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Abstract. We propose singular variants of the Singer-Hopf conjecture, formulated in terms

of the Euler-Mather characteristic, intersection homology Euler characteristic and, resp., vir-
tual Euler characteristic of a closed irreducible subvariety of an aspherical complex projective

manifold. We prove the conjecture under the assumption that the cotangent bundle of the
ambient variety is numerically effective (nef), or, more generally, when the ambient manifold

admits a finite morphism to a complex projective manifold with a nef cotangent bundle.

1. Introduction

The main purpose of this note is to overview and enhance some of the recent developments
[2, 21] around the Singer-Hopf conjecture in the complex algebraic context. In order to reach
a wider audience, results are formulated in the convenient language of constructible functions.
Along the way, we generalize a result of [1] on the non-negativity of Euler characteristics of an
important class of constructible functions.

Recall that a connected CW complex is aspherical if its universal cover is contractible. Closed
Riemannian manifolds with non-positive sectional curvature are aspherical. The following con-
jecture on the Euler characteristic of a closed aspherical manifold was made by Hopf (and later
on strengthened by Singer):

Conjecture 1.1 (Singer-Hopf). If X is a closed aspherical manifold of real dimension 2n, then

(1) (−1)n · χ(X) ≥ 0.

The conjecture is clearly true for n = 1 (i.e., real dimension 2). For closed Riemannian
manifolds with non-positive sectional curvature, the conjecture is due to Hopf and Chern, and
it was mentioned in the list of problems [30] compiled by Yau in 1982; it it true in this case for
n = 2 since the Gauss-Bonnet integrand has the desired sign, cf. [6, Theorem 5] where the proof
is attributed to Milnor. To our knowledge, Conjecture 1.1 is not known for all closed aspherical
4-manifolds, and it is open for n ≥ 3.

In [14], Gromov introduced the notion of Kähler hyperbolicity, including compact Kähler
manifolds with negative sectional curvature, and he verified Conjecture 1.1 for Kähler hyper-
bolic manifolds. Cao-Xavier [5] and Jost-Zuo [15] independently introduced the concept of
Kähler nonellipticity, including compact Kähler manifolds with non-positive sectional curva-
ture, and settled the Singer-Hopf conjecture in this case (cf. also [10]). All these works proved
a corresponding version of Conjecture 1.1 by means of vanishing L2-cohomology. More recently,
Liu-Maxim-Wang [21] proved the complex projective version of Conjecture 1.1 under the addi-
tional assumption that the (holomorphic) cotangent bundle T ∗X of X is numerically effective
(nef, for short), and they conjectured that aspherical complex projective manifolds have nef
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cotangent bundles. Finally, Arapura-Wang gave in [2] a new proof of Conjecture 1.1 for com-
pact Kähler manifolds with non-positive sectional curvature, using the fact that the cotangent
bundle of such a manifold is nef.

In this note we propose the following singular variants of the Singer-Hopf Conjecture 1.1 in
the complex projective context:

Conjecture 1.2. If Z ⊆ X is a closed irreducible subvariety of an aspherical complex projective
manifold X, then:

(i) (−1)dimC Z ·χ(Z,EuZ) ≥ 0, where EuZ is the local Euler obstruction function of MacPher-
son and χ(Z,EuZ) is the corresponding Euler-Mather characteristic.

(ii) (−1)dimC Z ·χIH(Z) = χ(Z, icZ) ≥ 0, where χIH(Z) denotes the intersection cohomology
Euler characteristic of Z, with icZ defined by taking the stalkwise Euler characteristic
of the IC-complex ICZ on Z.

(iii) χvir(Z) := χ(Z, νZ) ≥ 0, where νZ is Behrend’s constructible function of Z and χvir(Z)
is the corresponding Donaldson-Thomas invariant.

If Z = X, then all statements in Conjecture 1.2 reduce to the complex projective version of the
Singer-Hopf Conjecture 1.1. More generally, if Z a smooth closed irreducible subvariety of the
aspherical complex projective manifold X, all statements in Conjecture 1.2 become (−1)dimC Z ·
χ(Z) ≥ 0.

In fact, we make the following more uniform conjecture (which, as explained in Proposition
2.2, turns out to be equivalent to Conjecture 1.2(i)).

Conjecture 1.3. Let X be an aspherical complex projective manifold and let ϕ be a constructible
function on X with effective characteristic cycle. Then the Euler characteristic of ϕ is non-
negative, that is, χ(X,ϕ) ≥ 0.

