Characteristic numbers of singular varieties

LAURENTIU MAXIM University of Wisconsin-Madison

Heidelberg Colloquium, July 2012

1 [Genera and characteristic numbers of manifolds](#page-3-0)

2 [Genera and Characteristic numbers of singular varieties](#page-10-0)

- [Invariants of singular varieties of the MMP](#page-13-0)
- [Hodge-type invariants and functorial characteristic classes](#page-22-0)
- [Computational aspects](#page-28-0)

Genera of manifolds

Definition

A multiplicative genus ϕ is a ring homomorphism

$$
\phi:\Omega^{\textsf{G}}_*\to \Lambda,
$$

where

- $\Omega_*^{\textsf{G}}=$ cobordism ring of closed $(\textsf{G}=\textsf{O})$ and oriented $(G = SO)$ or stably almost complex manifolds $(G = U)$.
- Λ=commutative, unital Q-algebra.

Hirzebruch: There is a one-to-one correspondence between:

- normalized power series f (i.e. $f(0) = 1$) in the variable $z = \rho^1$ or c^1 ;
- normalized and multiplicative cohomology characteristic classes cl_f^* over a finite-dim. base space X , i.e.

$$
cl_f^*: (K(X),\oplus) \to (H^*(X;\Lambda),\cup)
$$

(with $K(X)$ the Grothendieck group of \mathbb{R} -/C- v.b. on X), s.t.

$$
cl_f^*(L) = \begin{cases} f(p^1(L)), & L \text{ a real plane bundle} \\ f(c^1(L)), & L \text{ a complex line bundle} \end{cases}
$$

• genera
$$
\phi_f : \Omega_*^G \to \Lambda
$$
, for $G = SO$ or $G = U$.

 \bullet Given f a normalized power series as above, with corresponding class cl_f^* , the associated genus ϕ_f is defined by:

 $\phi_f(X) = \deg(c l_f^*(X)) := \langle c l_f^*(TX), [X] \rangle$

Example: Signature of manifolds

Let $\sigma(X)$ be the signature of a closed oriented manifold X.

- Thom: the signature defines a genus $\sigma:\Omega_*^{{\mathcal{S} \mathcal{O}}} \otimes {\mathbb{Q}} \to {\mathbb{Q}}$
- σ comes from the power series $f(z) = \frac{z}{\tanh z}$ in $z = c^1$.
- associated characteristic class: Hirzebruch-Thom L-class
- correspondence: Hirzebruch signature theorem:

$$
\sigma(X)=\langle L^*(TX),[X]\rangle
$$

Example: Hirzebruch's χ_{ν} -genus

Hirzebruch χ_{ν} -genus of a complex manifold X:

$$
\chi_{\mathsf y}(X) := \sum_j \chi(X,\Omega^j_X) {\mathsf y}^j := \sum_{i,j} (-1)^i \mathrm{dim}_{\mathbb C} H^i(X,\Omega^j_X) \cdot {\mathsf y}^j.
$$

\n- genus
$$
\chi_y : \Omega^U_* \to \mathbb{Q}[y]
$$
\n- χ_y comes from the power series in $z = c^1$:
\n

$$
f_{y}(z) = \frac{z(1+y)}{1-e^{-z(1+y)}} - zy \in \mathbb{Q}[y][[z]]
$$

- associated characteristic class: Hirzebruch class \mathcal{T}^*_y
- correspondence: generalized Hirzebruch-Riemann-Roch:

$$
\chi_y(X)=\langle T^*_y(TX),[X]\rangle
$$

Example: Elliptic genus

$$
ell(-; y, q) : \Omega_*^U \otimes \mathbb{Q} \to \mathbb{Q}[[q]][y^{\pm 1}]
$$

• power series:

$$
f(x) = \frac{x}{2\pi i} \cdot \frac{\theta(\frac{x}{2\pi i} - z, \tau)\theta'(0, \tau)}{\theta(\frac{x}{2\pi i}, \tau)\theta(-z, \tau)}
$$

where $q=e^{2\pi i\tau}$, $y=e^{2\pi i z}$, for $z\in\mathbb{C}$, $\tau\in\mathbb{H}$, and θ the Jacobi theta function.

