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Lecture plan

♣ Part I:
Introduction to characteristic classes for singular varieties

♣ Part 2:
Applications of characteristic classes to Ehrhart theory
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Motivation. Overview
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Manifolds: genera and characteristic classes

Definition

A multiplicative genus ϕ is a ring homomorphism

ϕ : ΩG
∗ → R,

where

ΩG
∗ =cobordism ring of closed (G = O) and oriented

(G = SO) or stably almost complex manifolds (G = U).

R=commutative, unital Q-algebra.

♣ Here we focus on G = U.
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♣ Hirzebruch: There is a one-to-one correspondence between:

normalized power series f (with f (0) = 1) in the variable c1

genera ϕf : ΩU
∗ → R

normalized and multiplicative cohomology characteristic
classes cl∗f over a finite-dim. base space X ,

cl∗f : (K 0(X ),⊕) → (H∗(X )⊗ R,∪)

(with H∗(X ) = H2∗(X ;Z), and K 0(X ) the Grothendieck
group of C-vector bundles on X ), s.t.

cl∗f (L) = f (c1(L)), if L is a complex line bundle
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♣ Given f a normalized power series as above, with corresponding
class cl∗f , the associated genus ϕf is defined by:

ϕf (X ) = deg(cl∗f (X )) := ⟨cl∗f (TX ), [X ]⟩ =:

∫
X
cl∗f (TX ) ∩ [X ]

♣ Every multiplicative genus on ΩU
∗ is completely determined by

its values on all complex projective spaces, since (Milnor):

ΩU
∗ ⊗Q = Q[CP1,CP2,CP3, · · · ]
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Example: Hirzebruch’s χy -genus

Hirzebruch χy -genus of a compact complex manifold X :

χy (X ) :=
∑
p≥0

χ(X ,Ωp
X )y

p

genus χy : ΩU
∗ → Q[y ], with χy (CPn) =

∑n
p=0(−y)p.

χy comes from the power series in z = c1:

fy (z) =
z(1 + y)

1− e−z(1+y)
− zy ∈ Q[y ][[z ]]

associated characteristic class: Hirzebruch class T̂ ∗
y

correspondence: generalized Hirzebruch-Riemann-Roch:

χy (X ) = ⟨T̂ ∗
y (TX ), [X ]⟩ (g-HRR)

y = 0: arithmetic genus, Todd class, and Riemann-Roch.
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♣ The value ϕ(X ) of a genus ϕ : ΩG
∗ → Q on a closed manifold X

is called a characteristic number of X . Characteristic numbers are
used to classify manifolds up to cobordism (Milnor-Novikov).

Remark

Singular spaces do not usually have tangent bundles, so
cohomology characteristic classes and genera cannot be defined as
in the manifold case. Instead, one works with homology
characteristic classes defined via suitable natural transformations.
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Functorial characteristic classes for singular varieties

♣ A functorial characteristic class theory of singular complex
algebraic varieties is a covariant transformation

cl∗ : A(−) → H∗(−)⊗ R,

with A(−) a covariant theory depending on cl∗, and
H∗(−) = HBM

∗ (−;Z).

♣ For any X , there is a distinguished element αX ∈ A(X ).
♣ the characteristic class of the (singular) space X is:

cl∗(X ) := cl∗(αX )

♣ cl∗ satisfies the normalization property: if X is smooth and
cl∗(TX ) is the corresponding cohomology class of X , then:

cl∗(αX ) = cl∗(TX ) ∩ [X ] ∈ H∗(X )⊗ R
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♣ A characteristic number of a compact singular variety X is
defined by:

#(X ) := deg(cl∗(αX )) := const∗(cl∗(αX ))

for const : X → point the constant map.

♣ If X is smooth, get by normalization that

#(X ) = ⟨cl∗(TX ), [X ]⟩,

so #(X ) is a singular extension of the notion of characteristic
numbers of manifolds.
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Example (Euler characteristic)

The topological Euler characteristic

χ(X ) :=
∑
i

(−1)ibi (X )

is a characteristic number via the singular version of
Gauss-Bonnet-Chern theorem:

χ(X ) := deg(cSM∗ (X )),

with cSM∗ (X ) := c∗(1X ) the CSM class of X ,

for

c∗ : CF (X ) → H∗(X )

the MacPherson-Chern class transformation on X , defined on the
group CF (X ) of constructible functions on X .
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Example (Arithmetic genus)

The arithmetic genus of a compact complex algebraic variety,

χa(X ) := χ(X ,OX ) =
∑
i

(−1)i dimCH i (X ;OX )

is a characteristic number via the singular Riemann-Roch:

χa(X ) := deg(td∗(X )),

with td∗(X ) := td∗([OX ]),

for

td∗ : K0(X ) := K0(Coh(X )) → H∗(X )⊗Q

the Baum-Fulton-MacPherson Todd class transformation.
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Example (Hirzebruch polynomial)

The Hirzebruch polynomial of a compact complex algebraic variety,

χy (X ) :=
∑
i ,p

(−1)i dimC GrpFH
i (X ;C) · (−y)p

is a characteristic number of X via the singular (g-HRR):

χy (X ) = deg(Ty∗([QH
X ])) = deg(T̂y∗([QH

X ])),

for
Ty∗, T̂y∗ : K0(MHM(X )) → H∗(X )⊗Q[y±1]

the Brasselet-Schürmann-Yokura Hirzebruch class transformations,
defined on the Grothendieck group of mixed Hodge modules on X .
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Hirzebruch class transformations
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Mixed Hodge modules. Examples

♣ X - complex algebraic variety.