If X is an abelian variety, Conjecture 1.3 can be deduced from [12, Theorem 1.3], see also
[1] and [9]. When ϕ is obtained (by taking the stalkwise Euler characteristic) from a perverse
sheaf, Conjecture 1.3 reduces to [21, Conjecture 6.2].

In this note, we prove Conjecture 1.3 under the additional assumption that the cotangent
bundle T ∗X of X is nef (e.g., globally generated), or, more generally, if X admits a finite mor-
phism to a complex projective manifold with nef cotangent bundle. Moreover, the inequalities
become strict if “nef” is replaced by “ample”.

Theorem 1.4. Let X be a complex projective manifold and let ϕ be a constructible function
on X with effective characteristic cycle. Assume X admits a finite morphism f : X → Y to
a complex projective manifold Y with nef cotangent bundle (e.g., Y has non-positive sectional
curvature). Then χ(X,ϕ) ≥ 0. Moreover, the inequality is strict if T ∗Y is ample (e.g., Y has
negative sectional curvature).

A weaker version of Conjecture 1.3, for ϕ coming from a perverse sheaf on X and T ∗X nef,
was proved in [21, Proposition 3.6]. While the proof of Theorem 1.4 follows the same lines
as that of loc.cit. (see also Theorem 3.5 in Section 3 for a more general statement), what we
want to emphasize here are the various facets of Conjecture 1.3, reflected in the statement of
Conjecture 1.2, if more general coefficients are allowed. Note that asking for the characteristic
cycle of a constructible function to be effective is much weaker that asking for that function to
come from a perverse sheaf. Conjecture 1.2 is obtained directly from Conjecture 1.3 by letting
ϕ be one of the following constructible functions supported on Z: (−1)dimC ZEuZ , icZ and νZ ,
respectively, all of which are known to have effective characteristic cycles, e.g., see the discussion
in [1, Section 7]. Note that, in the notations of Section 2, only icZ comes from a perverse sheaf.

We prove Theorem 1.4 (see also Theorem 3.5) following the same approach as in [21] (see
also [2]), based on Kashiwara’s index theorem for constructible complexes of sheaves (cf. [16]),
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together with (semi-)positivity results for nef (resp., ample) bundles (cf. [7, 11]). It is well-
known that if X has non-positive (resp., negative) sectional curvature, then T ∗X is nef (resp.,
ample); see, e.g., [7] or [2, Lemmas 4.1, 4.2]. And, as already mentioned, it was conjectured in
[21] that aspherical complex projective manifolds have nef cotangent bundles.

It was also proved in [2] that Conjecture 1.3 is true if X is an aspherical complex projec-
tive manifold (or, more generally, if X has a large fundamental group [18]) which admits a
cohomologically rigid almost faithful semi-simple representation, provided that ϕ comes from a
perverse sheaf on X. In Section 3, we note that the proof of this result in loc.cit extends to all
constructible functions with effective characteristic cycles, since the only operations involved in
the proof preserve the effectivity of characteristic cycles of constructible functions.

The paper is organized as follows. In Section 2, we review the relevant background about
constructible complexes, constructible functions, characteristic cycles, and prove (in Proposi-
tion 2.2) that Conjecture 1.3 is equivalent to Conjecture 1.2(i). In Section 3, we review (semi-
)positivity results for nef and, resp., ample vector bundles on complex projective manifolds, and
prove Theorems 1.4 (as a consequence of the more general statement of Theorem 3.5). We con-
clude with a discussion around another conjecture of Hopf, whose proof in the projective/Kähler
context is known to follow from classical results in complex algebraic geometry.

Acknowledgments. The author thanks Botong Wang and Jörg Schürmann for useful dis-
cussions. Partial support was provided by the Simons Foundation and by the Romanian Ministry
of National Education.

2. Preliminaries: constructible complexes and characteristic cycles

Let X be a complex algebraic manifold. We denote by Db
c(X) the bounded derived category

of C-constructible complexes on X. Consider the functor

CC : K0(Db
c(X)) −→ LCZ(T ∗X)

which associates characteristic cycles to (Grothendieck classes of) constructible complexes on
X (e.g., see [8, Definition 4.3.19] or [17, Chapter IX]). Here, we let LCZ(T ∗X) denote the
free abelian group spanned by the irreducible conic Lagrangian cycles in the cotangent bundle
T ∗X. Its elements are of the form

∑
Z nZ · T ∗ZX, for some nZ ∈ Z and Z closed irreducible

subvarieties of X. Recall that, if Z is a closed irreducible subvariety of X with smooth locus
Zreg, its conormal bundle T ∗ZX is the closure in T ∗X of

T ∗Zreg
X := {(z, ξ) ∈ T ∗X | z ∈ Zreg, ξ ∈ T ∗zX, ξ|TzZreg = 0}.