- Witten: $\,$ ell $(X)^{\,\omega}$ $=$ ${^\omega}\chi_\mathcal{Y}(\Omega X; S^1)$, with ΩX the free loop space.
- $\lim_{q\to 0}$ ell $(X; y, q) = y^{-dim(X)/2}\chi_{-y}(X)$

Definition

The value $\phi(X)$ of a genus $\phi: \Omega_*^\mathsf{G} \to \mathbb{Q}$ on a closed manifold X is called a characteristic number of X.

Characteristic numbers are used to classify manifolds up to cobordism, e.g.,

Milnor-Novikov: Two closed stably almost complex manifolds are cobordant \iff all their Chern numbers are the same.

[Invariants of singular varieties of the MMP](#page-13-0) [Hodge-type invariants and functorial characteristic classes](#page-22-0) [Computational aspects](#page-28-0)

Invariants of singular varieties

Question (Goresky-MacPherson)

Which characteristic numbers can be defined for compact complex algebraic varieties with singularities ?

[Invariants of singular varieties of the MMP](#page-13-0) [Hodge-type invariants and functorial characteristic classes](#page-22-0) [Computational aspects](#page-28-0)

Motivation

- Goresky-MacPherson use intersection homology to define the signature $\sigma(X)$ of a singular compact complex variety.
- if $\widetilde{X} \stackrel{f}{\rightarrow} X$ is a small resolution of X , i.e.,

for all
$$
i \ge 1
$$
, $\text{codim}_{\mathbb{C}}\{x \in X : \text{dim}_{\mathbb{C}}f^{-1}(x) = i\} \ge 2i$,

then $\sigma(X) = \sigma(\widetilde{X})$.

Question: Which characteristic numbers (linear combinations of Chern numbers) $\phi: \Omega_*^{\textstyle U} \rightarrow \mathbb{Q}$ can be defined for a singular compact complex variety X so that $\phi(X) = \phi(X)$ for any small resolution $f: X \rightarrow X$?

[Invariants of singular varieties of the MMP](#page-13-0) [Hodge-type invariants and functorial characteristic classes](#page-22-0) [Computational aspects](#page-28-0)

- Totaro: Any characteristic number which can be extended from smooth to singular complex varieties, compatibly with small resolutions, must be a specialization of the elliptic genus.
- **Question**: How to define elliptic genus for singular varieties?
- Borisov-Libgober: Let X be a projective $\mathbb Q$ -Gorenstein variety with log-terminal singularities. Then the elliptic genus $ell(X)$ can be defined so that for any crepant resolution $X \to X$ of X one has $ell(X) = ell(X)$.
- \bullet Totaro: "Small" \Longrightarrow "crepant".
- "Crepant" is the good notion of *minimality* for resolutions.
- $ell(X)$ is defined in terms of any resolution, then shown to be independent of the choice of resolution by using the weak factorization theorem.

[Invariants of singular varieties of the MMP](#page-13-0) [Hodge-type invariants and functorial characteristic classes](#page-22-0) [Computational aspects](#page-28-0)

Invariants of log-terminal varieties

Definition (Calabi-Yau manifolds; K-equivalence)

Let X be a complex algebraic manifold of dimension d .

- canonical divisor K_X : divisor of zeros and poles of a differential d-form on X.
- \bullet X is a Calabi-Yau manifold if K_X is trivial, i.e., if X admits a nowhere vanishing regular differential d-form.
- Complex algebraic manifolds X and Y are K-equivalent if there is a complex algebraic manifold Z and proper birational morphisms $h_X: Z \to X$ and $h_Y: Z \to Y$ s.t. $h_X^* K_X = h_Y^* K_Y$.

Example

Birational equivalent Calabi-Yau manifolds are K-equivalent.

[Invariants of singular varieties of the MMP](#page-13-0) [Hodge-type invariants and functorial characteristic classes](#page-22-0) [Computational aspects](#page-28-0)

Definition (Gorenstein varieties)

- A complex algebraic variety X of dimension d is Gorenstein if:
	- \bullet X is irreducible (or pure dimensional),
	- \bullet X is normal (so a canonical divisor K_x is well-defined),
	- \bullet K_x is a Cartier divisor, e.g., if X is smooth.
- \bullet X as above is Q-Gorenstein if K_X is Q-Cartier, i.e., if $r \cdot K_X$ (for some $r \in \mathbb{N}$) is a Cartier divisor.