♣ MHM(X )= algebraic mixed Hodge modules on X
♣ If X = pt is a point, then

MHM(pt) = MHSp = (polarizable) Q-MHS

♣ If X is smooth, then MHM(X ) ∋ M = ((M,F ,W ), (K ,W )),
with

(M,F ) a regular holonomic filtered (left) DX -module, with F
a good filtration.

K a perverse sheaf

isomorphism α : DR(M)an ≃ K ⊗QX
CX compatible with W .

♣ If X is singular, use suitable local embeddings into manifolds
and filtered D-modules supported on X .
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Basic example: (good) variations of MHS

♣ X - complex algebraic manifold of pure complex dimension n.

♣ (L,F ,W ) – good (i.e., admissible, with quasi-unipotent
monodromy at infinity) variation of Q-MHS on X (e.g., L = QX ).

♣ (L := L⊗QX
OX ,∇) is a holonomic (left) DX -module.

♣ Hodge filtration F on L induces by Griffiths’ transversality a
good filtration FpL := F−pL on L as a filtered DX -module.

♣ Perverse sheaf: L[n].

♣ α : DR(L)an ≃ L[n], with shifted de Rham complex

DR(L) := [L ∇−→ · · · ∇−→ L⊗OX
Ωn
X ]

with L in degree −n.

♣ α is compatible with the induced filtration W defined by
W i (L[n]) := W i−nL[n] and W i (L) := (W i−nL)⊗QX

OX

♣ This data defines a mixed Hodge module LH [n] on X .
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Grothendieck groups of MHM

♣ K0(MHM(X )) ≃ K0(D
bMHM(X )) – Grothendieck group of

(complexes of) MHM on X

♣ K0(MHM(X )) is generated by f∗[j∗L
H ] (or, alternatively, by

f∗[j!L
H ]), with:

f : Y → X a proper morphism from a complex algebraic
manifold Y ,

j : U ↪→ Y the inclusion of a Zariski open and dense subset U
with complement D a sncd, and

L a good variation of mixed Hodge structures on U.

(This follows by induction from resolution of singularities using the
standard attaching triangles for closed/open inclusions.)

LAURENTIU MAXIM University of Wisconsin-Madison Characteristic classes



Grothendieck groups of MHM

♣ K0(MHM(X )) ≃ K0(D
bMHM(X )) – Grothendieck group of

(complexes of) MHM on X

♣ K0(MHM(X )) is generated by f∗[j∗L
H ] (or, alternatively, by

f∗[j!L
H ]), with:

f : Y → X a proper morphism from a complex algebraic
manifold Y ,

j : U ↪→ Y the inclusion of a Zariski open and dense subset U
with complement D a sncd, and

L a good variation of mixed Hodge structures on U.

(This follows by induction from resolution of singularities using the
standard attaching triangles for closed/open inclusions.)

LAURENTIU MAXIM University of Wisconsin-Madison Characteristic classes



Grothendieck groups of MHM

♣ K0(MHM(X )) ≃ K0(D
bMHM(X )) – Grothendieck group of

(complexes of) MHM on X

♣ K0(MHM(X )) is generated by f∗[j∗L
H ] (or, alternatively, by

f∗[j!L
H ]), with:

f : Y → X a proper morphism from a complex algebraic
manifold Y ,

j : U ↪→ Y the inclusion of a Zariski open and dense subset U
with complement D a sncd, and

L a good variation of mixed Hodge structures on U.

(This follows by induction from resolution of singularities using the
standard attaching triangles for closed/open inclusions.)

LAURENTIU MAXIM University of Wisconsin-Madison Characteristic classes



Grothendieck groups of MHM

♣ K0(MHM(X )) ≃ K0(D
bMHM(X )) – Grothendieck group of

(complexes of) MHM on X

♣ K0(MHM(X )) is generated by f∗[j∗L
H ] (or, alternatively, by

f∗[j!L
H ]), with:

f : Y → X a proper morphism from a complex algebraic
manifold Y ,

j : U ↪→ Y the inclusion of a Zariski open and dense subset U
with complement D a sncd, and

L a good variation of mixed Hodge structures on U.

(This follows by induction from resolution of singularities using the
standard attaching triangles for closed/open inclusions.)

LAURENTIU MAXIM University of Wisconsin-Madison Characteristic classes



Grothendieck groups of MHM

♣ K0(MHM(X )) ≃ K0(D
bMHM(X )) – Grothendieck group of

(complexes of) MHM on X

♣ K0(MHM(X )) is generated by f∗[j∗L
H ] (or, alternatively, by

f∗[j!L
H ]), with:

f : Y → X a proper morphism from a complex algebraic
manifold Y ,

j : U ↪→ Y the inclusion of a Zariski open and dense subset U
with complement D a sncd, and

L a good variation of mixed Hodge structures on U.

