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Symmetric Products

X – quasi-projective complex variety, dimC X = d .

SnX := X×n/Sn – nth symmetric product of X .

SnX parametrizes effective 0-cycles on X :

SnX =

{
ℓ∑

i=1

ni [xi ] | xi ∈ X , ni ∈ Z≥0,

ℓ∑
i=1

ni = n

}

SnX has a stratification with strata in 1-1 correspondence
with partitions of n: to a partition ν = (n1, · · · , nℓ) associate:

Sn
νX :=

{
ℓ∑

i=1

ni [xi ] | xi ̸= xj , if i ̸= j

}
∼=

(
(

n∏
i=1

X ki ) \∆

)
/

n∏
i=1

Ski

where ki is the number of occurrences of i among the nj ’s and
∆ is the large diagonal in X

∑
ki .
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Hilbert schemes of points on a quasi-projective manifold

X – smooth quasi-projective variety, dimC X = d .

HilbnX = Hilbert scheme of 0-dim subschemes of length n on X

HilbnX ,x = punctual Hilbert scheme of length n at x .

Hilbert-Chow morphism:

πn : HilbnX → SnX , Z 7→
∑
x∈Z

length(Zx) · [x ].

πn(Hilb
n
X ,x) = n[x ].

if d = 1: HilbnX
∼= SnX is smooth.

if d = 2: HilbnX is smooth and πn is a crepant resolution.

if d ≥ 3: HilbnX is singular for n ≥ 4 (little is known about its
topology).
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Computing invariants of Hilbert schemes

Cheah: computed generating series for the Hodge-Deligne
polynomials e(HilbnX ) in terms of e(X ) and e(HilbiCd ,0

).

Gusein-Zade, Luengo, Melle-Hernandez: defined a power
structure on K0(var/C) and proved:

1 +
∑
n≥1

[HilbnX ] · tn =

1 +
∑
i≥1

[
HilbiCd ,0

]
· t i
[X ]

∈ K0(var/C)[[t]]

Cheah’s formula is obtained from this motivic identity by an
application of the pre-lambda ring homomorphism:

e(−; u, v) : K0(var/C) → Z[u, v ];

e(X ) := e([X ]; u, v) :=
∑
p,q

(∑
i

(−1)ihp,q(H i
c(X ;C))

)
· upvq
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Power structure on K0(var/C)

Power structure on a ring R is a map

(1 + tR[[t]])× R → 1 + tR[[t]], (A(t),m) 7→ (A(t))m

with the usual properties of powers.

Gusein-Zade, Luengo, Melle-Hernandez: For R = K0(var/C):(
1 +

∞∑
i=1

[Ai ]t
i

)[X ]

:= 1+
∞∑
n=1

 ∑
k :

∑
iki=n

(
(
∏
i

X ki ) \∆

)
×
∏
i

Aki
i /
∏
i

Ski

·tn
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Example (Kapranov zeta function)

(1− t)−[X ] := (1 + t + t2 + · · · )[X ] = 1 +
∞∑
n=1

[SnX ] · tn

Example

ConfnX := (X n \∆)/Σn = configuration space of n unlabeled pts

(1 + t)[X ] = 1 +
∞∑
n=1

[ConfnX ] · tn

Theorem (Gusein-Zade, Luengo, Melle-Hernandez)1 +
∑
i≥1

[
HilbiCd ,0

]
· t i
[X ]

= 1 +
∑
n≥1

[HilbnX ] · tn
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Pre-lambda structure, power structure, Adams operation

Definition

Pre-lambda structure on a comm. ring R is a group morphism

λt : (R,+) → (1 + tR[[t]], ·)

so that λt(m) = 1 +mt (mod t2).

A pre-lambda ring homomorphism is a ring homomorphism
commuting with the pre-lambda structures.