[Invariants of singular varieties of the MMP](#page-13-0) [Hodge-type invariants and functorial characteristic classes](#page-22-0) [Computational aspects](#page-28-0)

Definition (Log-terminal varieties)

Let X be a $\mathbb Q$ -Gorenstein variety, and $\pi : X \to X$ a log resolution of singularities, i.e., the exceptional locus $E = \bigcup_i E_i$ of π is a simple normal crossing divisor $(E_i$'s are smooth and meet transversally).

• The relative canonical divisor of π is the Q-Cartier divisor:

$$
K_{\pi}=K_{\widetilde{X}}-\pi^*K_X
$$

- $Supp(K_{\pi}) \subset E$, so $K_{\pi} = \sum_{i} a_{i} \cdot E_{i}$, with discrepancies $a_{i} \in \mathbb{Q}$.
- \bullet X is log-terminal if $a_i > -1$, for all *i* (if this holds for one resolution, then it holds for any other resolution of this type). \widetilde{X} is a crepant resolution of X if all $a_i = 0$, or $K_{\widetilde{X}} = \pi^*K_X$.

[Invariants of singular varieties of the MMP](#page-13-0) [Hodge-type invariants and functorial characteristic classes](#page-22-0) [Computational aspects](#page-28-0)

Invariants of log-terminal varieties

- Let H_* , H^* be covariant / contravariant theories with values in abelian groups or unitary rings.
- Let X be a log-terminal variety, $\pi : \widetilde{X} \to X$ a log resolution with exceptional components E_i and discrepancies a_i .
- Let $\phi(-)$ be an invariant of smooth varieties, and define:

$$
\phi(X):=\pi_*\left(\phi(\widetilde{X})\cdot J(E_i,a_i)\right)\in H_*(X)
$$

where $J(E_i, a_i) \in H^*(X)$ is a correction term (Jacobian factor) depending on the resolution π .

[Invariants of singular varieties of the MMP](#page-13-0) [Hodge-type invariants and functorial characteristic classes](#page-22-0) [Computational aspects](#page-28-0)

Example: Elliptic genus (Borisov-Libgober)

The elliptic genus of a log-terminal variety X is defined by:

$$
ell(X; y, q) :=
$$
\n
$$
\langle \prod_{l} \frac{\xi_{l}}{2\pi i} \cdot \frac{\theta(\frac{\xi_{l}}{2\pi i} - z, \tau) \theta'(0, \tau)}{\theta(\frac{\xi_{l}}{2\pi i}, \tau) \theta(-z, \tau)} \cdot \prod_{k} \frac{\theta(\frac{e_{k}}{2\pi i} - (a_{k} + 1)z, \tau) \theta(-z, \tau)}{\theta(\frac{e_{k}}{2\pi i} - z, \tau) \theta(-a_{k} + 1)z, \tau)}, [\tilde{X}] \rangle
$$
\n(1)

where $\{\xi_l\}_l$ are the Chern roots of the tangent bundle \overline{TX} of the log resolution, ${a_k}_k$ are the discrepancies, $e_k := c_1(E_k)$, and θ is the Jacobi theta function.

[Invariants of singular varieties of the MMP](#page-13-0) [Hodge-type invariants and functorial characteristic classes](#page-22-0) [Computational aspects](#page-28-0)

- Thm: Such $\phi(X)$ is independent of the choice of resolution.
- If $\pi : X \to X$ is crepant, then $K_{\pi} = 0$ and $J(E_i, a_i) = 1$, so:

$$
\phi(X)=\pi_*(\phi(\widetilde{X}))
$$

and the right hand side does not depend on the choice of crepant resolution.

In particular, if $H_*(X) = H^*(X) = R$, ring with unit, with $\pi_* = id_R$, and if X_1 and X_2 are crepant resolutions of X, then:

$$
\phi(\widetilde{X}_1)=\phi(\widetilde{X}_2).
$$

• Corollary: Hodge numbers of two crepant resolutions of a compact log-terminal variety coincide.