(This follows by induction from resolution of singularities using the
standard attaching triangles for closed/open inclusions.)

LAURENTIU MAXIM University of Wisconsin-Madison Characteristic classes



Grothendieck groups of MHM

♣ K0(MHM(X )) ≃ K0(D
bMHM(X )) – Grothendieck group of

(complexes of) MHM on X

♣ K0(MHM(X )) is generated by f∗[j∗L
H ] (or, alternatively, by

f∗[j!L
H ]), with:

f : Y → X a proper morphism from a complex algebraic
manifold Y ,

j : U ↪→ Y the inclusion of a Zariski open and dense subset U
with complement D a sncd, and

L a good variation of mixed Hodge structures on U.

(This follows by induction from resolution of singularities using the
standard attaching triangles for closed/open inclusions.)

LAURENTIU MAXIM University of Wisconsin-Madison Characteristic classes



Filtered de Rham complexes

Theorem (Saito)

For any variety X , there is a functor of triangulated categories

GrFp DR : DbMHM(X ) −→ Db
coh(X )

commuting with proper pushforward, with GrFp DR(M ) = 0 for
almost all p and M fixed.

(a) If X is a (pure) n-dimensional complex algebraic manifold,
and M ∈ MHM(X ), then GrFp DR(M ) is the complex
associated to the de Rham complex of the underlying
algebraic left DX -module M with its integrable connection ∇:

DR(M) = [M ∇−→ · · · ∇−→ M⊗OX
Ωn
X ]

with M in degree −n, filtered by

FpDR(M) = [FpM
∇−→ · · · ∇−→ Fp+nM⊗OX

Ωn
X ]
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Theorem (Filtered de Rham complexes, cont’d)

(b) X̄ – smooth partial compactification of the algebraic manifold
X with complement D a sncd, and open inclusion j : X ↪→ X̄ .

For a good variation (L,F ,W ) of MHS on X , (DR(j∗L
H),F )

is filtered quasi-isomorphic to the log de Rham complex

DRlog(L) := [L ∇−→ · · · ∇−→ L⊗OX̄
Ωn
X̄
(log(D))]

with increasing filtration F−p := F p given by

F pDRlog (L) = [F pL ∇−→ · · · ∇−→ F p−nL ⊗OX̄
Ωn
X̄
(log(D))]

where L is the canonical Deligne extension of L := L⊗QX
OX .

In particular, GrF−pDR(j∗L
H)

q.i
≃ GrpFDRlog (L).

(c) For (DR(j!L
H),F ), consider instead the log de Rham complex

associated to the Deligne extension L ⊗OX̄ (−D) of L.
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Hodge–Chern classes

The transformations GrFp DR induce group homomorphisms

GrFp DR : K0(MHM(X )) −→ K0(X ) ≃ K0(D
b
coh(X ))

Definition (Brasselet–Schürmann–Yokura)

The Hodge–Chern class transformation of a variety X is:

DRy : K0(MHM(X )) −→ K0(X )⊗ Z[y±1]

DRy ([M ]) :=
∑
i ,p

(−1)i
[
HiGrF−pDR(M )

]
· (−y)p

=
∑
p

[
GrF−pDR(M )

]
· (−y)p

LAURENTIU MAXIM University of Wisconsin-Madison Characteristic classes



Hodge–Chern classes

The transformations GrFp DR induce group homomorphisms

GrFp DR : K0(MHM(X )) −→ K0(X ) ≃ K0(D
b
coh(X ))

Definition (Brasselet–Schürmann–Yokura)
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Hirzebruch classes of mixed Hodge modules

Definition (Brasselet–Schürmann–Yokura)

♣ The un-normalized Hirzebruch class transformation is:

Ty∗ := td∗ ◦ DRy : K0(MHM(X )) → H∗(X )⊗Q[y±1]

with td∗ : K0(X ) → H∗(X )⊗Q the Todd class transformation of
the singular (G-R-R) thm of Baum-Fulton-MacPherson, linearly
extended over Z[y±1], and H∗(X ) := HBM

2∗ (X ).

♣ The normalized Hirzebruch class transformation is:

T̂y∗ := td(1+y)∗ ◦ DRy : K0(MHM(X )) → H∗(X )⊗Q
[
y , 1

y(y+1)

]
where

td(1+y)∗ : K0(X )⊗ Z[y±1] → H∗(X )⊗Q
[
y , 1

y(y+1)

]
is the scalar extension of td∗ together with the multiplication by
(1 + y)−k on the degree k component.
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Homology Hirzebruch characteristic classes of varieties

Definition (Brasselet-Schürmann-Yokura)

Homology Hirzebruch characteristic classes of a complex algebraic
variety X are defined by evaluating at the (class of the) constant
Hodge module QH

X :

Ty∗(X ) := Ty∗([QH
X ]), T̂y∗(X ) := T̂y∗([QH

X ]) ∈ H∗(X )⊗Q[y ].

♣ The classes Ty∗(X ) and T̂y∗(X ) are “motivic”, i.e., they are
images of [idX ] under natural transformations (motivic lifts):

Ty∗, T̂y∗ : K0(var/X ) → H∗(X )⊗Q[y ],

where K0(var/X ) is generated by isomorphism classes [f : Y → X ]
and the scissor relation.
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Properties

♣ The transformations DRy and (by Riemann-Roch) Ty∗ and T̂y∗
commute with proper pushforward.