One then has a group isomorphism

T : LCZ(T ∗X) −→ Z(X)

to the group Z(X) of algebraic cycles on X, defined on generators by: T ∗ZX 7→ (−1)dimC ZZ.
A function ϕ : Z → Z on a complex algebraic variety (e.g., a closed subvariety of X) is

said to be constructible if there is a Whitney stratification S of Z so that ϕ is constant on
each (connected) stratum S ∈ S. The Euler characteristic of such a constructible function ϕ is
defined by

χ(Z,ϕ) :=
∑
S∈S

χ(S) · ϕ|S .

Let F (Z) be the group of constructible functions on Z.
To any bounded constructible complex F � ∈ Db

c(Z) on a complex algebraic variety Z, one
associates a constructible function χst(F �) ∈ F (Z) by taking the stalkwise Euler characteristic,
i.e.,

χst(F �)(z) := χ(F �
z)
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for any z ∈ Z. For example, χst(CZ) = 1Z , the indicator function of Z, and if Z is pure-
dimensional we let

icZ := χst(ICZ),

where ICZ is the intersection cohomology (IC-)complex of Z. Note that if ϕ = χst(F �), then

χ(Z,ϕ) = χ(Z,F �).

For a closed subvariety Z in X, a constructible function (or complex) on Z can be regarded as
a constructible function (or complex) on X by extending it by 0 on X \Z, hence for ϕ ∈ F (Z) we
have χ(Z,ϕ) = χ(X,ϕ). For the purpose of this note we may, without any loss of generality, work
with constructible functions on X (with support in a closed subvariety) and their corresponding
Euler characteristics.

The Euler characteristic induces by additivity an epimorphism

χst : K0(Db
c(X)) −→ F (X).

Moreover, since the class map Db
c(X) → K0(Db

c(X)) is onto, χst is already an epimorphism
on Db

c(X). The usual functors in sheaf theory, which respect the corresponding category of
bounded constructible complexes, induce via χst well-defined group homomorphisms on the
level of constructible functions (see, e.g., [26, Section 2.3]).

Another important example of a constructible function on a complex algebraic variety Z is
the MacPherson local Euler obstruction function EuZ , see [22]. When Z is a closed irreducible
subvariety Z of X, EuZ can be seen as a function defined on all of X by setting EuZ(x) = 0
for x ∈ X \ Z. In particular, one may consider the group homomorphism

(2) Eu : Z(X) −→ F (X)

defined on an irreducible cycle Z by the assignment Z 7→ EuZ , and then extended by Z-
linearity. It is well known (e.g., see [8, Theorem 4.1.38] and the references therein), that the
homomorphism Eu : Z(X)→ F (X) is an isomorphism.

The local Euler obstruction function appears in the formulation of the local index theorem,
which in the above notations asserts the existence of the following commutative diagram (e.g.,
see [26, Section 5.0.3] and the references therein):

(3) K0(Db
c(X))

CC

��

χst // F (X)

LCZ(T ∗X)
T

∼= // Z(X)

Eu∼=

OO

In particular, one can associate a characteristic cycle to any constructible function. For example,
if Z is a closed irreducible subvariety of X, one has:

(4) CC(EuZ) = (−1)dimC Z · T ∗ZX.

Note also that

CC(F �) = CC(χst(F �))

for any constructible complex F � ∈ Db
c(X).

Kashiwara’s global index theorem [16] computes the Euler characteristic of any bounded con-
structible complex F � on X with supp(F �) compact, or, equivalently, that of the constructible
function ϕ = χst(F �) ∈ F (X), by the formula:

(5) χ(X,F �) = χ(X,ϕ) = CC(ϕ) · T ∗XX,

that is, the intersection index in the complex manifold T ∗X, of the characteristic cycle of ϕ
with the zero section of T ∗X.
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Definition 2.1. If ϕ 6= 0 ∈ F (X) with CC(ϕ) =
∑
Z nZ · T ∗ZX, we say that CC(ϕ) is effective

if all coefficients nZ are positive.

For instance, (4) implies that CC
(
(−1)dimC ZEuZ

)
is effective. It is also well known that

if 0 6= ϕ = χst(F �) is a nontrivial constructible function associated to a peverse sheaf F � on
X, then CC(ϕ) is effective (e.g., see [23, Corollary 4.7]). In particular, CC(icZ) is effective.
Finally, the Behrend function νZ has an effective characteristic cycle (see [1, 3]).