[Invariants of singular varieties of the MMP](#page-13-0) [Hodge-type invariants and functorial characteristic classes](#page-22-0) [Computational aspects](#page-28-0)

K-equivalence invariance

- Let X_1 , X_2 be K-equivalent log-terminal varieties, with $\pi_i: \mathsf{Y} \rightarrow \mathsf{X}_i$ $(i=1,2)$ log resolutions so that $\mathsf{K}_{\pi_1} = \mathsf{K}_{\pi_2}.$
- \bullet (After taking another resolution Z of Y,) can assume that the exceptional loci of both π_1 and π_2 are contained in the same s.n.c.d., hence the Jacobian factor $\mathsf{J}(E_i,a_i)$ is the same for both $\phi(X_1)$ and $\phi(X_2)$.
- In particular, if $H_*(-) = H^*(-) = R$, ring with unit, with $\pi_* = id_R$, then $\phi(X_1) = \phi(X_2)$.
- Corollary (Borisov-Libgober, Kontsevich): K-equivalent compact complex algebraic manifolds (e.g., birational C-Y's) have the same elliptic genera and the same Hodge numbers.

[Invariants of singular varieties of the MMP](#page-13-0) [Hodge-type invariants and functorial characteristic classes](#page-22-0) [Computational aspects](#page-28-0)

Birational Novikov conjecture

- $\sigma(X) = \langle L(TX), [X] \rangle \Longrightarrow$ R.H.S. is a homotopy invariant.
- Kahn: No other combinations of Pontriagin classes integrate to a homotopy invariant.
- Novikov's idea: exploit $\pi_1(X)$ to get more homotopy invariants.
- **Conjecture:** If $f : X \to B\pi_1(X)$ and $\alpha \in H^*(B\pi_1(X);\mathbb{Q})$, then

$$
\sigma_\alpha(X):=\langle f^*(\alpha)\cup L(TX),[X]\rangle
$$

is an oriented homotopy invariant.

If X is a compact complex algebraic manifold, then:

$$
\chi_a(X) := \sum_i (-1)^i h^i(X; \mathcal{O}_X) \stackrel{(RR)}{=} td(X) := \langle Td(TX), [X] \rangle
$$

• Hartog: $\chi_a(X)$ is a birational invariant, so $td(X)$ is so.

• Conjecture (Rosenberg): If $f : X \to B_{\pi_1}(X)$ and $\alpha \in H^{\ast}(B\pi_{1}(X);{\mathbb Q}),$ then the *higher <code>Todd</code> genus*

$$
td_\alpha(X):=\langle f^*(\alpha)\cup \mathit{Td(TX)},[X]\rangle
$$

is a birational invariant.

- **•** proved by Block-Weinberger and Borisov-Libgober.
- **Theorem** (Borisov-Libgober): The higher elliptic genera

$$
ell_{\alpha}(X) := \langle f^*(\alpha) \cup Ell^*(TX), [X] \rangle
$$

are invariants under K-equivalence. Moreover, $ell_{\alpha}(X)$ (hence also $\sigma_{\alpha}(X)$) is invariant under crepant resolutions, and $td_{\alpha}(X)$ is a birational invariant.

[Invariants of singular varieties of the MMP](#page-13-0) [Hodge-type invariants and functorial characteristic classes](#page-22-0) [Computational aspects](#page-28-0)

Hodge-type invariants and functorial characteristic classes

Different extensions of genera and characteristic numbers to the singular setting for any type of singularities are derived from:

- (a) Deligne's mixed Hodge structures on cohomology.
- (b) functorial characteristic class theories.

[Invariants of singular varieties of the MMP](#page-13-0) [Hodge-type invariants and functorial characteristic classes](#page-22-0) [Computational aspects](#page-28-0)

(a) Hodge-type invariants of complex algebraic varieties

Let X be a complex algebraic variety, $dim_{\mathbb{C}}(X) = d$.