♣
T̂y∗([M ]) ∈ H∗(X )⊗Q[y±1],

and for y = −1:

T̂−1∗([M ]) = c∗([rat(M )]) ∈ H∗(X )⊗Q

is the MacPherson-Chern class of the constructible complex
rat(M ) (i.e., the MacPherson-Chern class of the constructible
function defined by taking stalkwise the Euler characteristic).

♣ If X is Du Bois (e.g., a toric variety) then

T0∗(X ) = T̂0∗(X ) = td∗([OX ]) =: td∗(X )

for td∗ the Todd class transformation.
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Normalization and degree

♣ Normalization: if X is smooth, then

DRy (X ) := DRy ([QH
X ]) = Λy (T

∗
X ),

where for a vector bundle V on X we define its Λ-class by

Λy (V ) =
∑

p≥0[Λ
pV ]yp ∈ K 0(X )[y ].

Ty∗(X ) = T ∗
y (TX ) ∩ [X ] , T̂y∗(X ) = T̂ ∗

y (TX ) ∩ [X ]

with T ∗
y (TX ) and T̂ ∗

y (TX ) defined by power series

Qy (α) :=
α(1+ye−α)
1−e−α , Q̂y (α) :=

α(1+ye−α(1+y))

1−e−α(1+y) ∈ Q[y ][[α]]

♣ Degree: If X is compact, and M ∈ DbMHM(X ):

deg(Ty∗([M ])) = deg(T̂y∗([M ])) =
∑
j,p

(−1)j dimGrpFH
j(X ;M ) · (−y)p

=: χy (X ;M )
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Normalization and degree
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X ]) = Λy (T

∗
X ),

where for a vector bundle V on X we define its Λ-class by

Λy (V ) =
∑

p≥0[Λ
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Example: X̄ – smooth partial compactification of the algebraic manifold
X with complement D a sncd, and open inclusion j : X ↪→ X̄ .

♣ Recall: if (L,F ,W ) is a good variation of MHS on X , then(
DR(j∗L

H),F−�
)
≃

(
DRlog (L),F �

)
with F−p := F p induced by Griffiths’ transversality.

♣ Define a cohomological Hodge-Chern class

DRy (Rj∗L) :=
∑

p[Gr
p
F (L)] · (−y)p ∈ K 0(X̄ )[y±1],

with K 0(X̄ )= Grothendieck group of algebraic vector bundles

♣ Get

DRy ([j∗L
H ]) = DRy (Rj∗L) ∩

(
Λy

(
Ω1
X̄
(log(D))

)
∩ [OX̄ ]

)
.

♣ Similarly, for

DRy (j!L) :=
∑

p[OX̄ (−D)⊗ GrpF (L)] · (−y)p ∈ K 0(X̄ )[y±1],

get

DRy ([j!L
H ]) = DRy (j!L) ∩

(
Λy

(
Ω1
X̄
(log(D))

)
∩ [OX̄ ]

)
♣ For j = id : X → X , get the Atiyah-Meyer type formula:

DRy ([L
H ]) = DRy (L) ∩ (Λy (T

∗
X ) ∩ [OX ]) ∈ K0(X )[y±1]
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Additivity of Hodge–Chern and Hirzebruch classes

Proposition

For a complex variety X , fix M ∈ DbMHM(X ) with K := rat(M ).

Let S = {S} be a complex algebraic stratification of X so that for
any S ∈ S: S is smooth, S̄ \ S is a union of strata, and the
sheaves LS,ℓ := HℓK |S are local systems on S for any ℓ.

If jS : S
iS,S̄
↪→ S̄

iS̄,X
↪→ X is the inclusion map of a stratum S ∈ S, then:

[M ] =
∑
S ,ℓ

(−1)ℓ
[
(jS)!L

H
S,ℓ

]
=

∑
S,ℓ

(−1)ℓ (iS̄ ,X )∗
[
(iS ,S̄)!L

H
S ,ℓ

]
In particular,

DRy ([M ]) =
∑

S ,ℓ (−1)ℓ (iS̄ ,X )∗DRy

[
(iS,S̄)!L

H
S ,ℓ

]
Ty∗(M ) =

∑
S ,ℓ (−1)ℓ (iS̄ ,X )∗Ty∗

(
(iS ,S̄)!L

H
S,ℓ

)
.
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Explicit computation of summands DRy

[
(iS ,S̄)!L

H
S ,ℓ

]
Theorem (M.-Saito-Schürmann)

Let L be a good variation of MHS on a stratum S

and
iS ,Z : S ↪→ Z a smooth partial compactification of S so that
D := Z \ S is a sncd and iS ,S̄ = πZ ◦ iS ,Z for a proper morphism

πZ : Z → S̄ . Then:

DRy (
[
(iS,S̄)!L

H
]
) = (πZ )∗

[
DRy ((iS,Z )!L

H) ∩ Λy

(
Ω1
Z (log(D))

]
.

