all sheaf complexes I C ′
V̄

, V ∈ V , not only are V-constructible

but satisfy the stronger property that they are “cohomologically V-constant,” i.e.,

all cohomology sheaves H j (I C ′
V̄
)|W ( j ∈ Z) are constant for all V, W ∈ V . More-

over, assume that either

(1) rat(M) is also cohomologically V-constant, or

(2) all perverse cohomology sheaves rat(H j (M)) ( j ∈ Z) are cohomologically

V-constant; e.g., each H j (M) is a pure Hodge module with H− dim(V )

(rat(H j (M))|V ) constant for all V ∈ V .

Then [M] ∈ 〈[I C ′H
V̄

]〉. In particular, if all strata V ∈ V are simply connected, then

K0(MHM(Y )) = 〈[I C ′H
V̄ ]〉,

so in this case we have that [M] ∈ 〈[I C ′H
V̄

]〉 for all M ∈ Db MHM(X) with rat(M)

V-constructible.

(2) Toric varieties. Another interesting example comes from a toric variety

Y with its natural Whitney stratification V by orbits; i.e., each stratum is of the

form V � (C∗)dim(V ) (for details on toric varieties, the reader is advised to consult

[19]). In this case not all the strata are simply connected, but nevertheless all

intersection complexes I C ′
V̄

, V ∈ V , are cohomologically V-constant; e.g., see

[6, lemma 15.15]. It follows that for any M ∈ Db MHM(Y ) satisfying (a) or (b)

above, we have [M] ∈ 〈[I C ′H
V̄

]〉.
PROOF: It is clear that (2) follows from (1). Note that, by using the identity

[M] =
∑

i

(−1)i [Hi (M)] ∈ K0(MHM(Y )),

it suffices to prove the claim (1) under the assumption (a). Moreover, by using

the t-structure on Db MHM(Y ) that corresponds to the usual t-structure on Db
c (Y )
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(and not to the perverse t-structure), cf. [29, remark 4.6(2)], we may assume that

rat(M) is a sheaf, and by (a) this is assumed to be cohomologically V-constant

(i.e., rat(M)|W underlies a constant variation of mixed Hodge structures for any

W ∈ V).

Under these considerations, we can now prove the claim by induction over the

number of strata of the stratification. In the case when Y has only one stratum U ,

the variety Y = U is nonsingular, connected, with I C ′H
U = QH

U , and the claim

follows trivially: indeed, under our assumptions, M is just a constant variation

of mixed Hodge structures with stalk F , so M � QH
Y ⊗ k∗F , for k : Y → pt

the constant map; therefore [M] = [I C ′H
U ] · [F]. For the induction step, fix an

open stratum U ∈ V with open inclusion j : U ↪→ Y and closed complement

i : Y ′ := Y \U → Y . Then U is a smooth, connected variety as before, and Y ′ is an

algebraic variety with a smaller number of strata, satisfying the same assumption

on the intersection cohomology sheaves of the strata. The distinguished triangle

(cf. [29, (4.4.1)])

j! j∗M → M → i∗i∗M →
implies that

[M] = [ j! j∗M] + [i∗i∗M] ∈ K0(Db MHM(Y )).

We can now apply the induction hypothesis to [i∗M]. Moreover, by assump-

tion, rat( j∗M) is a constant sheaf with stalk the (graded polarizable) mixed Hodge

structure F , so that

j![ j∗M] = j![ j∗(I C ′H
Ū ⊗ k∗F)] = [I C ′H

Ū ] · [F] − i∗[i∗(I C ′H
Ū ⊗ k∗F)],

with k : Y → pt the constant map. But

i∗(I C ′H
Ū ⊗ k∗F) � i∗(I C ′H

Ū ) ⊗ i∗k∗F

also has a cohomologically V-constant underlying complex with respect to the in-

duced stratification on Y ′. So our claim follows by induction. �

In the following, we specialize to the relative context of a proper algebraic map

f : X → Y of complex algebraic varieties, with Y irreducible, and indicate a proof

of Theorem 2.5 and of Theorem 2.9. For a given M ∈ Db MHM(X), assume that

R f∗ rat(M) is constructible with respect to the given complex algebraic Whitney

stratification V of Y , with open dense stratum S. By proper base change, we get

i∗
v f∗[M] = [H ∗({ f = v}, rat(M))] ∈ K0(MHM(pt)).

So under the assumption f∗[M] ∈ 〈[I C ′H
V̄

]〉, Theorem 3.2 yields the following

identity in K0(MHM(Y )):

COROLLARY 3.4

f∗[M] = [I C ′H
Y ] · [H ∗(F; rat(M))]

+
∑
V <S

Î C H (V̄ ) · ([H∗(FV ; rat(M))] − [H ∗(F; rat(M))] · [I H ∗(c◦LV,Y )]) ,
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where F is the (generic) fiber over the top-dimensional stratum S, and FV is the
fiber over a stratum V ∈ V \ {S}.