Remark

A pre-lambda structure is related to the Adams operations by:

(1− t)−(·) := λt(·) = exp

( ∞∑
r=1

Ψr (·)
tr

r

)
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A pre-lambda structure λt(·) =: (1− t)−(·) on a ring R
determines algebraically a power structure (A(t))m on R via
the Euler product decomposition (with exponents bk ∈ R):

A(t) = 1+
∞∑
i=1

ai t
i =

∞∏
k=1

(1− tk)−bk =
∞∏
k=1

(
(1− t)−bk |t 7→tk

)
Define:

(A(t))m =
∞∏
k=1

(1− tk)−m·bk

A pre-lambda ring homomorphism ϕ : R1 → R2 respects the
corresponding power structures, i.e.,

ϕ (A(t)m) = (ϕ(A(t)))ϕ(m)
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Example

Pre-lambda structure on K0(var/C) is given by the Kapranov
zeta function:

λt(X ) := 1 +
∑
n≥1

[SnX ] · tn = (1− t)−[X ]

Pre-lambda structure on Z[u1, · · · , ur ] (r ≥ 1):

λt

( ∑
k⃗∈Zr

≥0

a
k⃗
· u⃗ k⃗

)
:=

∏
k⃗∈Zr

≥0

(
1− u⃗ k⃗ · t

)−a
k⃗

The Hodge-Deligne homomorphism

e(−; u, v) : K0(var/C) → Z[u, v ];

is a pre-lambda ring homomorphism.
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Relative motivic Grothendieck group K0(var/X )

K0(var/X ) = free abelian group of isomorphism classes
[Y → X ] modulo the scissor relation:

[Y → X ] = [Z ↪→ Y → X ] + [Y \ Z ↪→ Y → X ]

for Z ⊂ Y a closed algebraic subvariety of Y .

if Z = Yred , get [Y → X ] = [Yred → X ].

if X = point, get: K0(var/pt) = K0(var/C).
functorial push-forward: for f : X ′ → X get:

f∗ : K0(var/X
′) → K0(var/X ) , [Z

h→ X ′] 7→ [Z
f ◦h→ X ].

exterior product:

K0(var/X )⊠ K0(var/X
′) → K0(var/X × X ′)

[Z → X ]× [Z ′ → X ′] = [Z × Z ′ → X × X ′].
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(Motivic) Pontrjagin ring

F (X ) = K0(var/X ) or F (X ) = H∗(X ) := HBM
even(X )⊗Q[y ].

Pontrjagin ring (PF (X ),⊙) is defined as:

PF (X ) :=
∞∑
n=0

F (SnX ) · tn,

with product ⊙ induced via

⊙ : F (SnX )× F (SmX )
⊠→ F (SnX × SmX )

(−)∗→ F (Sn+mX ).

A (proper) morphism f : X → Y induces a ring
homomorphism

f∗ = {(Snf )∗}n : PF (X ) → PF (Y )
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Motivic exponentiation
(Cappell-M.-Ohmoto-Schürmann-Yokura)

For X fixed and A(t) = 1+
∑

i [Ai ]t
i ∈ K0(var/C)[[t]], define:

(A(t))X ∈ PK0(var/X ) :=
∑
n≥0

K0(var/S
nX ) · tn

by the same formula as (A(t))[X ] ∈ K0(var/C)[[t]],
but keeping track of the strata of symmetric products
corresponding to each partition.

For ν = (n1, · · · , nℓ) with ki=# of i among nj ’s, regard(
(
∏
i

X ki ) \∆

)
×
∏
i

Aki
i /
∏
i

Ski ∈ K0(var/S
nX )

via:(
(
∏
i

X ki ) \∆

)
×
∏
i

Aki
i /
∏
i

Ski
proj→ (

∏
i

X ki )\∆/
∏
i

Ski
∼= Sn

νX ↪→ SnX
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Properties of motivic exponentiation

if k : X → pt is the constant map, then:

k∗
(
(A(t))X

)
= (A(t))[X ]

if Y
i
↪→ X is a closed inclusion with U := X \ Y

j
↪→ X , then

(A(t))X = i∗ (A(t))
Y ⊙ j∗ (A(t))