We can now prove the following.

Proposition 2.2. Conjecture 1.2(i) is equivalent to Conjecture 1.3.

Proof. Conjecture 1.3 implies Conjecture 1.2(i) by choosing ϕ = (−1)dimC ZEuZ (extended by
0 to all of X).

Conversely, assume Conjecture 1.2(i) holds for all closed irreducible subvarieties Z of X. Let
ϕ ∈ F (X) with CC(ϕ) effective. Then

(6) CC(ϕ) =
∑
Z⊆X

nZ · T ∗ZX

for uniquely determined closed irreducible subvarieties Z of X and positive integers nZ . By (4),
the coefficients nZ are determined by the following equality of constructible functions

(7) 0 6= ϕ =
∑
Z⊆X

nZ · (−1)dimC Z · EuZ .

Hence

χ(X,ϕ) =
∑
Z⊆X

nZ · (−1)dimC Z · χ(Z,EuZ) ≥ 0,

with the last inequality following by applying Conjecture 1.2(i) to each subvariety Z in the
support of CC(ϕ). �

In [1, Proposition 7.2], the authors list some basic operations of constructible functions which
preserve the property of having an effective characteristic cycle. In particular, one has the
following.

Proposition 2.3. [1, Proposition 7.2(2)] Let Z be a closed reduced subscheme of a smooth
complex algebraic variety X, and assume that ϕ is a constructible function on Z with CC(ϕ)
effective.

(i) Let f : Z → Z ′ be a finite morphism, with Z ′ a closed reduced subscheme of a smooth
complex algebraic variety X ′. Then f∗(ϕ) is a constructible function on Z ′ with CC(f∗(ϕ))
effective. Here, f∗(ϕ) is the constructible function on Z ′ defined by:

f∗(ϕ)(z′) :=
∑

z∈f−1(z′)

ϕ(z).

(ii) Let f : X ′ → X be a morphism of smooth complex algebraic varieties such that f : Z ′ :=
f−1(Z) → Z is a smooth morphism of relative dimension d. Then (−1)df∗(ϕ) =
(−1)dϕ ◦ f is a constructible function on Z ′ with effective characteristic cycle.

As already mentioned, the above functors of constructible functions coincide with those in-
duces via χst from the corresponding functors of constructible complexes of sheaves.
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3. Positivity results for nef bundles. Applications

In this section, we recall (semi-)positivity results for ample (resp., nef) vector bundles on
complex projective manifolds. We use such results to deduce (semi-)positivity statements for the
Euler characteristics of constructible functions with effective characteristic cycles, thus proving
Theorem 1.4.

Definition 3.1. If E is a vector bundle on a complex projective manifold X, denote by P(E)
the projective bundle of hyperplanes in the fibers of E . A vector bundle E on X is called ample
(resp. nef) if the line bundle O(1) on P(E) is ample (resp. nef) in the classical sense.

The nef condition is a degenerate ampleness condition. Properties of nef/ample bundles are
studied, e.g., in [7, 11, 20].

The following semi-positivity result was proved by Fulton-Lazarsfeld [11] for ample bundles,
and extended to nef bundles by Demailly-Peternell-Schneider [7] (cf., e.g., [20, Section 8.1.B] for
the definition of the intersection number).

Theorem 3.2. ([7, Proposition 2.3], [11, Theorem II])) Let X be a complex projective manifold
and let E be a rank r nef (resp., ample) vector bundle on X. For any r-dimensional conic
subvariety C of E, one has

C · ZE ≥ 0 (resp., > 0),

where ZE is the zero section of E, and C · ZE denotes the intersection number of cycles in E.

Remark 3.3. The notion of nef vector bundle can be extended to the Kähler manifold context,
with nefness of a line bundle understood in the sense of [7, Definition 1.2]; this coincides with
the usual definition in the projective case. Then the above theorem holds more generally, for
nef vector bundles on compact Kähler manifolds (cf. [7, Proposition 2.3]).

The first result of this section involves nef/ample cotangent bundles. As already mentioned
in the Introduction, complex projective manifolds with non-positive (resp., negative) sectional
curvature have nef (resp., ample) cotangent bundle.