In particular, if L is the canonical Deligne extension on Z of
L := L⊗QS

OS , then:

Ty∗
(
(iS,S̄ )!L

H
)
=

∑
p,q

(−1)q(πZ )∗td∗
[
OZ (−D)⊗ GrpFL ⊗ Ωq

Z (logD)
]
(−y)p+q .

Corollary

DRy (
[
(iS ,S̄)!QH

S

]
) = (πZ )∗

[
OZ (−D)⊗ ΛyΩ

1
Z (log(D)

]
∈ K0(S̄)[y ]
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Application: Hirzebruch classes of toric varieties

Theorem (M.-Schürmann)

Let XΣ be the toric variety defined by the fan Σ. For any cone
σ ∈ Σ, with orbit Oσ and inclusion iσ : Oσ ↪→ Oσ = Vσ, have:

DRy (
[
(iσ)!QH

Oσ

]
) = (1 + y)dim(Oσ) · [ωVσ ],

where ωVσ is the canonical sheaf on the toric variety Vσ.
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Theorem (M.-Schürmann)

Let X = XΣ be the toric variety defined by the fan Σ.

For each
cone σ ∈ Σ, let Vσ be the closure of the orbit Oσ ⊂ X , and choose
a point xσ ∈ Oσ. Let M ∈ DbMHM(X ) be a mixed Hodge
module complex on X = XΣ with constant cohomology sheaves
along the torus orbits Oσ, σ ∈ Σ (e.g., QH

X or ICH
X ). Then:

Ty∗([M ]) =
∑
σ∈Σ

χy (H•(M )xσ) · (1 + y)dim(Oσ) · td∗([ωVσσ
]).

In particular, if X = XΣ is compact,

χy (X ;M ) =
∑
σ∈Σ

χy (H•(M )xσ) · (−1− y)dim(Oσ).

♣ In Part 2, I will discuss applications of the above formula to
(generalized) weighted Ehrhart theory for convex lattice polytopes.
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Part 2.
Applications of characteristic classes to Ehrhart theory
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Lattice polytopes, Fans and Toric Varieties

♣ M ≃ Zn n-dimensional lattice in Rn

♣ N = Hom(M,Z) the dual lattice
♣ fan Σ in NR = N ⊗ R ∼= Rn ; toric variety XΣ

♣ Cone-Orbit Correspondence:

cone σ ∈ Σ ; orbit Oσ ⊂ XΣ ; orbit closure Vσ := Ōσ.

♣ If P = Conv(S) ⊂ MR ∼= Rn (with S ⊂ M a finite set) is a
full-dimensional lattice polytope, then

P ; inner normal fan ΣP ; projective toric variety
XP := XΣP

with ample Cartier divisor DP

face Q ⪯ P ; cone σQ ∈ ΣP ; orbit OσQ
in XP
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Classical Ehrhart theory

♣ M ∼= Zn lattice, P ⊂ MR ∼= Rn full-dim. lattice polytope.

♣ Problem: Calculate #(ℓP ∩M), for ℓ ∈ Z>0.
♣ Ehrhart-Macdonald (1960): EhrP(ℓ) := #(ℓP ∩M) is a
polynomial in ℓ of degree n, called the Ehrhart polynomial of P.
♣ Geometric Approach (Danilov):

consider the associated (possibly singular) projective
toric variety XP with ample Cartier divisor DP .

EhrP(ℓ) = χ(XP ,O(ℓDP))

(RR)
=

∑
k≥0

(
1

k!

∫
XP

[DP ]
k ∩ tdk(XP)

)
ℓk =

∑
k≥0

akℓ
k ,

with tdk(XP) ∈ H2k(XP ;Q) the degree k component of the
Baum-Fulton-MacPherson Todd class td∗(XP).

an = vol(P), an−1 =
1
2vol(∂P), a0 = χ(P) = 1.
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Reciprocity

♣ Ehrhart reciprocity:

EhrP(−ℓ) = (−1)n ·#(Int(ℓP) ∩M) = (−1)n · EhrInt(P)(ℓ)

♣ Geometrically,

#(Int(ℓP) ∩M) = (−1)n · χ(XP ,O(−ℓDP))
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Weighted Ehrhart theory

♣ Face decomposition for P:

#(ℓP ∩M) =
∑
Q⪯P

#(Relint(ℓQ) ∩M),

with Relint(ℓQ) the relative interior of the face ℓQ of the dilated
polytope ℓP.

♣ Assign Laurent polynomial weights fQ(y) ∈ Z[y±1] to each face
Q ⪯ P of P, and define for any ℓ ∈ Z>0 the weighted Ehrhart
“polynomial” of P and f = {fQ}Q⪯P by

EhrP,f (ℓ, y) :=
∑
Q⪯P

fQ(y) · (1 + y)dim(Q) ·#(Relint(ℓQ) ∩M)

♣ If f = 1 := {1}, get for y = 0: EhrP,1(ℓ, 0) = EhrP(ℓ)
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Properties of the weighted Ehrhart polynomial EhrP,f (ℓ)

EhrP,f (ℓ, y) :=
∑
Q⪯P

fQ(y) · (1 + y)dim(Q) ·#(Relint(ℓQ) ∩M)

♣ By classical Ehrhart theory for the faces of P, EhrP,f (ℓ, y) has
the following properties:

EhrP,f (ℓ, y) is obtained by evaluating a polynomial
EhrP,f (z , y) at z = ℓ ∈ Z>0.
(Constant term) For ℓ = 0,

EhrP,f (0, y) =
∑
Q⪯P

fQ(y) · (−1− y)dim(Q),

i.e., evaluating #(Relint(ℓQ) ∩M) at ℓ = 0 as (−1)dim(Q).
(Reciprocity formula) For ℓ ∈ Z>0,

EhrP,f (−ℓ, y) =
∑
Q⪯P

fQ(y) · (−1− y)dim(Q) ·#(ℓQ ∩M).
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♣ Assume 0 ∈ Int(P), and consider the polar polytope P◦ ⊂ NR, a
full-dimensional polytope with respect to the lattice N, containing
the origin in the interior.