U

if π : X ′ × X → X is the projection map, then

π∗

(
(A(t))X

′×X
)
=
(
(A(t))[X

′]
)X

(1 + t)X = 1 + [idX ]t + higher order terms
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Example

(1− t)−X := ((1− t)−1)X = 1 +
∞∑
n=1

[idSnX ] · tn

(1+t)X = 1+
∞∑
n=1

[ConfnX
in
↪→ SnX ]·tn = 1+

∞∑
n=1

(in)∗[idConfnX ]·tn

(
(1− t)−[X ′]

)X
= 1 +

∞∑
n=1

[Sn(X ′ × X ) → SnX ] · tn

Theorem (Behrend, Bryan, Szendröi)(
1 +

∑
i≥1

[
HilbiCd ,0

]
· t i
)X

= 1 +
∑

n≥1

[
HilbnX

πn−→ SnX
]
· tn
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Motivic Hirzebruch classes

Brasselet-Schürmann-Yokura:

Ty∗ : K0(var/X ) → H∗(X ) := HBM
even(X )⊗Q[y ]

if X = pt: Ty∗ = χy := e(−;−y , 1) : K0(var/C) → Z[y ]
Hirzebruch class of X : Ty∗(X ) := Ty∗([idX ]).

Ty∗ commutes with proper push-forward and ⊠

Ty∗ extends to a ring homomorphism:

Ty∗ : PK0(var/X ) → PH∗(X )

LAURENTIU MAXIM University of Wisconsin-Madison Characteristic classes of Hilbert schemes



Main Result

Theorem (Cappell-M.-Ohmoto-Schürmann-Yokura)

For X a quasi-projective variety and α ∈ K0(var/C) fixed, we have:

T(−y)∗

((
(1− t)−α

)X)
= (1− t · d∗)−χ−y (α)·T(−y)∗(X )

with

(1− t · d∗)−(·) := exp

( ∞∑
r=1

Ψrd
r
∗(·)

tr

r

)
: H∗(X ) → PH∗(X ),

and

d r : X
diag→ X r proj→ X (r)

Ψr is the r -th homological Adams operation defined by

· 1
rk

on HBM
2k (−;Q)

y 7→ y r .
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Hirzebruch classes of symmetric products

Corollary (Cappell-M.-Schürmann-Shaneson-Yokura)

If X is a quasi-projective complex algebraic variety, then:∑
n≥0

T(−y)∗(S
nX ) · tn = T(−y)∗((1− t)−X )

= (1− t · d∗)−T(−y)∗(X )

= exp

( ∞∑
r=1

Ψrd
r
∗

(
T(−y)∗(X )

) tr

r

)
.
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Recall:

Theorem (Behrend, Bryan, Szendröi)

1 +
∑
n≥1

[
HilbnX

πn−→ SnX
]
· tn =

1 +
∑
i≥1

[
HilbiCd ,0

]
· t i
X
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Hirzebruch classes of Hilbert schemes

Theorem (Cappell-M.-Ohmoto-Schürmann-Yokura)

Let X be a smooth quasi-projective variety of dimension d .

∞∑
n=0

πn∗T(−y)∗(Hilb
n
X ) · tn =

(
1 +

∞∑
n=1

χ−y (HilbnCd ,0) · tn · dn
∗

)T(−y)∗(X )

:=
∞∏
k=1

(1− tk · dk
∗ )

−χ−y (αk )·T(−y)∗(X ),

for

(1− tk · dk
∗ )

−(·) = exp

( ∞∑
r=1

Ψrd
rk
∗ (·) t

rk

r

)
and αk ∈ K0(var/C) given by the Euler product decomposition:

