HOMEWORK #3

- 1. Let $\pi: E \to B$ be a principal S^1 -bundle, with $\pi_1(B) = 0$. Consider the cohomology Serre spectral sequence associated to π , and let $a \in H^1(S^1)$ be a generator. Show that the first Chern class of π can be computed by $c_1(\pi) = d_2(a)$, where d_2 is the differential on the E_2 -page of the spectral sequence.
- **2.** Compute the cohomology ring $H^*(BO(n); \mathbb{Z}/2)$.
- **3.** Show that if $f: M^m \to N^{n+k}$ is a map of differentiable manifolds of the respective dimensions m and m+k, which is homotopic to an immersion or an embedding, then there is a rank k real vector bundle ν so that $f^*TN = TM \oplus \nu$.
- **4.** Show that if M^{4n} is a connected manifold which is the boundary of a compact oriented (4n+1)-dimensional manifold W, then the signature of M is zero.
- **5.** A differentiable n-dimensional manifold M is orientable if its tangent bundle $\pi: TM \to M$ is a SO(n)-bundle. Show that M is orientable if and only if its first Stiefel-Whitney class $w_1(M)$ is zero.
- **6.** Find characteristic class obstructions to the existence of a complex structure on an even dimensional manifold. More precisely, prove the following statement: If M is a 2n-dimensional manifold which underlies a complex n-dimensional manifold, then for each $1 \le i \le n$, we have: $w_{2i-1}(M) = 0$ and $w_{2i}(M)$ is the reduction of an integral cohomology class of M (which one?).
- 7. Show that \mathbb{CP}^4 cannot be smoothly embedded in \mathbb{R}^n with $n \leq 11$.