Note that the corresponding classes [H∗(F; rat(M))] and [H ∗(FV ; rat(M))]
may depend on the choice of fibers of f , but the above formula holds for any such

choice. If all strata V ∈ V are simply connected, then these classes are independent

of the choices made. By pushing the identity in Corollary 3.4 down to a point via

k ′∗, for k ′ : Y → pt the constant map, and using the fact that k ′∗ is K0(MHM(pt))-
linear, an application of the χy-genus (which is a ring homomorphism) yields the

following:

PROPOSITION 3.5 Under the above notation and assumptions, the following iden-
tity holds in Z[y, y−1]:

χy([H∗(X; rat(M)]) = Iχ(Y ) · χy([H∗(F; rat(M))])
+

∑
V <S

Îχ y(V̄ ) · (
χy([H∗(FV ; rat( M))]) − χy([H∗(F; rat( M))]) · Iχy(c◦LV,Y )

)
.

Remark 3.6. Note that Theorem 2.5 follows from Proposition 3.5 above if we take

M = QH
X . Similarly, for X pure dimensional, Theorem 2.9 follows if we let M =

I C ′H
X (together with the stalk identifications of Lemma 2.10).

Remark 3.7. Working with k ′
! in place of k ′∗, a similar argument yields the corre-

sponding results for χ c
y (·) and Iχ c

y (·), respectively. Moreover, an application of the

E-polynomials yields similar formulae for I E(·) and I Ec(·).
4 Characteristic Classes

Here we construct a natural characteristic class transformation, M H T y , which

for an algebraic variety X yields a twisted homology class I Ty(X), whose associ-

ated genus for X compact is Iχy(X). The main result of this section is a formula

for the proper pushforward of such a class and is a direct consequence of Theo-

rem 3.2 and Corollary 3.4. The construction of M H T y follows closely ideas of a

recent paper of Brasselet, Schürmann, and Yokura ([9, remarks 5.3, 5.4], but see

also Totaro’s paper [37, sec. 7]), and is based on Saito’s theory of mixed Hodge

modules (cf. Section 3.1).

4.1 Construction of the Transformation M HT y

For any p ∈ Z, Saito constructed a functor of triangulated categories

gr F
p DR : Db MHM(X) → Db

coh(X)

commuting with proper pushdown. Here Db
coh(X) is the bounded derived cate-

gory of sheaves of OX -modules with coherent cohomology sheaves. Moreover,

gr F
p DR(M) = 0 for almost all p and M ∈ Db MHM(X) fixed. If we let QH

X ∈
Db MHM(X) be the constant Hodge module on X , and if X is smooth and pure

dimensional, then gr F−p DR(QH
X ) � �

p
X [−p].
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The transformations gr F
p DR(M) are functors of triangulated categories, so they

induce functors on the level of Grothendieck groups. Therefore, if K0(Db
coh(X)) �

G0(X) denotes the Grothendieck group of coherent sheaves on X , we obtain the

following group homomorphism commuting with proper pushdown:

M HC∗ : K0(MHM(X)) → G0(X) ⊗ Z[y, y−1],(4.1)

[M] 
→
∑

p

(∑
i

(−1)iHi (gr F
−p DR(M))

)
· (−y)p.

Recall that G0 is a covariant functor with respect to the proper pushdown f∗, de-

fined as follows: if f : X → Y is an algebraic map, then f∗ : G0(X) → G0(Y ) is

given by f∗([F]) := ∑
i≥0(−1)i [Ri f∗F] for Ri f∗F , the higher direct image sheaf

of F .

Note also that by the work of Yokura (cf. [9] and references therein) one can de-

fine the following generalization of the Baum-Fulton-MacPherson transformation

for the Todd class:

td(1+y) : G0(X) ⊗ Z[y, y−1] → H BM
2∗ (X) ⊗ Q[y, y−1, (1 + y)−1],(4.2)

[F] 
→
∑
k≥0

tdk([F]) · (1 + y)−k,

with tdk the degree-k component of the Todd class transformation td∗ of Baum-

Fulton-MacPherson [4], which is linearly extended over Z[y, y−1]. Since td∗ is

degree preserving, this new transformation also commutes with proper pushdown

(which is defined by linear extension over Z[y, y−1]).
We can now make the following definition (cf. [9, remark 5.3]):

DEFINITION 4.1 The transformation M H T y is defined by the composition

M H Ty : K0(MHM(X)) → H BM
2∗ (X) ⊗ Q[y, y−1, (1 + y)−1],

M H Ty := td(1+y) ◦ M HC∗.