Example 3.4. The class of complex projective manifolds whose cotangent bundles are nef
is closed under taking finite (unramified) covers, products, and subvarieties, and it includes
smooth subvarieties of abelian varieties. However, if A is an abelian variety of dimension n and
X is a smooth subvariety of A of dimension d and codimension n − d < d, then the cotangent
bundle of X is not ample (e.g., see [20, Example 7.2.3]). On the other hand, for an arbitrary
m-dimensional complex projective manifold M and each n ≤ m/2, there are plenty of smooth
n-dimensional subvarieties X of M with ample cotangent bundle (e.g., complete intersections
of sections of M by general hypersurfaces of sufficiently high degrees in the ambient projective
space, see [4, 29]). Finally, Kratz [19, Theorem 2] showed that if X is a complex projective
manifold whose universal cover is a bounded domain in Cn or in a Stein manifold, then T ∗X is
nef. This result prompted Liu-Maxim-Wang [21] to conjecture that the nefness of the cotangent
bundle should hold more generally, if the universal cover is Stein, a claim refuted recently in
[28].

We can now prove the following result.

Theorem 3.5. Let X be a complex algebraic variety, and let f : X → Y be a morphism to a
complex projective manifold Y with T ∗Y nef. Let ϕ ∈ F (X) be a constructible function on X
such that the characteristic cycle of the constructible function f∗(ϕ) ∈ F (Y ) is effective. Then
χ(X,ϕ) ≥ 0, and the inequality is strict if T ∗Y is ample.

Proof. First note that

(8) χ(X,ϕ) = χ(Y, f∗(ϕ)),
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so it suffices to show that χ(Y, f∗(ϕ)) ≥ 0, with strict inequality if T ∗Y is ample. Let

CC(f∗(ϕ)) =
∑
Z⊆Y

nZ · T ∗ZY,

for uniquely determined closed irreducible subvarieties Z of Y , and nZ > 0 by the effectivity
assumption. Since T ∗Y is nef, one gets by Theorem 3.2 that

T ∗ZY · T ∗Y Y ≥ 0,

with strict inequality if T ∗Y is ample. Kashiwara’s global index formula (5) then yields:

(9) χ(Y, f∗(ϕ)) =
∑
Z⊆Y

nZ (T ∗ZY · T ∗Y Y ) ≥ 0,

with strict inequality if T ∗Y is ample. The assertion of the theorem follows now by combining
(8) and (9). �

Theorem 1.4 is an immediate consequence of Theorem 3.5, as we now show.

Proof of Theorem 1.4. Let f : X → Y be a finite morphism between complex projective man-
ifolds, with T ∗Y nef. Since ϕ ∈ F (X) has, by assumption, an effective characteristic cycle, it
follows from Proposition 2.3(i) that CC(f∗(ϕ)) is effective in T ∗Y . The assertion follows now
from Theorem 3.5. �

Example 3.6. Besides the situation considered in Theorem 1.4, there are other interesting
classes of morphisms f : X → Y (and constructible functions ϕ ∈ F (X) defined on their
domain) satisfying the assumptions of Theorem 3.5. For instance, if ϕ ∈ F (X) comes from a
perverse sheaf, let f : X → Y be a morphism such that Rf∗ preserves perverse sheaves (e.g.,
a closed embedding or a quasi-finite affine morphism); then f∗(ϕ) ∈ F (Y ) also comes from a
perverse sheaf and hence, since Y is assumed smooth, CC(f∗(ϕ)) is effective in T ∗Y . Another
example is provided by the projection f : X → Y from a semi-abelian variety X onto its abelian
part Y . In this case, it was shown in [1, Section 8] that if ϕ ∈ F (X) comes from a perverse
sheaf, then f∗(ϕ) ∈ F (Y ) also comes from a perverse sheaf. Hence CC(f∗(ϕ)) is effective, and
Theorem 3.5 applies to give χ(X,ϕ) ≥ 0, an inequality initially proved in [12, Corollary 1.4]. For
more examples in this direction, the interested reader may consult [1, Proposition 8.4, Example
8.5].

We next discuss the following extension of the main result of [2] to the case of effective
characteristic cycle.

Theorem 3.7. Let X be a smooth complex projective variety with large algebraic fundamental
group (e.g., X is aspherical). Suppose that there exists a cohomologically rigid almost faithful
semi-simple representation ρ : π1(X)→ GL(r,C). Let ϕ be a constructible function on X with
CC(ϕ) effective. Then χ(X,ϕ) ≥ 0.