♣ By taking cones at 0 ∈ NR over the proper faces of P◦, with ∅
corresponding to the origin, one gets the same lattice fan ΣP

(hence the same toric variety XP).
♣ There is an order-reversing one-to-one correspondence between
the faces Q of P, and the faces Q◦ of the polar polytope P◦,
switching the roles of polytopes and emptysets seen as faces. For a
proper face ∅ ≠ Q ≺ P, one has dimR(Q) + dimR(Q

◦) = n − 1.
♣ Consider the weight vector given by Stanley’s g -polynomials

fQ(y) = gQ◦(−y) =: g̃Q(−y)

for the polar polytope of P, with g∅(−y) = g̃P(−y) = 1.
♣ If P is a simple polytope, the polar polytope P◦ is simplicial, so
that gQ◦(−y) = 1, for all faces Q of P.
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Purity

Theorem (Beck-Gunnells-Materov)

For fQ(y) = gQ◦(−y) the weight vector given by Stanley’s
g -polynomials for the faces of the polar polytope P◦ of P, the
following purity property holds:

EhrP,f (−ℓ, y) = (−y)n · EhrP,f (ℓ,
1

y
)

♣ Combinatorial proof relying on work of Brion-Vergne.

♣ If P is simple, purity implies Dehn-Sommerville relations for P.

♣ I will explain a geometric proof of this result, and prove a form
of reciprocity/purity for any weight vector f .

♣ We use Hodge theory, and recover all properties of EhrP,f (ℓ)
from the calculus of characteristic classes of mixed Hodge modules
on XP (via a generalized Hirzebruch-Riemann-Roch).
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Hodge polynomial

♣ There is a Hodge polynomial ring homomorphism

χy : K0(MHS) −→ Z[y±1]

χy ([H
•]) :=

∑
j ,p

(−1)j · dimCGrpFH
j
C · (−y)p

♣ For a complex projective algebraic variety X (e.g., XP), can take:

(cohomology) H• = H•(X ;M ), for M ∈ DbMHM(X )

(stalks) H• = H•(M )x , for x ∈ X and M ∈ DbMHM(X )

♣ For M ∈ DbMHM(X ), set χy (X ;M ) := χy ([H
•(X ;M )]).

In particular, for M = QX set χy (X ) = χy ([H
•(X )]),

and for M = ICX [− dim(X )] set Iχy (X ) := χy ([IH
•(X )]).

♣ χ−1(X ) = e(X ) is the Euler characteristic of X .

♣ M.-Saito-Schürmann: Iχ1(X ) = σ(X ) is the intersection
cohomology signature of X (Goresky-MacPherson).
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Lemma (M.-Schürmann)

For any weight vector f = {fQ}Q⪯P on the faces of the lattice
polytope P, there exists some M ∈ DbMHM(XP) with constant
cohomology sheaves along the torus orbits such that

fQ(y) = χy (H•(M )xQ )

for some (any) xQ ∈ OσQ
⊂ XP .

Conversely, any such M defines a
weight vector f .

♣ For f and M as above, set EhrP,f (ℓ) = EhrP,M (ℓ).

Example (Fieseler, Denef-Loeser)

For a lattice polytope P with Stanley’s g -polynomials
fQ(y) = gQ◦(−y), one can choose M = ICXP

[−n].
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Homology Hirzebruch classes

♣ For X projective,

χy (X ;M ) := χy ([H
•(X ;M )]) =

∫
X
Ty∗([M ]),

with
Ty∗ : K0(MHM(X )) → H2∗(X )⊗Q[y±1]

the Brasselet-Schürmann-Yokura Hirzebruch class transformation.

♣ Set Ty∗(X ) := Ty∗([QX ]), ITy∗(X ) := Ty∗([ICX [− dim(X )]]).

♣ If X is a toric variety, then

T0∗(X ) = td∗(X ).
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Hirzebruch classes of toric varieties

Theorem (M.-Schürmann)

Let XP be the toric variety defined by the inner normal fan ΣP of a
full-dimensional lattice polytope P ⊂ MR ∼= Rn.

For each face
Q ⪯ P with corresponding cone σQ ∈ ΣP , let VσQ

be the closure
of the orbit OσQ

⊂ XP , and choose a point xQ ∈ OσQ
.