1 +
∑
n≥1

[
HilbnCd ,0

]
· tn =

∞∏
k=1

(1− tk)−αk .
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MacPherson-Chern classes of Hilbert schemes

Theorem (CMOSY)

∞∑
n=0

πn∗c∗(Hilb
n
X ) · tn =

(
1 +

∞∑
n=1

χ(HilbnCd ,0) · tn · dn
∗

)c∗(X )

:=
∞∏
k=1

(1− tk · dk
∗ )

−χ(αk )·c∗(X )

∈
∞∑
n=0

HBM
even(X

(n);Q) · tn.

with

(1− t · d∗)−(·) := exp

( ∞∑
r=1

d r
∗(·)

tr

r

)
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Example

If X is a smooth surface, then αk = Lk−1, so:

∞∑
n=0

πn∗c∗(Hilb
n
X )·tn =

∑
n

corb∗ (SnX )·tn =
∞∏
k=1

(1−tk ·dk
∗ )

−c∗(X )

If X is a smooth 3-fold, then χ(αk) = k and:

∞∑
n=0

πn∗c∗(Hilb
n
X ) · tn =

∞∏
k=1

(1− tk · dk
∗ )

−k·c∗(X )
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(Relative) virtual motives

f : M → C be a regular function on a smooth q-proj variety.

Z = {df = 0} ⊂ M.

(relative) virtual motive of Z :

[Z ]relvir = −L−dimM
2 [φf ]Z ∈ K0(var/Z )[L−1/2],

[Z ]vir = −L−dimM
2 [φf ] ∈ K0(var/C)[L−1/2]

with φf the motivic vanishing cycles of Denef-Loeser.

this applies to HilbnC3 , so get [HilbnC3 ]relvir, [Hilb
n
C3 ]vir and

[HilbnC3,0]vir

For X a smooth q-proj 3-fold, Behrend-Bryan-Szendröi define

[HilbnX ]vir ∈ K0(var/C)[L−1/2]
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Theorem (Behrend-Bryan-Szendröi)

Let X be a smooth quasi-projective 3-fold. Then:

1 +
∑
n≥1

[HilbnX ]vir · tn =

1 +
∑
n≥1

[
HilbnC3,0

]
vir

· tn
[X ]

LAURENTIU MAXIM University of Wisconsin-Madison Characteristic classes of Hilbert schemes



Remark

Relative virtual motives of HilbnX are not defined, but can define

πn∗[Hilb
n
X ]relvir ∈ K0(var/S

nX )[L−1/2]

by the generating series:

1 +
∑
n≥1

πn∗[Hilb
n
X ]relvir · tn :=

1 +
∑
n≥1

[
HilbnC3,0

]
vir

· tn
X

in PK0(var/X )[L−1/2].
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Theorem (CMOSY)

For any smooth quasi-projective 3-fold X we have:

∞∑
n=0

T(−y)∗

(
πn∗[Hilb

n
X ]relvir

)
· (−t)n =

∞∏
k=1

(1− tk · dk
∗ )

−χ−y (αk )·T(−y)∗(X ),

with coefficients αk ∈ K0(var/C)[L−1/2] given by

αk =
(−L1/2)−k − (−L1/2)k

L(1− L)
.
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Theorem (CMOSY)

For any smooth quasi-projective 3-fold X we have:

∞∑
n=0

πn∗(c
A
∗ (Hilb

n
X )) · (−t)n =

∞∏
k=1

(1− tk · dk
∗ )

−k·c∗(X ).

with
cA∗ (Hilb

n
X ) := c∗(νHilbnX )

the Aluffi class (= Chern class of the Behrend function νHilbnX .)
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Remark

Comparing the Chern class formulae, obtain:

πn∗(c
A
∗ (X

[n])) = (−1)nπn∗(c∗(X
[n]))

For X a projective CY 3-fold, taking degrees in the last result
yields the degree-zero MNOP conjecture.
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THANK YOU !!!
and

Feliz cumpleaños !!!
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