By the above discussion, M H T y commutes with proper pushforward.

Example 4.2. Let V = ((VC, F), VQ, K ) ∈ MHM(pt) = m Hs p. Then:

M H T y([V]) =
∑

p

td0([gr p
F VC]) · (−y)p

=
∑

p

dimC(gr p
F VC) · (−y)p

= χy([V]).

(4.3)

Also, since over a point the twisted Todd transformation

td(1+y) : K0(pt) = Z[y, y−1]
→ Q[y, y−1, (1 + y)−1] = H BM

2∗ (pt; Q)[y, y−1, (1 + y)−1]
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is just the identity transformation, we get M HC∗ = M H T y = χy on K0(m Hs p).

DEFINITION 4.3 For a pure n-dimensional complex algebraic variety X , we define

(4.4) I Ty(X) := M H T y(I C ′H
X ), I C∗(X) := M HC∗(I C ′H

X ).

Remark 4.4 (Normalization). If X is smooth and pure-dimensional, then I C ′H
X �

QH
X in Db MHM(X), and

M HC∗(I C ′H
X ) =

∑
p

[�p
X ] · y p =: λy(T ∗

X )

is the total λ-class of the cotangent bundle of X . Therefore, by [9, lemma 3.1],

I Ty(X) = td(1+y)

(∑
p

[�p
X ] · y p

)
= T ∗

y (T X) ∩ [X ] =: Ty(X),

where T ∗
y (T X) is the modified Todd class that appears in the generalized Hirze-

bruch-Riemann-Roch theorem, i.e., the cohomology class associated to the nor-

malized power series defined by

Qy(α) := α(1 + y)

1 − e−α(1+y)
− αy.

If X is compact, the genus associated to T ∗
y (T X), that is, the degree of the zero-

dimensional part of Ty(X), is exactly the Hirzebruch χy-genus of Definition 2.1.

Remark 4.5. It is conjectured in [9] that for a complex projective variety X , the

homology class I T1(X) is exactly the L-class L∗(X) of Goresky-MacPherson. At

least the equality of their degree follows from Saito’s work. In general, for any

compact, complex algebraic variety X , one has that the degree of I Ty(X) is exactly

Iχy(X), i.e.,

Iχy(X) =
∫
X

I Ty(X)

(e.g., see Corollary 4.8 below).

Remark 4.6. For a possibly singular algebraic variety X , the twisted homology

class M H T y(Q
H
X ) is the motivic Hirzebruch class Ty(X) constructed in [9, 34],

which for a complete variety X has as associated genus the generalized Hirzebruch

χy-characteristic from Definition 2.2 (cf. [9, sec. 5]). In particular, if X is a rational

homology manifold, then QH
X

∼= I C ′H
X in Db MHM(X) and I Ty(X) = Ty(X).

Similarly, for any complex algebraic variety X , M HC∗(QH
X ) is the motivic Chern

class from [9].
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4.2 Formula for Proper Pushforward
We begin this section with the following simple observation:2 If f : X → Y

is a proper algebraic map between irreducible n-dimensional complex algebraic

varieties so that f is homologically small of degree 1 in the sense of [21, sec. 6.2],

then

f∗ I Ty(X) = I Ty(Y ).

Indeed, for such a map we have that f∗ I CX � pH0( f∗ I CX ) � I CY in Db
c (Y )

[21, theorem 6.2]. Moreover, since rat : MHM(Y ) → Perv(QY ) is a faith-

ful functor, this isomorphism can be lifted to the level of mixed Hodge modules

(cf. [27, theorem 1.12]). Then, since M H T y commutes with proper pushdown and

[I C ′H
X ] = (−1)n[I C H

X ] in K0(MHM(X)), we obtain

f∗ I Ty(X) = f∗M H T y([I C ′H
X ])

= (−1)n M H T y( f∗[I C H
X ])

= (−1)n M H T y([I C H
Y ])

= M H T y([I C ′H
Y ])

= I Ty(Y ).

In particular, if f : X → Y is a small resolution, that is, a resolution of singularities

that is small in the sense of [21], then

(4.5) I Ty(Y ) = f∗Ty(X).

One might wish to take formula (4.5) as a definition of the class I Ty(Y ). Unfortu-

nately, small resolutions do not always exist.