Let M ∈ DbMHM(XP) be a mixed Hodge module complex on XP

with constant cohomology sheaves along the torus orbits OσQ
,

Q ⪯ P (e.g., QXP
or ICXP

). Then:

Ty∗([M ]) =
∑
Q⪯P

χy (H•(M )xQ ) · (1 + y)dim(Q) · td∗([ωVσQ
]),

where td∗ : K0(Coh(XP)) → H2∗(XP ;Q) is the Todd class
transformation of Baum-Fulton-MacPherson. In particular,

χy (XP ;M ) =
∑
Q⪯P

χy (H•(M )xQ ) · (−1− y)dim(Q).
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For M = QXP
, get:

Corollary

(a) The Hodge polynomial χy (XP) is computed by:

χy (XP) =
∑
Q⪯P

(−1− y)dim(Q).

(b) The Euler characteristic e(X ) is computed by:

e(XP) = number of vertices of P.
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Stanley’s g -polynomials and intersection cohomology

Corollary

Assume 0 ∈ Int(P), and M = ICXP
[−n]. Then:

Iχy (XP) := χy ([IH
•(XP)]) =

∑
Q⪯P

gQ◦(−y) · (−1− y)dim(Q).

In particular, for y = 1, the Goresky-MacPherson signature is

σ(XP) =
∑
Q⪯P

gQ◦(−1) · (−2)dim(Q).
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Weighted Ehrhart theory via generalized HRR for XP

Theorem (M.-Schürmann)

Let P ⊂ MR ∼= Rn be a full-dimensional lattice polytope with
associated toric variety XP and ample Cartier divisor DP .

Then, for
any Laurent polynomial weight vector f = {fQ}Q⪯P ,

EhrP,f (ℓ, y) =

∫
XP

eℓ[DP ] ∩ Ty∗([M ])

=
n∑

k=0

(
1

k!

∫
X
[DP ]

k ∩ Ty ,k([M ])

)
· ℓk

with M ∈ DbMHM(XP) a mixed Hodge module complex with
constant cohomology sheaves along orbits chosen so that
fQ(y) = χy (H•(M )xQ ) for some (any) xQ ∈ OσQ

⊂ XP .
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Corollary

EhrP,f (ℓ, y) is a polynomial in ℓ.

Constant term:

EhrP,f (0, y) = χy (XP ;M ) =
∑
Q⪯P

fQ(y) · (−1− y)dim(Q)
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Corollary
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Reciprocity and Purity for arbitrary weight vectors

Theorem (M.-Schürmann)

For any M ∈ DbMHM(XP) with constant cohomology sheaves
along the torus orbits, we have the reciprocity property

EhrP,M (−ℓ, y) = EhrP,DXM (ℓ,
1

y
).

In particular, if M is such a self-dual pure Hodge module of weight
n on XP , then the following purity property holds:

EhrP,M (−ℓ, y) = (−y)n · EhrP,M (ℓ,
1

y
).

More generally, for any weight vector f on the faces of P, we have

EhrP,f (−ℓ, y) =
∑
Q⪯P

fQ(y) · (−1− y)dim(Q) ·#(ℓQ ∩M).
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Remark

The purity of Beck-Gunnells-Materov for EhrP,f (ℓ, y), with f given
by Stanley’s g -polynomials of faces of the polar polytope P◦,
follows for the special case of ICXP

, which is self-dual pure Hodge
module of weight n on XP .
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Generalized Ehrhart theory

♣ Let φ : MR ∼= Rn → C be a homogeneous polynomial function.

♣ Generalized Ehrhart “polynomial” (a.k.a. Euler-Maclaurin sum):

EhrφP(ℓ) :=
∑

m∈ℓP∩M
φ(m)

♣ If φ = 1, get Ehr1P(ℓ) = EhrP(ℓ).

Theorem (Brion-Vergne, 1997)

EhrφP(ℓ) is a polynomial in ℓ of degree dim(P) + deg(φ), with
constant term φ(0), which satisfies the reciprocity law

EhrφP(−ℓ) = (−1)dim(P)+deg(φ)
∑

m∈Int(ℓP)∩M

φ(m)

= (−1)dim(P)+deg(φ) · EhrφInt(P)(ℓ)
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Generalized weighted Ehrhart theory

♣ Let φ : MR ∼= Rn → C be a homogeneous polynomial function.

♣ Consider a weight vector f = {fQ}, with fQ(y) ∈ Z[y±1] indexed
by the non-empty faces ∅ ≠ Q ⪯ P of P.

♣ The generalized weighted Ehrhart “polynomial” is defined by

EhrφP,f (ℓ, y) :=
∑
Q⪯P

fQ(y) · (1 + y)dim(Q)+deg(φ) ·
∑

m∈Relint(ℓQ)∩M

φ(m)

with Relint(ℓQ) denoting the relative interior of the face ℓQ of the
dilated polytope ℓP.
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Properties of EhrφP,f (ℓ, y)

The Brion-Vergne combinatorial approach to reciprocity can be
linearly extended (over the faces of P) to this generalized weighted
Ehrhart theory, so that EhrφP,f (ℓ, y) has the following properties:

EhrφP,f (ℓ, y) is a polynomial in ℓ.

(Constant term) For ℓ = 0,

EhrφP,f (0, y) =
∑
Q⪯P

fQ(y) · (−1− y)dim(Q)+deg(φ) · φ(0),

i.e.,
(∑

m∈Relint(ℓQ)∩M φ(m)
)
|ℓ=0 = (−1)dim(Q)+deg(φ) · φ(0).