• The Hodge-Deligne polynomial of X is:

$$
E_{(c)}(X; u, v) = \sum_{p,q=0}^{d} \left(\sum_{i=0}^{2d} (-1)^i dim_{\mathbb{C}} Gr_F^p Gr_{p+q}^W H_{(c)}^i(X; \mathbb{C}) \right) u^p v^q
$$

• The Hirzebruch polynomial of X is:

 ϵ

$$
\chi_{\mathcal{Y}}^{(c)}(X) = \sum_{i,p} (-1)^i \dim_{\mathbb{C}} Gr_F^p H_{(c)}^i(X; \mathbb{C}) \cdot (-y)^p = E(X; -y, 1)
$$

•
$$
\chi_{-1}^{(c)}(X) = \chi(X)
$$
 = Euler characteristic of X.

• if X smooth & compact: $\chi_{\nu}(X) =$ Hirzebruch χ_{ν} -genus of X.

- Similar invariants $I_{X_V}(X)$, IE(X; u, v) etc. can be defined by using Saito's mixed Hodge structures on $\mathit{IH}_{(c)}^{*}(X).$
- **Corrolary**: If X is compact, two small resolutions of X have the same Hodge-Deligne polynomials, hence the same Hodge numbers and Betti numbers.
- Hodge Index Theorem (Saito): If X is a complex projective variety, the Goresky-MacPherson signature is computed as:

$$
\sigma(X) = I\chi_1(X) = \sum_{p,q} (-1)^q I h^{p,q}(X),
$$

with $lh^{p,q}(X)$ the intersection homology Hodge numbers.

[Invariants of singular varieties of the MMP](#page-13-0) [Hodge-type invariants and functorial characteristic classes](#page-22-0) [Computational aspects](#page-28-0)

(b) Invariants derived from functorial characteristic classes

A functorial characteristic class theory of singular spaces is a covariant transformation

$$
cl_*: A(-) \to H_*(-) \otimes R,
$$

with $A(-)$ a covariant theory depending on $c/$ *.

- For any X, there is a distinguished element $\alpha_X \in A(X)$.
- the characteristic class of the singular space X is:

$$
\mathit{cl}_*(X):=\mathit{cl}_*(\alpha_X)
$$

• $c\ell_{*}$ satisfies the normalization property: if X is smooth and $cl^*(TX)$ is the corresponding cohomology class of X , then:

$$
cl_*(\alpha_X)=cl^*(TX)\cap [X]\in H_*(X)\otimes R
$$

Outline [Genera and characteristic numbers of manifolds](#page-3-0) [Genera and Characteristic numbers of singular varieties](#page-10-0) [Invariants of singular varieties of the MMP](#page-13-0) [Hodge-type invariants and functorial characteristic classes](#page-22-0) [Computational aspects](#page-28-0)

Definition

A characteristic number of a *compact* singular space X is defined by:

$$
\#(X):=\mathit{deg}(\mathit{cl}_*(\alpha_X)):=\mathit{const}_*(\mathit{cl}_*(\alpha_X))
$$

for const : $X \rightarrow$ point the constant map.

Remark

If X is smooth, get by normalization:

$$
\#(X)=\langle cl^*(TX),[X]\rangle,
$$

so $\#(X)$ is a singular extension of the notion of characteristic numbers of manifolds.

[Invariants of singular varieties of the MMP](#page-13-0) [Hodge-type invariants and functorial characteristic classes](#page-22-0) [Computational aspects](#page-28-0)

Example (Topological Euler characteristic)

$$
\chi(X):=\sum_i (-1)^i b_i(X)=deg(c_*(1_X)),
$$

for

$$
c_*: F(X) \to H_*(X)
$$

the MacPherson-Chern class transformation on X.

Example (Hodge polynomial)

$$
\chi_{\mathcal{Y}}(X) := \sum_{i,p} (-1)^i \dim_{\mathbb{C}} Gr_F^p H^i(X; \mathbb{C}) \cdot (-y)^p = deg(\mathcal{T}_{\mathcal{Y}^*}([id_X])),
$$

for

$$
T_{y*}: K_0(var/X) \to H_*(X) \otimes \mathbb{Q}[y]
$$

the Brasselet-Schürmann-Yokura Hirzebruch class transformation.