The main result of this section is the following:

THEOREM 4.7 Let f : X → Y be a proper morphism of complex algebraic va-
rieties, with Y irreducible. Let V be the set of components of strata of Y in a
stratification of f , with S the top-dimensional stratum (which is Zariski-open and
dense in Y ), and assume π1(V ) = 0 for all V ∈ V . For each V ∈ V \ {S}, define
inductively

Î T y(V̄ ) := I Ty(V̄ ) −
∑
W<V

Î T y(W̄ ) · Iχy(c◦LW,V ),

where c◦LW,V denotes the open cone on the link of W in V̄ , and all homology
characteristic classes are regarded in the Borel-Moore homology of the ambient
variety Y (with coefficients in Q[y, y−1, (1 + y)−1]). Then:

f∗Ty(X) = I Ty(Y ) · χy(F)

+
∑
V <S

Î T y(V̄ ) · (χy(FV ) − χy(F) · Iχy(c◦LV,Y )
)
,(4.6)

2 Finding numerical invariants of complex varieties—more precisely, Chern numbers that are

invariant under small resolutions—was Totaro’s guiding principle in his paper [37].
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where F is the generic fiber of f , and FV denotes the fiber over a stratum V ∈
V \ {S}.

If, moreover, X is pure dimensional, then:

f∗ I Ty(X) = I Ty(Y ) · Iχy(F)

+
∑
V <S

Î T y(V̄ ) · (
Iχy( f −1(c◦LV,Y )) − Iχy(F) · Iχy(c◦LV,Y )

)
.(4.7)

PROOF: Equations (4.6) and (4.7) follow directly by applying the transforma-

tion M H T y to the identity of Corollary 3.4 for M = QH
X and for M = I C ′H

X ,

respectively, and by using the fact that M H T y commutes with the exterior product

K0(MHM(Y )) × K0(MHM(pt)) → K0(MHM(Y × {pt})) � K0(MHM(Y )).

More precisely, M H T y commutes with the first exterior product and with the last

isomorphism induced by the proper pushdown p∗ for the isomorphism

p : Y × {pt} �→ Y.

If i is the inverse to p and k : Y → pt is the constant map, then for [M] ∈
K0(MHM(Y )) and [M ′] ∈ K0(MHM(pt)) we get

[M] · [M ′] = [M ⊗ k∗M ′] = [i∗(M � M ′)] = [p∗(M � M ′)].
Thus

M H T y([M] · [M ′]) = p∗(M H T y([M]) � M H T y([M ′]))
= M H T y([M]) · χy([M ′]).

�

COROLLARY 4.8 For any compact, pure-dimensional complex algebraic variety
X, the degree of I Ty(X) is the intersection homology genus Iχy(X), i.e.,

Iχy(X) =
∫
X

I Ty(X).

PROOF: Apply Theorem 4.7 to the constant map f : X → pt, which is proper

since X is compact. �

Remark 4.9. Similar formulae can be obtained by applying the transformation

M HC∗ to the identity in Corollary 3.4, and even for a general mixed Hodge mod-

ule M so that f∗[M] ∈ 〈I C ′H
V̄

]〉, e.g., if all strata V ∈ V are simply connected.

Example 4.10 (Smooth Blowup). Let Y be a smooth n-dimensional variety and

Z
i

↪→ Y a submanifold of pure codimension r + 1. Let X be the blowup of Y

along Z , and f : X → Y be the blowup map. Then V := {Y \ Z , Z} is a Whitney
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stratification of Y with I C ′
Y , I C ′

Z , and R f∗(QX ) all cohomologically V-constant.

Then, as in Example 2.7, we have that (compare with [9, example 3.3(3)]):

(4.8) f∗Ty(X) = Ty(Y ) + Ty(Z) · (−y + · · · + (−y)r ).

In particular, for y = 0, this yields the well-known formula3 :

f∗td∗(X) = td∗(Y ).

As a special case, we also obtain the following generalization of some well-

known facts concerning multiplicative properties of characteristic classes (e.g., see

[22, sec. 23.6] for a discussion on Todd classes or [12] for a more general formula

for L-classes):

COROLLARY 4.11 Let f : X → Y be a proper algebraic map of complex al-
gebraic varieties, with Y smooth and connected, so that all direct image sheaves
R j f∗QX , or R j f∗ I C ′

X for X also pure dimensional, are locally constant (e.g., f is
a locally trivial topological fibration). Let F be the general fiber of f , and assume
that π1(Y ) acts trivially on the (intersection-) cohomology of F (e.g., π1(Y ) = 0);
i.e., all these R j f∗QX or R j f∗ I C ′

X are constant. Then:

(4.9) f∗Ty(X) = χy(F) · Ty(Y ), f∗ I Ty(X) = Iχy(F) · Ty(Y ).

We end by pointing out that the assumption of trivial monodromy is closely re-

lated but different from the situation of “algebraic piecewise trivial” maps coming

up in the motivic context (e.g., see [9]). For example, the first formula in Corol-

lary 4.11 is true for a Zariski locally trivial fibration of possibly singular complex

algebraic varieties (see [9, example 3.3]).
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