Proof. The proof of this result in [2] for perverse sheaves coefficients can be readily extended
to the more general setup of effective characteristic cycles, since the only operations involved
in the proof preserve the effectivity of characteristic cycles of constructible functions. For the
benefit of the reader, we summarize the main steps in the proof, by adapting [2, Theorems 1.8
and 1.6] to the setup of our paper.

Let Lρ be the local system on X corresponding to the representation ρ. As noted in [2], Lρ
underlies a complex variation of Hodge structure (CVHS) V with discrete monodromy.

Step 1. Upon passing to a finite unramified cover π : X ′ → X, one can moreover assume that
the monodromy group Γ = ρ(π1(X)) of Lρ is torsion free (cf. [2, Lemma 5.1]). After performing
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this step, the Euler characteristic χ(X,ϕ) gets multiplied by the degree of the cover π and hence
it preserves its sign, and the characteristic cycle of π∗(ϕ) is still effective (cf. Proposition 2.3(ii)).

The effect of performing Step 1 is that the quotient M = Γ\D of the Griffiths period domain
by the monodromy group Γ is now a manifold, and the period map of the CVHS V induces a
horizontal map α : X →M (i.e., its derivative lies in the subbundle ThM ⊂ TM induced from
the horizontal subbundle of D).

Step 2. Since χ(X,ϕ) = χ(M,α∗(ϕ)), it thus suffices to show that χ(M,α∗(ϕ)) ≥ 0.
Conditions of the theorem force α : X → M to be quasi-finite, and hence a finite morphism
(since X is compact). Hence, by Proposition 2.3(i), the characteristic cycle of the constructible
function α∗(ϕ) (supported on the compact subvariety α(X)) is effective in T ∗M . So if

CC(α∗(ϕ)) =
∑
Z

nZ · T ∗ZM,

it suffices to show that for any subvariety Z appearing in the sum one has

(10) T ∗ZM · T ∗MM ≥ 0.

Griffiths transversality implies that α(X) is a horizontal subvariety of M (in the sense of [2,
Definition 5.2]), and hence by [2, Lemma 5.3], so is any irreducible subvariety appearing in
CC(α∗(ϕ)). The desired inequality (10) follows now from [2, Proposition 6.1]. �

We conclude this note with the following discussion about complex projective (or compact
Kähler) manifolds with nef tangent bundles. Let X be a complex projective manifold (or even
a Kähler manifold) whose tangent bundle is nef. Examples include rational homogeneous man-
ifolds (e.g., complex projective spaces, flag manifolds, or quotients G/P of a simply connected
complex Lie group G by a parabolic subgroup), abelian varieties (or complex tori), etc. (cf. [7,
Section 3.A]). Moreover, as we will argue below, complex projective (or compact Kähler) mani-
folds with non-negative sectional curvature have nef tangent bundles. By applying Theorem 3.2
to the tangent bundle TX, one gets via the Gauss-Bonnet formula that

(11) χ(X) =

∫
X

cn(TX) = TXX · TXX ≥ 0,

where TXX is the zero section of TX. Hence one gets the following result from [7].

Proposition 3.8. If X is a complex projective (or compact Kähler) manifold with nef tangent
bundle, then χ(X) ≥ 0.

Note that Theorem 3.2 also shows that the inequality in (11) is strict if TX is ample. In fact,
Mori [25] proved that a complex projective manifold with ample tangent bundle is isomorphic
to a complex projective space.

Proposition 3.8 is a generalization in the complex projective (or Kähler) context of another
conjecture of Hopf (also appearing on Yau’s problem list [30]):

Conjecture 3.9 (Hopf). A compact, even-dimensional Riemannian manifold with positive sec-
tional curvature has positive Euler characteristic. A compact, even-dimensional Riemannian
manifold with non-negative sectional curvature has non-negative Euler characteristic.

Indeed, let X be a complex projective or compact Kähler manifold with non-negative (resp.,
positive) sectional curvature. The bisectional curvature can be written as a positive linear
combination of two sectional curvatures (e.g., see [31]), hence the bisectional curvature of X
is non-negative (resp., positive). This means (by definition) that the tangent bundle TX is
Griffiths semipositive (resp., positive). Furthermore, by [7] (resp., [13]), Griffiths semipositive
(resp., positive) bundles are nef (resp., ample).
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Let us finally note that in the Kähler context, Siu-Yau [27] showed that if X has positive
bisectional curvature then X is biholomorphic to a complex projective space. Furthermore,
a classification of all compact Kähler manifolds with non-negative bisectional curvature was
obtained by Mok [24], and this can be used along with results of [7] to give a direct proof of
Conjecture 3.9 in this case.
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