Outline [Genera and characteristic numbers of manifolds](#page-3-0) [Genera and Characteristic numbers of singular varieties](#page-10-0) [Invariants of singular varieties of the MMP](#page-13-0) [Hodge-type invariants and functorial characteristic classes](#page-22-0) [Computational aspects](#page-28-0)

• Question: How to compute invariants $\phi(X)$ of a given singular complex algebraic variety X ?

[Invariants of singular varieties of the MMP](#page-13-0) [Hodge-type invariants and functorial characteristic classes](#page-22-0) [Computational aspects](#page-28-0)

(1) Invariants of orbifolds.

Principle: If G is a finite group acting algebraically on a complex algebraic variety X , invariants of X/G are computed by averaging equivariant invariants of X , e.g.,

$$
\chi_{\mathsf{y}}(X/\mathsf{G}) = \frac{1}{|\mathsf{G}|}\sum_{\mathsf{g}\in\mathsf{G}}\chi_{\mathsf{y}}(X;\mathsf{g}),
$$

where

$$
\chi_{\mathcal{Y}}(X;g) := \sum_{i,p} (-1)^i \text{trace} \left(g | Gr_F^p H^i(X; \mathbb{C}) \right) \cdot (-y)^p
$$

Outline [Genera and characteristic numbers of manifolds](#page-3-0) [Genera and Characteristic numbers of singular varieties](#page-10-0) [Invariants of singular varieties of the MMP](#page-13-0) [Hodge-type invariants and functorial characteristic classes](#page-22-0) [Computational aspects](#page-28-0)

 \bullet If X is smooth, Atiyah-Singer holomorphic Lefschetz formula:

$$
\chi_{y}(X;g)=\langle T_{y}^{*}(X;g),[X^{g}]\rangle,
$$

with $T^*_y(X;g) \in H^*(X^g) \otimes \mathbb{C}[y].$

• Cappell, M., Schürmann, Shaneson: define Atiyah-Singer classes

$$
T_{y*}(X;g)\in H_*^{BM}(X^g)\otimes \mathbb{C}[y]
$$

for singular varieties, and prove a singular version of the Atiyah-Singer holomorphic Lefschetz formula for compact varieties:

$$
\chi_{y}(X;g)=\text{deg}\left(T_{y*}(X;g)\right)
$$

in particular, $\chi_y(X;g)$ is a characteristic number (of X^g).

[Invariants of singular varieties of the MMP](#page-13-0) [Hodge-type invariants and functorial characteristic classes](#page-22-0) [Computational aspects](#page-28-0)

(2) Invariants of spaces built out of X.

- \bullet Let X be a *singular* quasi-projective variety. Consider spaces built out of X , and compute their invariants in terms of invariants of X:
	- symmetric products: $X^{(n)} := X^n / \Sigma_n$.
	- configuration spaces: $X^{\{n\}} := (X^n \Delta)/\Sigma_n$.
	- Hilbert schemes of *n* points on $X: X^{[n]}$.
- Standard approach: for any invariant $\mathcal{I}(-)$ of algebraic varieties, consider the generating series

$$
S_{\mathcal{I}}(X) := \sum_{n \geq 0} \mathcal{I}(X^{(n)}) \cdot t^n.
$$

- Goal: calculate $S_{\mathcal{I}}(X)$ only in terms of invariants of X.
- Then $\mathcal{I}(X^{(n)})$ is equal to the coefficient of t^n in the resulting expression in invariants of X.

 \bullet Sample result: $(M.-Schürmann)$

For any quasi-projective variety X .

$$
\sum_{n\geq 0}\chi_{-y}(X^{(n)})\cdot t^n=\exp\left(\sum_{r\geq 1}\chi_{-y^r}(X)\cdot \frac{t^r}{r}\right)
$$

- $y = 1$: Macdonald's formula for χ .
- $y = -1$ and X smooth and projective: Hirzebruch-Zagier formula for σ .

[Invariants of singular varieties of the MMP](#page-13-0) [Hodge-type invariants and functorial characteristic classes](#page-22-0) [Computational aspects](#page-28-0)

THANK YOU !!!

LAURENTIU MAXIM University of Wisconsin-Madison [Characteristic numbers of singular varieties](#page-0-0)