(Reciprocity formula) For ℓ ∈ Z>0,

EhrφP,f (−ℓ, y) =
∑
Q⪯P

fQ(y) · (−1− y)dim(Q)+deg(φ) ·
∑

m∈ℓQ∩M
φ(m).

LAURENTIU MAXIM University of Wisconsin-Madison Characteristic classes



Properties of EhrφP,f (ℓ, y)

The Brion-Vergne combinatorial approach to reciprocity can be
linearly extended (over the faces of P) to this generalized weighted
Ehrhart theory, so that EhrφP,f (ℓ, y) has the following properties:

EhrφP,f (ℓ, y) is a polynomial in ℓ.

(Constant term) For ℓ = 0,

EhrφP,f (0, y) =
∑
Q⪯P

fQ(y) · (−1− y)dim(Q)+deg(φ) · φ(0),

i.e.,
(∑

m∈Relint(ℓQ)∩M φ(m)
)
|ℓ=0 = (−1)dim(Q)+deg(φ) · φ(0).

(Reciprocity formula) For ℓ ∈ Z>0,

EhrφP,f (−ℓ, y) =
∑
Q⪯P

fQ(y) · (−1− y)dim(Q)+deg(φ) ·
∑

m∈ℓQ∩M
φ(m).

LAURENTIU MAXIM University of Wisconsin-Madison Characteristic classes



Properties of EhrφP,f (ℓ, y)

The Brion-Vergne combinatorial approach to reciprocity can be
linearly extended (over the faces of P) to this generalized weighted
Ehrhart theory, so that EhrφP,f (ℓ, y) has the following properties:

EhrφP,f (ℓ, y) is a polynomial in ℓ.

(Constant term) For ℓ = 0,

EhrφP,f (0, y) =
∑
Q⪯P

fQ(y) · (−1− y)dim(Q)+deg(φ) · φ(0),

i.e.,
(∑

m∈Relint(ℓQ)∩M φ(m)
)
|ℓ=0 = (−1)dim(Q)+deg(φ) · φ(0).

(Reciprocity formula) For ℓ ∈ Z>0,

EhrφP,f (−ℓ, y) =
∑
Q⪯P

fQ(y) · (−1− y)dim(Q)+deg(φ) ·
∑

m∈ℓQ∩M
φ(m).

LAURENTIU MAXIM University of Wisconsin-Madison Characteristic classes



Properties of EhrφP,f (ℓ, y)

The Brion-Vergne combinatorial approach to reciprocity can be
linearly extended (over the faces of P) to this generalized weighted
Ehrhart theory, so that EhrφP,f (ℓ, y) has the following properties:

EhrφP,f (ℓ, y) is a polynomial in ℓ.

(Constant term) For ℓ = 0,

EhrφP,f (0, y) =
∑
Q⪯P

fQ(y) · (−1− y)dim(Q)+deg(φ) · φ(0),

i.e.,
(∑

m∈Relint(ℓQ)∩M φ(m)
)
|ℓ=0 = (−1)dim(Q)+deg(φ) · φ(0).

(Reciprocity formula) For ℓ ∈ Z>0,

EhrφP,f (−ℓ, y) =
∑
Q⪯P

fQ(y) · (−1− y)dim(Q)+deg(φ) ·
∑

m∈ℓQ∩M
φ(m).

LAURENTIU MAXIM University of Wisconsin-Madison Characteristic classes



Purity of EhrφP,f (ℓ, y)

Assume 0 ∈ Int(P), and consider the weight vector given by
Stanley’s g -polynomials

fQ(y) = gQ◦(−y) =: g̃Q(−y)

for the faces of the polar polytope of P, with
g∅(−y) = g̃P(−y) = 1.

Theorem (Beck-Gunnells-Materov)

The following purity property holds:

EhrφP,f (−ℓ, y) = (−y)dim(P)+deg(φ) · EhrφP,f (ℓ,
1

y
).
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♣ To prove all these properties for EhrφP,f (ℓ, y) geometrically, we
need to work equivariantly, with torus equivariant mixed Hodge
modules on XP .

These automatically have constant cohomology
sheaves along orbits (Tanisaki).

♣ A corresponding equivariant generalized HRR type theorem
gives a weighted count of torus characters χm ∈ Z[M].

♣ Finally, the homogeneous polynomial φ defines a homomorphism

Z[M] −→ C, χm 7→ φ(−(1 + y) ·m) = (−1− y)deg(φ) · φ(m).

♣ To explain geometrically the polynomial behavior in ℓ of
EhrφP,f (ℓ, y) we work in equivariant homology, using equivariant
localization at torus fixed points (a combinatorial proof can be
given using work of Brion-Vergne).
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Remark

If P is a simple lattice polytope (so XP is an orbifold), EhrφP,f (ℓ, y)
can be computed by Euler-Maclaurin type formulae, like in works
of Beck-Gunnells-Materov (combinatorially) or
Cappell-M.-Schürmann-Shaneson (via the equivariant
Hirzebruch-Riemann-Roch formalism).
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Happy Birthday, Jörg !!!
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